
Investigation on using Kernels with Q-learning for gait
adaptation on visually guided walking robots

Francesco Tenore, Roman Genov

Abstract.
In this work we apply a reinforcement learning
algorithm (Q-learning) to a simulated walking robot
to “teach” it to step over hurdle-type obstacles. Two
ways to achieve this are described in detail. The first
method uses a gait model-based approach; the second
explores the state-action space thoroughly by using a
non-zero probability of a random transition. Finally
we use a kernel (radial basis) function to speed up the
learning process.

1. Introduction

In the standard reinforcement-learning
model, an agent is connected to its environment via
perception and action. On each interaction step the
agent receives an input, which encodes information
regarding the current state, S, of the environment. The
agent then chooses an action, a, to generate as output.
The action changes the state, and the value of this state
transition is communicated to the agent through a
discrete delayed reinforcement signal, r. The agent
should choose actions that maximize the long-run sum
of values of the reinforcement signal. It learns this
over time through trial and error, and can be guided by
a wide variety of reinforcement algorithms [1].

2. An overview of Q-learning

In our case, the algorithm that was chosen
was Q-learning. Q-learning [2], is a form of
reinforcement that does not require a model of its
environment and can be used on-line. It works by
estimating a quality index of state-action pairs and
provides robots with the capability of learning to act
optimally in a Markovian environment [3].

Assuming the robot can discriminate the set
S of states and can take the set A of actions, the way
the algorithm works is the following.
i) A matrix Q of S rows and a columns is initialized to
0;
ii) current state S is acknowledged;
iii) an action a is chosen according to the policy:

),(maxarg)(aSQSf a= (1)

The value function is the quality index that
corresponds to the choice of such a policy:

),(max)(aSQSV af = (2)

iv) action a is carried out in the environment and the
next state becomes S’;

v) update the value function and therefore the Q-
matrix through the learning rule:

))((),()1(),(1+++−← tftttt SVraSQaSQ γαα
 (3)

where α is called the learning rate, and is typically a
low positive number between close to 0, and γ is the
discount factor, also fixed between 0 and 1, and
finally r is the reinforcement signal and is set to –1 if
the action taken resulted in a failure, whereas it is set
to a +1 value if the result of the action was a success.

Learning rule (3) shows how the update of
the matrix occurs. Since α has a small value (0.1 in
our simulation), one can see that the Q-matrix entry at
time t+1 comes largely (90%) from the value of the
previous state (t), and partially (10%) from the sum of
the reinforcement signal and the value function.

3. Gait model-based learning

3a. Implementation

We assume a finite number of actions and a
finite number of states. In the future it will be
desirable to work with an infinite number of states,
thereby requiring a continuous function to describe the
state. In this simulation we show a robot walking at a
normal pace if no obstacle is in its field of view. When
an obstacle appears, the robot will start changing its
gait according to its policy. The obstacle is displayed
as a rectangle into which the robot’s feet cannot step
into or a punishment will be enforced (reinforcement
signal equal to –1). In a real world environment this is
equivalent to stepping over an obstacle: the rectangle’s
longer sides represent the two limits for performing a
correct jump. I it stepped within this rectangle the
robot’s last step should either be increased (if
possible) or decreased enough to become the next -to-
last step.

Therefore the state-space encodes the
distance from the obstacle, which in the real-world
scenario will be given to us through a stereo-vision
chip mounted on a camera on the robot’s legs. There
are a total of 75 states, and 8 actions corresponding to
the length of the steps that the robot can make, the
longest being action 1. In simulation, after every
obstacle, a new one appears after a random number of
steps. The distance to it is also partially random. To
ensure learning, we empirically choose to reach 30
consecutive successes. As output, the simulation
shows the relative distance covered, the number of
iterations (obstacles) that were required to achieve the
30 consecutive successes and a graphical

representation that shows the complete set of trials
required to accomplish the task.
A part of these trials are shown in Figure 1.

Figure 1. Zoom-in of a part of the robot’s “journey”.
The blue circles represent the robot’s footsteps; the
green rectangles are the obstacles.

Note that in this representation, the top circles are the
places where the left foot stepped and the bottom
circles correspond to the right foot. Also, it should be
noted that the probability of having 30 consecutive
successes without gait adaptation, and therefore
having a constant step size equal to its maximum
possible size, is over 11 orders of magnitude greater
than what we obtain.

In the following figure we show a 3-D plot
of what the Q-matrix obtained. The “canyon” shown
in the figure corresponds to state-action pairs that
prevent the robot from surmount ing the obstacle. This
diagonal part of the matrix is essentially the part that
the robot must avoid in order to obtain a success. In
the figure, the actions are numbered from 1 to 8 the
states from 1 to 75 and the z coordinate is the quality
index for each position in the matrix.

Figure 2. This 3-D plot of the Q-matrix shows the
negative values on a diagonally shaped area of the
matrix.

This, however, was the original version of the
program, which did NOT have any degree of
randomness in the choice of the action. So we did not
explore the state-action space but used a predefined
model in which the step size is always initially chosen
to be maximum (action 1). Also, since the Q-matrix
was not entirely explored a small number of iterations
is required for learning.

3.b Results with predefined gait model.

In order for the robot to have learned, we
empirically said that this occurs once the simulation
has reached 30 consecutive successes. A histogram
that plots the results is shown in Figure 3. An average
of 120 iterations are required to reach this goal. This
value is highly influenced by the only outlier (the
standard deviation is equal to approximately 35). It
was therefore quite interesting to also see what the
result for the median would give. This was seen to be
110, significantly lower than the mean.
In this case, experiments with noise were also
conducted. In these experiments, it was assumed that
every action would have some noise to it and therefore
the robot would not always place its “foot ” where it
was intended to be. Also, it was decided that the
maximum step size coincided with the robot’s normal
step and was therefore not subject to noise. Under
these conditions, the addition of noise proportional to
step size linearly increased the number of obstacles
required for learning.

Histogram

0

1

2

3

4

5

o b s t a c l e s

Figure 3. Plot of the number of learning successes
versus the number of iterations required (in 20 total
simulations).

4. Exploration of the state space

4a. Implementation
The next step was to add the degree of randomness
(mentioned at the end of section 3a) to allow the
exploration of the state-space. The probability
distribution was chosen so as to favor longer steps to
shorter ones, thereby inherently allowing for a faster
stride. Its cumulative distribution function is shown in
Figure 4.

Figure 4. The cdf is used to decide which action to
take.

Note, however, that there is no reinforcement signal
that rewards a faster pace as opposed to a slower one.
This might be added in future versions of the
simulation.

This exploration approach is implemented in
the following way.

Stage 1. As the robot starts learning, or every time it
runs into an obstacle, two possibilities can occur in
deciding how to take an action. Either it chooses the
policy (the action that gives the maximum Q-value in
a given state), or it chooses the action randomly. This
second part occurs with a probability of 0.35. In
essence, we take a randomly generated number in the
interval [0, 1] and if the number is higher than 0.65
then we generate another random number, which will
decide which action to take, based on the probability
distribution, shown in figure 4, that favors long steps
to shorter ones.

Stage 2. Once the robot reaches a certain number of
consecutive successes, which we choose empirically
to be 4, the probability of selecting a random action as
opposed to the one dictated by the policy decreases
linearly with the number of successes; we also weight
the probability with the value function.

Stage 3. Having reached the second threshold of 10
consecutive successes (also chosen empirically), we
argue that the matrix is converging and therefore we
should exploit only the policy. If, in this last scenario,
the robot bumps into the obstacle then the process
goes back to stage 1.

In this manner one can predict that the entire
matrix, or almost all of it, will be constituted by non-
zero elements.

As expected, the negative elements appear
only on a particular “diagonal”, just as shown in
section 3a, which corresponds to the set of state-action
pairs from which the obstacle cannot be passed. This
situation is shown in Figures 5a and 5b (3D and 2D
plots).

The number of iterations required for a
complete exploration and to reach the goal of 30
consecutive successes is about one to two orders of

magnitude larger compared to the situation in which
the gait model, not exploration, is used. This is mainly
due to the randomness in the decision of the action: it
takes more iterations to explore a greater part of the Q-
matrix.

4.1. Results in exploration

Since these experiments require larger
amounts of time, only 8 simulations were run. The
resulting number of iterations required had an average
of 13,000, a standard deviation of 12,000 (one large
outlier at 40,000) and a median of 10,000.

a)

b)

Figure 5. a) 3-D plot of Q-matrix after exploration of
the state-space. The exploration accounts for the
smoothness.
b) 2-D plot showing the position of the diagonal region
into which the robot should not step.

If the threshold points in stages 1 and 2 had

been different, different results would have been
obtained. Research in this part of the project will be
dealt with in future improvements.

5. The radial basis function
The radial basis function is introduced to

decrease the number of iterations required for learning
in the exploration case (section 4a). Essentially, every
time the robot passes an obstacle, whether correctly or
incorrectly, the matrix updates not only the last entry ,
but also its nearest neighbors according to the radial
basis function. This exploits the fact that the finer one
quantizes the state-action space, the more probable it
is that the elements surrounding a given state-action
pair will have the same topological properties, thereby
allowing for a quicker update of the entire matrix and,
in the limit, learning in the continuous domain.
The radial basis function decreases like the square of
an exponential. The formula used to update the
surrounding elements will be:

),()),(),(exp(),(),(

,
2

jijiji aSQaSaSaSQaSQ

ji

+−−⋅←

∀

 (4),

where, in our case, the square norm represents the
square of the distance between any Q-value and the
element updated by reinforcement alone (Q(S,a)).
The problem with this implementation was the fact
that it did not converge, therefore a modification of the
update formula (probably with a normalization factor
in front) will be required for future evolutions of the
function.

6. Conclusions

To implement the reinforcement algorithm
correctly it is necessary to add a certain probability
that a random action in a given state can occur. It has
been shown in this paper, however, that if the
probability is not added, and instead a gait model is
used, the number of iterations, and therefore obstacles,
required for learning is sensibly smaller.
The question arises as to whether or not it is necessary
to explore the state-space, and therefore which of
these two options will be chosen to be implemented on
the real robot. Undoubtedly, the first option will be
tested first, being easier to work with. If no real
problems are encountered with this methodology it
might not be worthwhile to test out the exploration.
Noise or other factors could become important
(although tests with noise have been conducted in the
gait model scenario and the number of iterations
required for learning did not increase significantly)
issues that might force us to explore the rest of the
state-space.
The kernel approach so far has not been proved useful
but through certain modifications (such as an update
of only a close neighborhood of the reinforced
element) and a closer study of the behavior of the
matrix, more detailed conclusions might be made.
Improvements that could be added to these basic
functions include a reinforcement signal that awards
higher speed of accomplishment of the task. Also, a
quasi-continuous state-space could be implemented.
This is an approach in which the input (distance to

obstacle, i.e. current position) is continuous and
therefore lies between two states of the Q-matrix. We
would then use a radial basis function to update these
two states according to their distance from the
position. By extension, also other close states can be
updated, albeit to a much smaller extent.

References

[1]. Leslie Pack Kaelbling, Michael L. Littman,
Andrew W. Moore, “Reinforcement Learning: A
Survey”; http://www.cs.brown.edu/people/lpk/rl-
survey/rl-survey.html
[2]. C. Watkins, P. Dayan, “Q Learning'' Machine
Learning, vol. 8(3), pp. 279-292, 1992.
[3]. Y. Takahashi, M. Takeda, M. Asada, “Continuous
valued Q-learning for vision-guided behavior
acquisition”; Proceedings of the 1999 IEEE
International Conference on Multisensor Fusion and
Integration for Intelligent Sy stems, Taipei, Taiwan,
ROC. August 1999

