BENG 221 Mathematical Methods in
Bioengineering

Fall 2017
Midterm

NAME: SOLYTIONS

e Open book, open notes.
¢ 80 minutes limit (end of class).
e No communication other than with instructor and TAs.

o No computers or internet, except for access to posted class materials.



Table 1: Laplace and Fourier Transforms
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Table 2: Green’s Functions for Diffusion in 1-D
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Problem 1 (20 points): Short answer problems. Provide brief explanations (no lengthy
derivations!) for each problem.

1. (5 points): Among all the eigenvalue-eigenvector pairs obtained by singular value
decomposition of a matrix containing multi-dimensional data samples, which one
explains most of the variance in the data?
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2. (5 points): Give an example that demonstrates why diffusion over a bounded interval
is not space-invariant.
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3. (5 points): To arrive at the diffusion transfer function H(k, s), does it matter in which
order the Fourier and Laplace transforms are applied to the diffusion equation, and
why?
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4. (5 points): Solve the following integral:
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Problem 2 (30 points): Consider a two-segment lumped model of diffusion along a pas-
sive cable of length L, with line resistivity r and line capacitance ¢, and with zero-voltage

boundary conditions on both ends, as shown below. The length of each of the two seg-
ments is Ax = L/2.
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1. (10 points): Write the ordinary differential equation governing the dynamics of the

voltage v, (t) at the center of the cable. |Is this ODE homogeneous or inhomoge-
nous?
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2. (10 points): Show that the solution to this ODE is given by a decaying exponential
over time, vi(t) = A exp(—t/7). Identify the amplitude constant A and the time
constant 7 in terms of the initial condition v;(0), cable length L, and diffusivity D.
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3. (10 points): Compare the time constant 7 that you obtained in part 2 for this two-
segment lumped approximation of the passive cable, with the time constant 7 for
the infinite-segment continuum limit, corresponding to the dominant (first) term inthe
eigenmode series of the homogeneous solution for the cable with same diffusivity
D, same total length L, and same zero-voltage boundary conditions on both ends.
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Problem 3 (50 points): Here we will consider diffusion of estrogen through tissue into the
bloodstream. The diffusivity D is uniform across the tissue spanning length L from the
skin at z = 0, to the vasculature at x = L. The skin is completely impermeable to estrogen
at £ = 0. The vasculature completely absorbs any estrogen at + = L. A subcutaneous
patch implanted at z = z, continuously supplies a constant but infinitely concentrated
source of estrogen into the tissue: f(xz,t) = g0 d(z — xo) Where g, is a constant, and 4(-) is
the delta-Dirac function. Initially the estrogen concentration u(z,t) is given by:
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1. (5 points): Write the partial differential equation governing the estrogen concentra-
tion u(zx, t) in the tissue. Express initial and boundary conditions.
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2. (15 points): Solve for a particular solution u,(x) for the estrogen concentration in the
tissue at steady state.
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3. (5 points): Write the htmogeneous problem, with homogeneous partial differential
equation and boundary conditions.
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4. (10 points): Find the eigenmode decomposition for the general solution of the ho-

mogenous problem.
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. (15 points): Solve for the estrogen concentration in the tissue over time u(z, t) from
the given initial conditions.

Hint: KISS (Keep It Simple & Stupid). Don't get alarmed if your answer appears too
simple. But do get alarmed if you're wielding through pages of integrals...
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