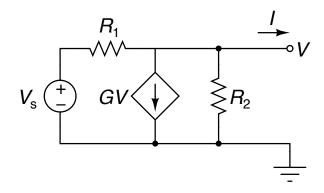
BENG 186B Winter 2018

Quiz 1

Friday, January 26, 2018

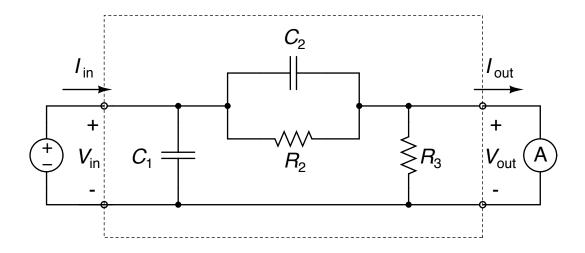

Name	(Last.	First):	
	(

- This quiz is closed book and closed notes. You may use a calculator for algebra and arithmetic.
- Do not attach separate sheets. If you need more space, use the back of the pages.
- Circle or box your final answers and show your work on the pages provided.
- There are 4 problems. Points for each problem are given in **[brackets]**. There are 100 points total.
- You have 50 minutes to complete this quiz.

1. [10 pts] Circle the best answer (only one answer per question):

- (a) [2.5 pts] Indirect physiological measurements are typically:
 - i. higher bandwidth.
 - ii. more accurate.
 - iii. more expensive.
 - iv. less invasive.
- (b) [2.5 pts] The transfer function of a critically damped second-order low-pass filter has:
 - i. two complex conjugate poles.
 - ii. two identical real poles.
 - iii. one real zero and one real pole.
 - iv. one real zero and one imaginary pole.
- (c) [2.5 pts] The gauge factor of a strain gauge is independent of:
 - i. piezo-resistive effect.
 - ii. Poisson's ratio.
 - iii. Young's modulus.
 - iv. temperature.
- (d) [2.5 pts] A linear variable differential transformer is a type of inductive sensor that offers:
 - i. zero offset.
 - ii. greater linearity.
 - iii. greater noise suppression.
 - iv. all of the above.

2. [25 pts] Derive the Thévenin equivalent at node V in the circuit below:

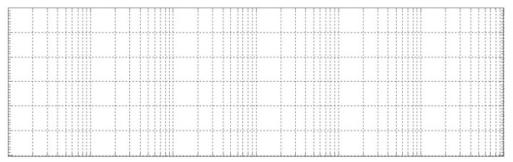


(a) [10 pts] Find the Thévenin equivalent open-circuit voltage V_{oc} .

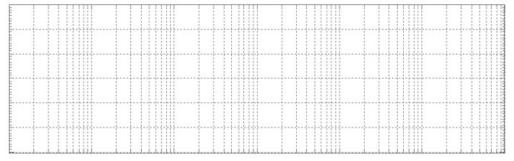
(b) [10 pts] Find the Thévenin equivalent impedance Z_{th} .

(c) [5 pts] Draw the Thévenin equivalent diagram.

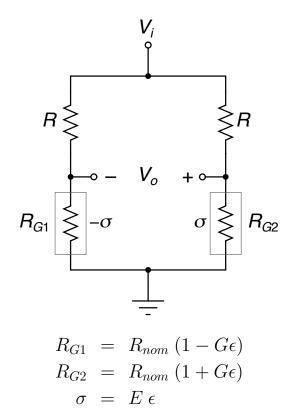
3. [35 pts] Consider the voltage-input, current-output filter circuit below.


(a) [10 pts] Find the input impedance $Z_{in}(j\omega)$.

(b) [10 pts] Find the output impedance $Z_{out}(j\omega)$.


(c) [5 pts] Find the transfer function $H(j\omega) = I_{out}(j\omega) / V_{in}(j\omega)$.

(d) [10 pts] Sketch the Bode plot of the transfer function $H(j\omega)$ for $C_1=100$ nF, $C_2=10~\mu\text{F},~R_2=1~\text{k}\Omega,$ and $R_3=100~\text{k}\Omega.$ Be sure to label the axes and indicate the units (rad/s, dB Ω^{-1} , and degrees).


$H(j\omega)$ Magnitude

$H(j\omega)$ Phase

4. [30 pts] Consider the stress transducer below, with constant supply voltage $V_i = 3$ V, two constant resistors each with resistance R = 100 k Ω , and two strain gauges R_{G1} and R_{G2} with identical nominal resistance R_{nom} and gauge factor G = -100 that are differentially activated by complementary strain due to complementary stress σ and $-\sigma$ as shown. Both strain gauges have the same Young's modulus E = 100 kPa.

(a) [10 pts] Find the output voltage V_o as a function of stress σ .

(b)	[10 pts] Find the value of a transducer, for low levels	R_{nom} that maximimizes of stress $\sigma \approx 0$.	s the sensitivity of the stress
	,		

(c) [10 pts] A 10-bit analog-to-digital converter (ADC) is used to digitize the voltage output V_o for a digital reading of stress σ . The full-scale voltage range of the ADC is from 1 V to 2 V. Find the accuracy of the stress reading for low levels of stress $\sigma \approx 0$.