Computability Theory for Neuroscience

by Doug Rubino

Abstract

Neuronal circuits are ubiquitously held to be the substrate of compu-
tation in the brain, information processing in single neurons is though of
in terms of encoding, and neurons themselves are modeled with dynami-
cal systems. The notions of computation, information and dynamics are
three terms that are formally defined, for the most part, in historically
independent fields. Dynamical systems are not a traditional model of com-
putation, and the theory of dynamical systems plays little to no role in the
history of computers. The temporal non-linearities observed in biological
systems make them fundamentally difficult to describe in an information
theoretic framework, which requires the base signal to be approximately
stationary or ergodic [2]. Non-linear systems are best thought of as per-
forming computations, and yet the notion of computation is best-studied
in frameworks that are recursive, or discrete. This work formalizes that
intuition by introducting a discrete model of computation called stream-
ing automata. I demonstrate that these automata are an appropriate
model of computation for neurons, a fact that requires the construction of
a bijection between streaming automata and biological dynamical systems
that holds to an error that is arbitrarily small. For this reason, streaming
automata are a universal and non-parametric non-linear model [3].

1 Introduction

In the face of tremendous diversity in ion channels, ion channel densities and
dendritic geometry, it is clear that finding appropriate models to represent neu-
rons is no easy task [4]. The functional characteristics of any particular neuron
presumably exist to subserve one or several specific computational roles, and
there is no universal error metric that captures this notion of neuronal function
nor is there a well-defined notion of computation in neuroscience.
Computability theory is field jointly created by several historically important
theorists including Alan Turing, Alonzo Church and Stephen Kleene [5]. Among
other things, the formalism of computability theory has yielded a definition
for computation. This definition is fundamentally is model dependent, and
the Church-Turing thesis is the statement that all models of computation will
be equivalent to the ones that have already studied. The seminal universal
models of computation include the Turing Machine, presented in the work of
Alan Turing [6], and the Lambda Calculus presented in the work of Alonzo

Church [1]. Because the word computation is only well-defined with respect
to a chosen model of computation, it is important that we fix a particular
model of computation in neuroscience that is powerful enough to capture all
possible neuronal dynamics, and one that has no extraneous theoretical baggage
to obscure the link between theory and data. This will serve to make model
fitting no more difficult than it has to be.

A particular problem with neuronal systems in neuroscience is that all ele-
ments engage in real-time computation. The classical models in computability
theory are called acceptor models of computation. They take an input string,
flip some bits, and then (hopefully) halt. This is not an appropriate model for
neuroscience, and finding an appropriate model will account for some of the
work in this project. I am presenting the streaming automata, a real-time ver-
sion of the well precedented finite automata, to play the role of a computational
model in neuroscience. I intend to define this model and prove that it bijects
onto computational dynamical systems.

2 The Streaming Automata
A streaming automata M is a five-tuple (@, X, d, go, w) where

1. @ C N is a finite set of states.

2. ¥ C R is a finite input alphabet.

w

. 6:Q x X — Q is a transition function.

e~

. go € Q is a start state.

5. w: @ — R is a transduction function.

Let I(t) and O(t) be input and output functions, I(t) € X, and let Q(t) be a
function describing the current state of the streaming automata M.

0 ift=0
Q) = { g(Q(t_ 1),1(t)) otherwise

O(t) = w(Q(t)). The transition is both state and input dependent, giving M
its limited memory. Because the input is streaming, this form of memory is the
only form that can be supported without the machine simply ignoring its input
in order to access memory.

3 An Example from Neuroscience

The goal of this section is to present an example streaming automata that mod-
els the reduced Hodgkin-Huxley equations (Figure 1). The automata outputs

a b 2D Hodgkin-Huxley I/F

3 3
q3
15
q4 q2
1,2 1,2
3 ~N
12 3 L 10
) 1 B‘
a5 2 q0 12 (a1 §
23 g 5
3 1,2 : 3 C
6 Lz 8
q q
12
0
q7 .
2 & 20 0 20 40
lext (uA)

Figure 1: A Reduced Hodgkin-Huxley Streaming Automata. a) A Three in-
put streaming automata that displays the major firing motifs of the reduced
Hodgkin-Huxley equations. The system outputs a 1 when in a blue state and
a 0 otherwise. b) An I/F plot of a 2D projection of the reduced Hodgkin-
Huxley equations. The numbers represent the different firing motifs which are
1. subthreshold dynamics, 2. single spiking, and 3. rhythmic spiking.

in binary, where an output of 1 represents the presence of an action poten-
tial. There are three main types of behavior that are observed in the Hodgkin-
Huxley reduction. They are: subthreshold dynamics, single spiking and rhyth-
mic spiking. The gg — ¢o loop for I(t) = 1 models the subthreshold dynamics,
the g9 — ¢1 — ¢o loop for I(t) = 2 models single spiking behavior, and the
q1 — ... — qg — q1 loop for I(t) = 3 represents rhythmic spiking. Frequency
resolution can be made arbitrarily high by increasing the number of states in
the g1 — ¢8 loop and adding inputs that count the loop with various spacings.
Additional frequencies were omitted from the figure to avoid visual clutter.

4 A Bijection Between Streaming Automata and
Computational Dynamical Systems

The goal of this section is to demonstrate that there is at least one dynamical
system that approximates any streaming automaton and there is at least one
streaming automaton that can approximate any of a broad class of biologically
plausible dynamical systems. I call these systems ’computational dynamical
systems.” The first step to to define computational dynamical systems and to
formally define the ’approximate’ relation. After that background is done, I
will prove that for any streaming automata M and any dynamical system O,
M* = ©*, which is true when Ap(M,©) and Ap(©, M). Therefore, this work

consists of two approximation proofs.

The proof sketch below is analogous to a standard technique of showing
computational equivalence between models. This is done by showing that each
can simulate the other. Computational models are recursive and their space
is countable. This allows any two equivalent models to simulate each other
absolutely. Because the set of streaming automata is countable and the set
of computational dynamical systems is not, I must prove that streaming au-
tomata can simulate computational dynamical systems to an error €. This error
can be chosen to be arbitrarily small, allowing streaming automata to simulate
computational dynamical systems in the limit.

The two sides of the equivalence proof will be presented along with other
background steps as a series of lemmas. Many of these lemmas are intuitive and
will be stated with only an intuitive proof. The idea is to capture only the least
intuitive ideas with formality. This serves to keep the work straightforward and
relatively clear.

Computational Dynamical Systems. A computational dynamical system
is meant to represent a dynamical system that a user can control with an input
signal. There are several requirements that a dynamical system must satisfy for
it to have this desirable property. They are as follows:

1. The system is resettable.
2. The system is stable.

3. The system is insensitive to noise.

The system must be resettable so the user has a point of reference for control.
The system must be stable because it must be physically realized in an analog
machine. And the system must be insensitive to noise because noise cannot
be controlled by the user by definition. If these fluctuations make the system
unpredicatable, it cannot be used for computation. This last requirement is
equivalent to the requirement that the system be non-chaotic.

Approximation. Let o(n) be an input string. For all n € N, o(n) € X, let
nAt <t < (n+ 1)At and let I(t) = o(n). Let M be a streaming automaton
and © be a computational dynamical system. Let Ops(n,o) be the output of
M and let Og(t,I) be the output of ©.

Given any streaming automaton M, if there exists a computational dynamical
system © such that |Oy(n,0) — Og(nAt, I)] = 0 we say © approximates M
and write Ap(©, M).

Given any € > 0 and any computational dynamical system O, if there exists
a streaming automaton M such that |Og(nAt,I) — Op(n,0)| < € we say M
approximates © and write Ap(M, ©).

Let M* be the set of streaming automata and ©* be the set of computational
dynamical systems. For all M € M* if there exists © € ©* such that Ap(©, M),
and for all © € ©* if there exists M € M™* such that Ap(M, ©), we say streaming
automata are computationally equivalent to computational dynamical systems
and write M* = ©*.

Lemma 1.1. Let C be a finite set of non-overlapping, continuous and differ-
entiable curves. Each ¢ € C is of the form ¢(r) = (x1,...,zy) for bounded
r and z;. Let FN be the space of continuous, differentiable functions from
RN — RN, Given any C, there exists f € F'V such that for all fixed o and
ceC, [f(z) dz=a.

This lemma states that one can find a function which has a constant value for
line integrals along each in a set of bounded curves. This lemma will be used
when embedding the streaming automata into the phase-plane of a computa-
tional dynamical system.

Lemma 1.2. Let G be a finite graph. G = {E,V}, where F is a set of edges
and V is a set of vertices. For each v € V, let 7, be a point in R¥ where K > 2.
For each e € E, let ¢, be a continuous, differentiable curve. If e = (v, v2), ce
has end-points p, 1 and p,,2. For all finite graphs G, there exist sets of points P
and curves C, such that no two curves in C intersect each other. Let this graph
embedding be called Eg, where Eq = {P,C}.

Curves are one-dimensional manifolds. The only N-dimensional space where
the union of a finite set of curves can yield a set topologically equivalent to an
N-sphere is R%. Therefore, one cannot enclose any point in R? using a finite set
of curves. Therefore, there must be a path that connects any two points and
does not intersect any of the other curves. This lemma will be used to place a
lower bound the number of dimensions needed to embed a streaming automata
in the phase-plane of a computational dynamical system.

Lemma 1.3. Let M be a streaming automata. §(q, o) can be represented by an
N x K matrix, where |Q| = N and |X| =K. Let V =Q and F = {(¢,d(q,0)) :
q € Q,0 €X}. G={V,E} is a graph that represents 6. There exists a graph
embedding Eg = {P,C}, where P € R* where first dimension of f, equals w(q)
for all p; € P. Consider the embedding E¢ , corresponding to the subgraph
G, ={V, E,}, where E, = {(q,d(q,0)) : ¢ € Q}. There exists a set of functions
fo such that for all ¢ € Cy, [, fo(x)-dz = o

This lemma utilizes lemma 1.1 and lemma 1.2. The first dimension of f, is
going to be the output of a computational dynamical system that represents
M. This will ensure that Og(nAt) = w(o(n)). The other three dimensions
are needed for the application of lemma 1.2. This will ensure that paths from
connected points in P do not cross. Clearly, lemma 1.1 is used to prove that
J. fo(z) - dz = a for any constant a € R.

Lemma 1. For all M € M* and At > 0, there exists a computational dynami-
cal system O(I, X) € R* such that Ap(©, M).

Proof. For each ¢ € ¥ choose f, from lemma 1.3. Choose o = ﬁ and let
O(I(nAt), X (1)) = fo(n). [,0I(nAt),z) dv = <. If)?g and)_('g, € P are
the boundaries of ¢ then

AXy = (X -X)=
AX‘? o o
At - Xq/ - Xq .

q¢' = 6(q,0) so © describes a continuous transition between X 7 and)Zg, in At.
¢ € C is defined and only defined for (g,d(q,c)) pairs. Therefore © transitions
with M, and Og transitions with Oj;. By induction

Om (Oa 0) =0Oe (OAta I)
from the definition of ©.

Opr(n,o) = Og(nAt,I) — Op(n+1,0) = Og((n + 1)At, I)
from above.

Therefore for all n
OM(n, 0’) = O@(TLAt, I) =
|Or(n,0) — Og(nAt, I)] = 0.

Therefore for all M, there exists © such that Ap(©, M).

Lemma 2.1. Let © be an N-dimensional computational dynamical system.

—

O is resettable, so there exists X(0) = (z0,0,...,n-1,0) € RV that is the re-
set position of the phase-plane. Let rng{I} be a finite set of values and fix
o € rng{l}. Given any e > 0, there exists a finite set of points P, and p’ € P,
such that for all X (nAt), |X(nAt) — pl < e.

Proof. For all n, X(nAt) € P,. ©(c, X) stable and insensitive to noise, which
implies that X (¢) must approach a limit cycle. Therefore, for all n > N, there
exists pn € P, such that | X (nAt) — pn| < e. Therefore |P,| < N.

Lemma 2.2. Let I(nAt) = o and I((n + 1)At) = o’. There exists a set of
points P € X such that X(nAt) € P implies that there is a p'€ P such that
[X(n+1)—pl <e.

Proof. P = U P,.
oerng{l}

Lemma 2. For all © € ©* and At > 0, there exists a streaming automaton
M € M* such that Ap(M, ©).

Proof. Let @ be any enumeration fofP Where a0 = f(X(0)) Let ¥ = rng{]}

i
If I(nAt) = o, f(X(nAt)) = q and f(X((n+ 1)At)) = ¢, 6(¢.0) = ¢'- Let
f(p) and w() = po, the output dimension of P. M = (Q, %, 6, qo, w).

The Bijection Theorem. M* = ©*.
Proof. This result follows directly from lemma 1 and lemma 2.

Corollary. Any computational dynamical system © can be approximated with
a computational dynamical system ©’ in R%.

Proof. For every © and € > 0, there exists a streaming automata M that
approximates it, from lemma 2. Choose such an M. From lemma 1, there
exists a dynamical system ©’ € R* that approximates M. Choose such a ©'.
For all n € N, |Og(nAt) — Og/ (nAt)] < e.

5 Discussion

A model of computation is a powerful tool. The logical circuit, the register ma-
chine and the Turing machine are all models of computation [5]. Demonstration
of the equivalence of these three models of computation provided the theoreti-
cal foundation for today’s modern computers. Perhaps most important of all, a
model of computation gives a construct in which an algorithm can be rigorously
defined. I hope that this work is a first step in towards developing a generalized
methodology to convert known neuronal circuits into known algorithms. This
would be a valuable tool for the field of computational neuroscience.

A more humble and immediate goal for this theory is to provide a universal
metric for model fitting. There are many ways to estimate the parameters for
a particular set of a dynamical systems and many ways to collect the data for
the fit. By converting both the data and the model into streaming automata,
one can develop a metric based on computational means. Insofar as neuronal
circuits subserve computation, this should serve a universal error metric for
parameter estimation in neuroscience.

References

1]

2]

A. Church. The calculi of lambda-conversion. Annals of Mathematics Stud-
1es, 1941.

T. M. Cover and J. A. Thomas. Elements of Information Theory, Second
Edition. John Wiley & Sons, Inc., Hoboken, NJ, 2006.

M. Gold. System identification via state characterization. Automatica,
8:621-636, 1972.

E. M. Izhikevich. Dynamical Systems in Neuroscience. The MIT Press,
Cambridge, MA, 2007.

M. Sipser. Introduction to the Theory of Computation, Second Edition.
Thompson Course Technology, Boston, MA, 2006.

A. M. Turing and J. E. Copeland. The Essential Turing. Oxford University
Press, Oxford, England, 2004.

