BENG 186B Winter 2013

Quiz 1

January 25, 2013

NAME (Last, First)

- This quiz is closed book, closed notes, you may use a calculator for algebra.
- Circle your final answers and show your work on the pages provided.
- Do not attach separate sheets. If you need more space, use the back of the pages.
- Points for each problem are given in [brackets], 100 points total. The quiz is 50 minutes long.

1	/ 25
2	/ 35
3	/20
4	/20
Total	/ 100

1. [25 pts] Find the Thévenin equivalent at V_o for the following circuit:

(1. continued)

2. [35 pts] For the following current-in, voltage-out filter circuit:

a. Find the input impedance Z_{in} .

(2. continued)

b. Find the output impedance Z_{out} .

c. Find the transfer function
$$H(j\omega) = \frac{V_{out}(j\omega)}{I_{in}(j\omega)}$$
.

(2. continued)

d. A variable capacitance *C*, with adjustable transversal distance *x* between conductor plates illustrated below, is used to tune the cut-off frequency of the above filter circuit, while the resistance *R* is kept at 100 k Ω . At a distance *x* = 10 µm the capacitance *C* is measured to be 10 nF. Find the radial cut-off frequency of the circuit for *x* = 1 µm, and for *x* = 100 µm.

(2. continued)

e. Sketch the Bode plots, with magnitude and phase, of the transfer function $H(j\omega)$ for $R = 100 \text{ k}\Omega$ and $x = 100 \text{ \mu}m$. Be sure to label all axes with units.

$H(j\omega)$ Magnitude

$H(j\omega)$ Phase

3. [20 pts] For the circuit below, calculate the power efficiency η at steady state. The power efficiency is defined as the ratio of power delivered to the load R_{load} , over power delivered by the source V_s .

(3. continued)

4. [20 pts] Consider the temperature transducer below, with a constant voltage supply $V_i = 1$ V, two constant resistors each with resistance R, and two thermistors with temperature dependence $R_{Th1} = R (1 + k_1 T)$ and $R_{Th2} = R (1 + k_2 T)$ respectively, where T is the ambient temperature. Find values of the temperature coefficients k_1 and k_2 for which the transducer is linear with constant sensitivity $dV_o / dT = 0.002$ V/°C.

(4. continued)