BENG 186B Winter 2011

Quiz 2

February 11, 2011

NAME (Last, First):

- This quiz is closed book, closed note, you may use a calculator for algebra.
- Circle your final answers in the space provided; show your work only on the pages provided.
- Do not attach separate sheets. If you need more space, use the back of the pages.
- Points for each problem are given in [brackets], 100 points total. The quiz is 50 minutes long.

1	/30
2	/ 30
3	/20
4	/20
Total	/100

1. [**30 pts**] Two circuits A and B are driven by the same voltage input V_s and generate voltage outputs V_o and V_c as shown below. The components OP27 and LM311 are ideal, each with positive supply 5 V and negative supply -5 V.

a. What are the functions of circuits A and B? Give values for the parameters defining their functions. [10 pts]

b. For the input $V_{\rm s}$ over time given below, sketch the waveforms for the outputs $V_{\rm o}$ and $V_{\rm C}$ on the diagrams. [20 pts]

2. [30 pts] Consider the following active filter circuit with voltage input V_i and voltage output V_o . You may assume that the op-amp is ideal.

a. Derive the transfer function $H(j\omega) = V_0(j\omega)/V_1(j\omega)$ in terms of C_i , C_f and R_f . What type of filter is this? [10 pts]

b. Derive the input impedance $Z_i(j\omega)$. [5 pts]

c. Find values for C_i , C_f and R_f such that the cutoff frequency is 10 Hz, the gain at 1 MHz is -100 [V/V], and the magnitude of the input impedance at 10 Hz is 1 M Ω . [10 pts]

d. Sketch the magnitude of the transfer function as a function of frequency f. Indicate numerical values on your graph. [5 pts]

- 3. [20 pts] Circle the best answer (circle only one letter for each question).
 - a. Biopotentials are produced in the body by:
 - i. Implanted electrodes
 - ii. Volume conduction of electrochemical currents
 - iii. Extracutaneous stimulation
 - iv. Connective tissue
 - v. The brain and heart only
 - b. Refractory period is the time during which:
 - i. Bone recovers from fracture
 - ii. A neuron does not respond to external inputs
 - iii. A cell undergoes mitosis
 - iv. Ions do not travel through membrane proteins
 - v. Membrane potential equals zero
 - c. EMG:
 - i. Is commonly used to record the activity of smooth muscle
 - ii. Measures the electromagnetic signals generated by the brain
 - iii. Is related to the angular direction of the ocular dipole
 - iv. Is a DC signal recorded in striated muscle
 - v. Can be used to analyze biomechanics of skeletal muscle
 - d. The QRS complex is:
 - i. The flattest section of the ECG
 - ii. Eliminated during arterial fibrillation
 - iii. A group of electrically active enzymes
 - iv. Between 0.6 and 0.75 seconds long
 - v. Caused by rapid depolarization of the ventricles
 - e. Ventricular repolarization causes:
 - i. The T wave
 - ii. The QRS complex
 - iii. A lack of QRS complex
 - iv. The PR segment
 - v. A strong EMG signal

4. **[20 pts]** A membrane separates a container into two compartments as shown below. The first compartment contains a solution of 10 mmol of NaCl and 1 mmol of KCl in 1 L of water. The second compartment contains a solution of 1 mmol of NaCl and 10 mmol of KCl in 1 L of water. Two identical Ag/AgCl electrodes are immersed, one in each compartment. The voltage between the electrodes is measured with a voltmeter of infinite input impedance.

The Goldman-Hodgkin-Katz (GHK) equation: $E = \frac{RT}{F} \cdot \ln \frac{P_{K}[K^{+}]_{o} + P_{Na}[Na^{+}]_{o} + P_{Cl}[Cl^{-}]_{i}}{P_{K}[K^{+}]_{i} + P_{Na}[Na^{+}]_{i} + P_{Cl}[Cl^{-}]_{o}} \quad \text{where} \quad \frac{RT}{F} = 26mV$

a. Find the concentrations of Na^+ , K^+ and Cl^- in the first and second compartments. [4 pts]

b. Assume that the membrane is permeable to Cl only. Find $V_1 - V_2$ at rest. [4 pts]

c. Assume that the membrane is equally permeable to Cl^{-} and Na^{+} . Find $V_1 - V_2$ at rest. [4 pts]

d. Assume that the membrane is equally permeable to Cl^{-} and K^{+} . Find $V_1 - V_2$ at rest. [4 pts]

e. Assume that the membrane is equally permeable to all ions. Find $V_1 - V_2$ at rest. [4 pts]