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Introduction 

Hyperthermia, also called thermal therapy or thermotherapy, is a type of cancer treatment in 

which body tissue is exposed to high temperatures of up to 113 ºF to damage and/or kill cancer 

cells. Research has shown that high temperatures can damage and kill cancer cells with minimal 

injury to the surrounding tissue, making it much safer than traditional treatment therapies. 

Hyperthermia is most commonly used in conjunction with other forms of cancer therapy, such 

as radiation and chemotherapy. Furthermore, many clinical studies show that high temperature 

hyperthermia alone can be used for selective tissue destruction as an alternative to 

conventional invasive surgery. Due to the heterogeneous and dynamic properties of tissues, 

including blood perfusion and metabolic heat generation, it is important to present models of 

the temperature change during the treatment of tumors. The method of hyperthermia we will 

be looking at is local hyperthermia, in which heat is applied to a small area using a focused 

ultrasound beam. This will be an external approach where the applicator is positioned around 

the appropriate region. 

The effectiveness of hyperthermia depends greatly on the temperature achieved during the 

treatment. Another important factor is the duration of the treatment and temperature of the 

surrounding tissue.  This application can easily be done, but monitoring of the temperature 

requires invasive needles with tiny thermometers to be inserted in the treatment area to 

ensure that the desired temperature is reached and the surrounding tissue will not be 

damaged. Imaging techniques such as CT scans are also required and can be expensive to use 

for clinical study purposes. Thus, a mathematical model is better used for understanding the 

temperature profile of the tumor. 

Problem Formulation, Assumptions and Values 

In this study, we will be modeling the heat transfer of an ultrasound beam on a breast cancer 

tumor. This is more commonly known as a hyperthermia treatment for cancer. Literature has 

described that in order to have an effective treatment, resulting in a reduction of tumor size, 

the tumor must reach a temperature of approximately 45 ºC. To simply our model, we will be 

analyzing the tumor as a perfect sphere with radius R = 1 cm = 0.01 m. We will also be 

simplifying the ultrasound beam to be perfectly focused, in other words, the beam only applies 

heat at a point in the center tumor and any other heat energy from the beam is negligible.  

For the purposes of this model we will be utilizing the Pennes bioheat equation (which is the 

general heat diffusion equation with additional terms for perfusion of blood and metabolic 

heat), in spherical coordinates, as follows:  
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Where   is density of the tumor, Cp is the heat capacity of the tissue, k is thermal conductivity 

of tissue and    is the metabolic heat term (or heat that the tumor generates from its 

metabolic processes). qp is defined as heat perfusion or the heat that is carried away from the 

tumor site by arterial blood flow and is defined as: 
        

 
       where   = perfusion rate 

of blood,    = arterial temperature, T = local tissue temperature,     = density of blood and     

= heat capacity of blood. This means that the temperature profile with respect to time is 

dependent on the diffusivity of heat through the tumor as well as how much heat is exchanged 

through the arteries and metabolic heat generation. 

In this situation, we will be neglecting the qp (the heat perfusion term) in an attempt to simplify 

the model. This means that we will be modeling the two remaining scenarios: the basic scenario 

without considering metabolic heat (Scenario 1) and then one considering the metabolic heat 

term (Scenario 2). This means that the equation to be modeled is reduced to (after dividing by 
   

 
 on both sides and simplifying): 
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We will analytically solve these equations to get the two respective temperature profiles. The 

boundary conditions applied are: 

       = 45    [Temperature at the center of the tumor, applied point source 

temperature] 

       = 37    [Temperature at the boundary of the tumor, physiological temperature] 

And the initial condition used is: 

          37   [Initial temperature of tumor at time t = 0, physiological temperature] 

The physiological constant values used in the model (derived from literature) are: 

  = 0.42 
 

    
  [Thermal conductivity of tumor] 

  = 920 
  

    [Density of tumor] 

Cp = 3600 
 

       
 [Heat capacity of tumor] 
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   = 29000 
 

  
  [Metabolic heat generation of tumor] 

Analytical Solution 

Scenario 1: 

  

Scenario 2: 

 

For derivation of the analytical solution, please refer to Appendix A & B. 

Two models (and three attempted models) are presented, derived analytically, and modeled to 

approximate the effects of heating the center of an early stage breast cancer tumor. The 

models here presume that the ultrasound beam only focuses on the center of the tumor. As 

stated before, the tumor is approximated to be a perfect sphere of uniform density. This means 

that heat diffusion outwards from the center for all angles phi and theta of the sphere is the 

same. In this sense, it is very similar to modeling the heat diffusion through a slab where 

distance ‘x’ is now replaced by a distance ‘r’ away from the center. Since the sphere is 2 cm in 

diameter, our model would run for the radius of 1 cm with the ultrasound beam heating the 

center to a constant 45 degrees Celsius and the outside surface staying a constant 37 degrees 

Celsius. We chose a time to model of 100 seconds of exposure or 1.67 minutes. 
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First Model 

The first model shows the heating profile of a tumor in an isolated system, which means there 

are no external factors to consider. This is to show the diffusion of heat through the tumor if no 

means of heat loss were present. 

 

 

Figure 1: Temperature profile for a 

tumor isolated from the body, for 

100 seconds. 

The temperature at the center of 

the tumor is a constant 45  . 

Overtime the temperature of the 

tumor gradually increases. 

 

 

 

 

 

Figure 2: Temperature profile for a 

tumor isolated from the body, for 

10000 seconds. 

The temperature throughout the 

tumor is higher than the previous 

model which makes sense since a 

longer time is allotted for the tumor 

to heat. 
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Figure 3: Effect of time on the 

analytical solution. 

Confirms that as time goes on, the 

temperature of the tumor increases 

gradually with time. 

 

 

 

Second Model 

The second model is the same as the first but takes into account the metabolic heat generated 

by the cells themselves. The metabolic heat constant we used is 29000
 

  . The expectation is 

that the heat generated by the living tissue would have an additive effect to the external heat 

generated by the ultrasound. So the hypothesis would be that the tumor would reach an overall 

higher temperature and also heat at a faster rate. 

 

Figure 4: Temperature profile for a 

tumor in the body, taking into 

account metabolic heat generated, 

for 100 seconds. 

The heat source at 45   is heats the 

tumor to a different gradient as the 

isolated tumor, but still increases 

the overall temperature.  
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Figure 5: Temperature profile for a 

tumor in the body, taking into 

account metabolic heat generated, 

for 10000 seconds. 

The overall temperature of the 

tumor improves with an increased 

duration of treatment, as observed 

by the final temperature profile 

compared to the previous figure. 

 

 

 

 

 

Figure 6: Effect of varying exposure 

times on the analytical solution. 

As expected, at time = 100 seconds, 

it can be seen that the temperature 

is higher at all points throughout 

the radius of the spherical tumor 

model. Although for lower time 

models this is not always the case. 

 

 

Comparing Figure 3 to Figure 6, perhaps the most unusual observation from these plots is that 

with the metabolic heat term introduced into the system, the temperature is lower for shorter 

exposure periods to the ultrasound. We originally expected a uniform shift upwards but this is 

only seen at the final time point of 100 seconds. We can only observe that the introduction of 
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metabolic heat affects the effectiveness of the ultrasound beam in some way that the 

temperature is lower than without the additional heat generation. 

Conclusion 

Ultrasound presents a new way to treat cancerous tumors by hyperthermia, or heating the 

tumor, with minimal damage to surrounding tissues. Most normal tissues are not damaged 

during hyperthermia if the temperature remains under 43.9 ºC, however, due to regional 

differences in tissue characteristics, higher temperatures may occur in various spots that result 

in burns, blisters, discomfort, or pain. Ultrasound reduces the damage to surrounding tissue by 

having a less pronounced effect on less dense tissue. 

Our model shows that for a relatively small tumor (2 cm in diameter) and a point heat source 

set at 45 ºC, only a small part in the interior of the tumor would be damaged and/or destroyed 

within a period of approximately 100 seconds. However, it is good to note that this is a 

simplified model that is not taking into account arterial heat perfusion. The selected heat 

source temperature is a relatively low and to achieve better results, a point heat source at a 

higher temperature would be more effective at generating a sufficient temperature throughout 

the tumor faster. However, this comes at the risk of damaging the surrounding tissue even with 

the relative safety of ultrasound. 

In conclusion, the results of this very simplified model form a basic foundation for a better 

understanding for the use of ultrasound for hyperthermia treatment and how heat diffusion 

works in tumors in general. To further our understanding of the effect of ultrasound, more 

complex and extensive analytical methods including all aspects of heat conduction, perfusion 

and metabolic heat terms should be considered to form a more complete picture of the 

phenomena that occurs in vivo when ultrasound is applied. 
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Appendix A: Analytical Solution For Model Without External 

Heat Sources 

 Assuming no perfusion of heat from the tumor and blood (   , and no metabolic heat 

released     , the simplified diffusion equation is attained, where u is temperature (in degrees 

Celsius) and t is time (in seconds) and r is the distance (in meters): 

  

  
   

   

   
       

  
  

 

The complete solution is based on the summation of the homogeneous (  ) and steady state 

terms (  ): 

                             (0) 

 

The boundary conditions are determined to be: 

 Initial Condition #1: U(r,0) = 37   C 

Boundary Condition #1: U(0,t) = 45   C 

Boundary Condition #2: U(R,t) = 37   C 

These boundary conditions reflect the fact that the tumor temperature is initially at 

physiological body temperature, which is 37   C.  The ultrasound laser heats the center of the 

tumor, at r=0, to 45   C, and that comprises our first boundary condition. The edge of the 

tumor at r=R is modeled to be at body temperature, 37   C.   

Solve the steady state term (  ) and plug boundary conditions to it: 

  

  
   = 

   

   
;         

   

 
           (1) 

Rescale to homogeneous initial and boundary conditions: 

                     

New IC:              
 

 
         (2) 

New BCs:                          
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Use separation of variables: 

                         (3) 

Upon solving, this gets                 (4) 

And for cases of      (other cases proven to be trivial solutions) the characteristic equation of  

                     is attained. Plugging in the boundary conditions yields 

   
  

 
   and  

            
   

 
          (5) 

Plug (5) and (4) to (3) yields  
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Where   
 

 
        
 

 
      

   

 
         (7) 

Plug in (2) to (7) and integrate the term, and replug B to (6) to get the final 
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And replug (8) and (1) to (0) to get the complete temperature profile: 
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Appendix B: Analytical Solution For Model with Addition of 

Metabolic Heat Term 

Assuming no perfusion of heat from the tumor and blood (   , and no metabolic heat released 

    , the simplified diffusion equation is attained, where u is temperature (in degrees Celsius) 

and t is time (in seconds) and r is the distance (in meters): 

  

  
   

   

   
       

  
  

 

The complete solution is based on the summation of the homogeneous (  ) and steady state 

terms (  ): 

                             (0) 

The boundary conditions, as in Appendix A, are determined to be: 

 Initial Condition #1: U(r,0) = 37   C 

Boundary Condition #1: U(0,t) = 45   C 

Boundary Condition #2: U(R,t) = 37   C 

Solve the steady state term (  ) and plug boundary conditions to it: 

  

  
   = 

   

   
  

  

  
 ; know   

 

  
   so solve: 

        
     

  
 

    
    

  
  

 
           (1) 

Rescale to homogeneous initial and boundary conditions: 

                     

New IC:            
    

  
 

    
    

  
  

 
       

            (2) 

New BCs:                          
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Use separation of variables: 

                         (3) 

Upon solving, this gets                 (4) 

And for cases of      (other cases proven to be trivial solutions) the characteristic equation of  

                     is attained. Plugging in the boundary conditions yields 

   
  

 
   and  

            
   

 
          (5) 

Plug (5) and (4) to (3) yields  

                
   

 
   

      
  

 
    

     (6) 

Where   
 

 
        
 

 
      

   

 
         (7) 

Plug in (2) to (7) and integrate the term, and replug B to (6) to get the final 
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And replug (8) and (1) to (0) to get the complete temperature profile: 
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Appendix C: MATLAB Code 

 

Part I: MATLAB Code For Model Without External Heat 

Sources 

 

%Ryan Tam 
%Ultrasound beam focused on center of spherical tumor 
%Modeled outside of tumor (length R away from the tumor on all sides) at 
%body temperature, 37 degrees Celsius 
%Assume no heat generation or perfusion in idealized model, but ultrasound 

beam 
%heats the center of the tumor at 45 degrees. Initial temperature is 37 
%degrees throughout sphere (only affected by the body temperature). 

  
clear all 
close all 
clc  

  
%tissue refers to the tumor; tissue constants 
K_tissue= 0.42; %in W/m, thermal conductivity of the tissue 
density_tissue = 920; %in kg/m^3, density of the tissue 
specificheat_tissue= 3600; %in J/kg*degrees Celsius, specific heat of tissue, 

3600 is another option from another source 
diffusivity_tissue=K_tissue/(density_tissue*specificheat_tissue); 

  
radius_tumor=0.01; %1 cm, converted to m; because tumor diameter is 2 cm, 

which is a early stage 2 breast cancer tumor 
r_distance=radius_tumor*2;  

  
time_total=100; %100 seconds 
dr=r_distance/10; %step size in for r distance (along radius of tumor) 
dt=0.1; %step size in the t direction (time in seconds) 

  
rmesh=0:dr:r_distance; %iterates to 2X the radius of the tumor, past the 

tumor's surface and a distance r from the tumor surface 
tmesh=0:dt:time_total; %iterates up to 100 seconds 
rskip=2; 
tskip=2; 

  
number_iterations=10;  

  
nr=length(rmesh); 
nt=length(tmesh); 

  
V=zeros(nt,nr); 

  
for i=1:nr 
    for j=1:nt 



15 
 

        for k=1:number_iterations %first ten terms of series (starts from zero 

below) 
            Z(k)=(-

16/(k*pi))*sin((k*pi*rmesh(i))/(2*radius_tumor))*exp(diffusivity_tissue*tmesh(

j)*(-((k*pi)/(2*radius_tumor))^2)); 
               %for each radius and time iteration gets Z value 
        end 

         
    steady_state(j,i)=((-4*rmesh(i))/radius_tumor)+45; 

     
    V(j,i)=sum(Z)+steady_state(j,i); 
    %sums up the homogeneous summation (left) and the steady state 
    %response (right) and stores it into array 
    end 
end 

  
temperature=V'; 

  
figure(1) 
surf(tmesh(1:tskip:end),rmesh(1:rskip:end),temperature(1:rskip:end,1:tskip:end

), 'EdgeColor', 'none') %transpose of each array 
title('Analytical Solution') 
xlabel('Time in seconds') 
ylabel('Radius length, in meters') 
zlabel('Temperature, in degrees Celsius') %throughout the homogeneous cell 

suspension 

  

  
%-------------------------------------------------------------------------- 
%Plots temperature throughout the radius of the tumor at specific times listed 

below (2D) 

  
temperature_twentyfive_seconds=temperature(:,251); %because t_total=100 

seconds and step size for is 0.1,  
%so 250 steps to reach 25 seconds, but add 1 to it because it starts at t=0. 
%the analysis is done in the columns because the mesh is (t,x)  

  
temperature_fifty_seconds=temperature(:,501); %because t_total=100 seconds and 

step size for is 0.1,  
%so 500 steps to reach 50 seconds, but add 1 to it because it starts at t=0. 
%the analysis is done in the columns because the mesh is (t,x)  

  
temperature_hundred_seconds=temperature(:,1000); 

  
figure(2) 
plot(rmesh, temperature_twentyfive_seconds, 'ro-', rmesh, 

temperature_fifty_seconds, 'g*-',rmesh,temperature_hundred_seconds,'m+-'); 
title('Temperature in Degrees Celsius of the Tumor'); 
xlabel('Radius, length in meters') 
ylabel('Temperature, in degrees Celsius') 
legend('At time=25 seconds', 'At time=50 seconds','At time=100 seconds'); 

  
%-------------------------------------------------------------------------- 
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Part II: MATLAB Code For Model with Addition of Metabolic 

Heat Term 

 
 %Ryan Tam 
%Ultrasound beam focused on center of spherical tumor 
%Modeled outside of tumor (length R away from the tumor on all sides) at 
%body temperature, 37 degrees Celsius 
%Assume no heat generation or perfusion in idealized model, but ultrasound 

beam 
%heats the center of the tumor at 45 degrees. Initial temperature is 37 
%degrees throughout sphere (only affected by the body temperature).   

  
clear all 
close all 
clc  

  
%tissue refers to the tumor; tissue constants 
K_tissue= 0.42; %in W/m, thermal conductivity of the tissue 
density_tissue = 920; %in kg/m^3, density of the tissue 
specificheat_tissue= 3600; %in J/kg*degrees Celsius, specific heat of tissue, 

3600 is another option from another source 
diffusivity_tissue=K_tissue/(density_tissue*specificheat_tissue); 

  
%blood constants 
perfusion_blood=9*10^-6; %tumor perfusion rate, in L/s 
density_blood=1000; %1000 kg/m^3 
specificheat_blood=3000; %in J/kg*degrees Celsius,  
blood_constant=(perfusion_blood*density_blood*specificheat_blood)/K_tissue; 

  
temperature_arteries=37; %given arterial temperature, degrees Celsius 

  
radius_tumor=0.01; %1 cm, converted to m; because tumor diameter is 2 cm, 

which is a early stage 2 breast cancer tumor 
r_distance=radius_tumor*2;  

  
time_total=100; %100 seconds 
dr=r_distance/10; %step size in for r distance (along radius of tumor) 
dt=0.1; %step size in the t direction (time in seconds) 

  
rmesh=0:dr:r_distance; %iterates to 2X the radius of the tumor, past the 

tumor's surface and a distance r from the tumor surface 
tmesh=0:dt:time_total; %iterates up to 100 seconds 
rskip=2; 
tskip=2; 

  
number_iterations=10;  

  
nr=length(rmesh); 
nt=length(tmesh); 

  
V=zeros(nt,nr); 
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for i=1:nr 
    for j=1:nt 
        for k=1:number_iterations %first ten terms of series (starts from zero 

below) 

             
            first_term=(-8+temperature_arteries)*((-

2*radius_tumor)/(k*pi))*(cos(k*pi)-1); 

             
            

second_term_one=(1/(2*sqrt(blood_constant))*sin((k*pi*sqrt(blood_constant))/(2

*radius_tumor))*cosint((k*pi*(2*radius_tumor-

sqrt(blood_constant)))/(2*radius_tumor))); 
            

second_term_two=sin((k*pi*sqrt(blood_constant))/(2*radius_tumor))*cosint((k*pi

*(2*radius_tumor+sqrt(blood_constant)))/(2*radius_tumor)); 
            

second_term_three=cos((k*pi*sqrt(blood_constant))/(2*radius_tumor))*(sinint((k

*pi*(sqrt(blood_constant)-

2*radius_tumor))/(2*radius_tumor))+sinint((k*pi*(2*radius_tumor+sqrt(blood_con

stant)))/(2*radius_tumor))); 
            

second_term_four=(1/(2*sqrt(blood_constant))*sin((k*pi*sqrt(blood_constant))/(

2*radius_tumor))*cosint((k*pi*(-sqrt(blood_constant)))/(2*radius_tumor))); 
            

second_term_five=sin((k*pi*sqrt(blood_constant))/(2*radius_tumor))*cosint((k*p

i*(sqrt(blood_constant)))/(2*radius_tumor)); 
            

second_term_six=cos((k*pi*sqrt(blood_constant))/(2*radius_tumor))*(sinint((k*p

i*(sqrt(blood_constant)))/(2*radius_tumor))+sinint((k*pi*(sqrt(blood_constant)

))/(2*radius_tumor))); 

             
            

second_term=(blood_constant*temperature_arteries)*(second_term_one+second_term

_two-second_term_three-second_term_four-second_term_five+second_term_six); 

             
            third_term=((8-temperature_arteries-

((blood_constant*temperature_arteries)/((4*radius_tumor^2)-

blood_constant)))/(2*radius_tumor))*((-4*cos(k*pi)*radius_tumor^2)/(k*pi)); 

             
            b_term=(1/radius_tumor)*(first_term+second_term+third_term); 

             
            

Z(k)=b_term*sin((k*pi*rmesh(i))/(2*radius_tumor))*exp(diffusivity_tissue*tmesh

(j)*(-((k*pi)/(2*radius_tumor))^2)); 
               %for each radius and time iteration gets Z value 
        end 

         
    steady_state(j,i)=(45-temperature_arteries)+((-

blood_constant*temperature_arteries)/(((rmesh(i))^2)-

blood_constant))+(rmesh(i)/(2*radius_tumor))*(-

8+temperature_arteries+((blood_constant*temperature_arteries)/((4*radius_tumor

^2)-blood_constant))); 

     
    V(j,i)=sum(Z)+steady_state(j,i); 
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    %sums up the homogeneous summation (left) and the steady state 
    %response (right) and stores it into array 
    end 
end 

  
temperature=V'; 

  
figure(1) 
surf(tmesh(1:tskip:end),rmesh(1:rskip:end),temperature(1:rskip:end,1:tskip:end

), 'EdgeColor', 'none') %transpose of each array 
title('Analytical Solution, with Heat Perfusion to Arteries') 
xlabel('Time in seconds') 
ylabel('Radius length, in meters') 
zlabel('Temperature, in degrees Celsius') %throughout the homogeneous cell 

suspension 

  

  
%-------------------------------------------------------------------------- 
%Plots temperature throughout the radius of the tumor at specific times listed 

below (2D) 

  
temperature_twentyfive_seconds=temperature(:,251); %because t_total=100 

seconds and step size for is 0.1,  
%so 250 steps to reach 25 seconds, but add 1 to it because it starts at t=0. 
%the analysis is done in the columns because the mesh is (t,x)  

  
temperature_fifty_seconds=temperature(:,501); %because t_total=100 seconds and 

step size for is 0.1,  
%so 500 steps to reach 50 seconds, but add 1 to it because it starts at t=0. 
%the analysis is done in the columns because the mesh is (t,x)  

  
temperature_hundred_seconds=temperature(:,1000); 

  
figure(2) 
plot(rmesh, temperature_twentyfive_seconds, 'ro-', rmesh, 

temperature_fifty_seconds, 'g*-',rmesh,temperature_hundred_seconds,'m+-'); 
title('Temperature in Degrees Celsius of the Tumor'); 
xlabel('Radius, length in meters') 
ylabel('Temperature, in degrees Celsius') 
legend('At time=5 seconds', 'At time=25 seconds', 'At time=50 seconds','At 

time=100 seconds'); 

  
%-------------------------------------------------------------------------- 

  

 


