Learning on Silicon: Overview

Gert Cauwenberghs
Johns Hopkins University
gert@jhu.edu

520.776 Learning on Silicon
http://bach.ece.jhu.edu/gert/courses/776
Learning on Silicon: Overview

• Adaptive Microsystems
 – Mixed-signal parallel VLSI
 – Kernel machines

• Learning Architecture
 – Adaptation, learning and generalization
 – Outer-product incremental learning

• Technology
 – Memory and adaptation
 • Dynamic analog memory
 • Floating gate memory
 – Technology directions
 • Silicon on Sapphire

• System Examples
Massively Parallel Distributed VLSI Computation

- **Neuromorphic**
 - distributed representation
 - local memory and adaptation
 - sensory interface
 - physical computation
 - internally analog, externally digital

- **Scalable**
 throughput scales linearly with silicon area

- **Ultra Low-Power**
 factor 100 to 10,000 less energy than CPU or DSP

Example: VLSI Analog-to-digital vector quantizer (Cauwenberghs and Pedroni, 1997)
Learning on Silicon

Adaptation:
- necessary for robust performance under variable and unpredictable conditions
- also compensates for imprecisions in the computation
- avoids ad-hoc programming, tuning, and manual parameter adjustment

Learning:
- generalization of output to previously unknown, although similar, stimuli
- system identification to extract relevant environmental parameters
Adaptive Elements

Adaptation:

Autozeroing (high-pass filtering) \[\text{outputs}\]
Offset Correction \[\text{outputs}\]
 \[\text{e.g. Image Non-Uniformity Correction}\]
Equalization / Deconvolution \[\text{inputs, outputs}\]
 \[\text{e.g. Source Separation; Adaptive Beamforming}\]

Learning:

Unsupervised Learning \[\text{inputs, outputs}\]
 \[\text{e.g. Adaptive Resonance; LVQ; Kohonen}\]
Supervised Learning \[\text{inputs, outputs, targets}\]
 \[\text{e.g. Least Mean Squares; Backprop}\]
Reinforcement Learning \[\text{reward/punishment}\]
Example: Learning Vector Quantization (LVQ)

Distance Calculation:
\[d(a, \alpha^i) = \sum_{j} \delta(a_j, \alpha_j^i) = \sum_{j} |a_j - \alpha_j^i|^\nu \]

Winner-Take-All Selection:
\[k = \text{argmin}_i d(a, \alpha^i) \]

Training:
\[\alpha_j^k \leftarrow (1 - \lambda) \alpha_j^k + \lambda a_j \]
Incremental Outer-Product Learning in Neural Nets

Multi-Layer Perceptron:

Outer-Product Learning Update:

- Hebbian (Hebb, 1949):
 \[e_i = x_i \]

- LMS Rule (Widrow-Hoff, 1960):
 \[e_i = f'_i \cdot \left(x_i^{\text{target}} - x_i \right) \]

- Backpropagation (Werbos, Rumelhart, LeCun):
 \[e_j = f'_j \cdot \sum_i p_{ij} e_i \]
Technology

Incremental Adaptation:
- Continuous-Time:
 \[C \frac{d}{d t} V_{\text{stored}} = I_{\text{adapt}} \]
- Discrete-Time:
 \[C \Delta V_{\text{stored}} = Q_{\text{adapt}} \]

Storage:
- Volatile capacitive storage (incremental refresh)
- Non-volatile storage (floating gate)

Precision:
- Only polarity of the increments is critical (not amplitude).
- Adaptation compensates for inaccuracies in the analog implementation of the system.
Floating-Gate Non-Volatile Memory and Adaptation

Paul Hasler, Chris Diorio, Carver Mead, …

- **Hot electron injection**
 - ‘Hot’ electrons injected from drain onto floating gate of M1.
 - Injection current is proportional to drain current and exponential in floating-gate to drain voltage (~5V).

- **Tunneling**
 - Electrons tunnel through thin gate oxide from floating gate onto high-voltage (~30V) n-well.
 - Tunneling voltage decreases with decreasing gate oxide thickness.

- **Source degeneration**
 - Short-channel M2 improves stability of closed-loop adaptation (Vd open-circuit).
 - M2 is not required if adaptation is regulated (Vd driven).

- **Current scaling**
 - In subthreshold, Iout is exponential both in the floating gate charge, and in control voltage Vg.
Dynamic Analog Memory Using Quantization and Refresh

Autonomous Active Refresh Using A/D/A Quantization:

- Allows for an excursion margin around discrete quantization levels, provided the rate of refresh is sufficiently fast.
- Supports digital format for external access
- Trades analog depth for storage stability
Binary Quantization and Partial Incremental Refresh

Problems with Standard Refresh Schemes:
- Systematic offsets in the A/D/A loop
- Switch charge injection (clock feedthrough) during refresh
- Random errors in the A/D/A quantization

Binary Quantization:
- Avoids errors due to analog refresh
- Uses a charge pump with precisely controlled polarity of increments

Partial Incremental Refresh:
- Partial increments avoid catastrophic loss of information in the presence of random errors and noise in the quantization
- Robustness to noise and errors increases with smaller increment amplitudes
Binary Quantization and Partial Incremental Refresh

\[Q(p_i) \]

\[p_i^{(k + 1)} = p_i^{(k)} - \delta \cdot Q(p_i^{(k)}) \]

- Resolution \(\Delta \)
- Increment size \(\delta \)
- Worst-case drift rate (\(|dp/dt|\)) \(r \)
- Period of refresh cycle \(T \)

\[r \cdot T < \delta \ll \Delta \]
Functional Diagram of Partial Incremental Refresh

- Similar in function and structure to the technique of delta-sigma modulation
- Supports efficient and robust analog VLSI implementation, using binary controlled charge pump
Analog VLSI Implementation Architectures

- An increment/decrement device I/D is provided for every memory cell, serving refresh increments locally.
- The binary quantizer Q is more elaborate to implement, and one instance can be time-multiplexed among several memory cells.
Charge Pump Implementation of the I/D Device

Binary controlled polarity of increment/decrement
- INCR/DECR controls polarity of current

Accurate amplitude over wide dynamic range of increments
- EN controls duration of current
- $V_{b\text{ INCR}}$ and $V_{b\text{ DECR}}$ control amplitude of subthreshold current
- No clock feedthrough charge injection (gates at constant potentials)
Dynamic Memory and Incremental Adaptation

(a) EN _n

(b) EN _p

\[\Delta V_{\text{stored}} \]

1pF

Voltage Increment \(V_{\text{stored}} \) (V)

Gate Voltage \(V_{\text{bn}} \) (V)

\[\Delta t = 40 \text{ msec} \]

\[\Delta t = 1 \text{ msec} \]

\[\Delta t = 0 \]

\[\Delta t = 23 \mu\text{sec} \]

100

10

1

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

0

0.1

0.2

0.3

0.4

0.5

0.6

\[\Delta V_{\text{stored}} \]

Gate Voltage \(V_{\text{bp}} \) (V)

\[\Delta t = 40 \text{ msec} \]

\[\Delta t = 1 \text{ msec} \]

\[\Delta t = 23 \mu\text{sec} \]
Integrated bit-serial (MSB-first) D/A and SA A/D converter:
- Partial Refresh: \(Q(.) \) from LSB of \((n+1)\)-bit A/D conv.
- Digital Read Access: \(n \)-bit A/D conv.
- Digital Write Access: \(n \)-bit D/A ; WR ; \(Q(.) \) from COMP
Dynamic Analog Memory Retention

- 10^9 cycles mean time between failure
- 8 bit effective resolution
- 20 μV increments/decrements
- 200 μm X 32 μm in 2 μm CMOS
Silicon on Sapphire
Peregrine UTSi process

- Higher integration density
- Drastically reduced bulk leakage
 - Improved analog memory retention
- Transparent substrate
 - Adaptive optics applications
The Credit Assignment Problem
or How to Learn from Delayed Rewards

External, discontinuous reinforcement signal \(r(t) \).

Adaptive Critics:
- Heuristic Dynamic Programming (Werbos, 1977)
- Reinforcement Learning (Sutton and Barto, 1983)
- TD(\(\lambda\)) (Sutton, 1988)
- Q-Learning (Watkins, 1989)
Reinforcement Learning Classifier for Binary Control
Adaptive Optical Wavefront Correction
with Marc Cohen, Tim Edwards and Mikhail Vorontsov

iris
retina
zonule fibers
cornea

optic nerve

LC phase SLM (HEX-127)
P1
P2
L2
L1
BS1
BS2

CCD2
M2

CCD1
M1

Control signals
\(u_1, \ldots, u_{127} \)

PC
Pinhole
Photodetector

AdOpt: VLSI System

Metric J
Gradient Flow Source Localization and Separation
with Milutin Stanacevic and George Zweig

\[
\begin{align*}
&\frac{d}{dt} \left(\frac{1}{4} \left(x_{-1,0} + x_{1,0} + x_{0,-1} + x_{0,1} \right) \right) \\
&\quad \approx \frac{\partial}{\partial t} x \\
&\quad \approx \sum_\ell \tau_1^\ell \dot{s}^\ell(t) \\
&\frac{1}{2} \left(x_{1,0} - x_{-1,0} \right) \\
&\frac{1}{2} \left(x_{0,1} - x_{0,-1} \right)
\end{align*}
\]

Digital LMS adaptive 3-D bearing estimation
2\(\mu\)sec resolution at 2kHz clock
30\(\mu\)W power dissipation
The **Kerneltron**: Support Vector “Machine” in Silicon

Genov and Cauwenberghs, 2001

- 512 inputs, 128 support vectors
- 3mm X 3mm in 0.5um CMOS
- “Computational memories” in hybrid DRAM/CCD technology
- Internally analog, externally digital
- Low bit-rate, serial I/O interface
- 6GMACS throughput @ 6mW power