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Introduction 

A Synapse allows for functional connections between two neurons or between a neuron and another cell 
type such as a muscle or gland; for this reason, they are essential for communication between the 
nervous system and other parts of the body.  This process begins as an action potential propagates along 
the length of the axon until it reaches the presynaptic membrane; the signal depolarizes the membrane 
allowing calcium ions to flow into the presynaptic cell.  The influx of calcium causes the neurotransmitters, 
which are bundled inside vesicles, to move toward the synapse.  Upon binding with the presynaptic 
membrane, the vesicles release the neurotransmitters into the synapse where they will hopefully bind to 
neurotransmitter receptors on the 
postsynaptic membrane.  Alternative 
neurotransmitter fates include escape from 
the synaptic cleft or enzymatic degradation.  
The binding of the neurotransmitter activates 
the receptor and generates an excitatory or 
inhibitory postsynaptic potential once the 
binding threshold has been reached.  After 
activation, the neurotransmitter is released 
from the receptor and is either degraded in 
the cleft or reabsorbed by the presynaptic 
cell.

2
  This process is shown in Figure 1.

1
 

 
The neurotransmitter acetylcholine plays a 
vital role in the peripheral nervous system 
during muscle movement as well as in the 
central nervous system where it is believed to 
affect an individual’s learning and memory.  
As previously mentioned, neurotransmitters 
can be enzymatically degraded within the 
synapse; acetylcholinesterase hydrolytically degrades acetylcholine into acetate and choline.

3
  Several 

prescription drugs take advantage of this mechanism to treat diseases such as Alzheimer’s and 
myasthenia gravis.  Patients suffering from Alzheimer’s disease have damaged acetylcholine receptors, 
which results in memory loss, mood swings, and language degeneration.  Acetylcholinesterase inhibitors 
are employed to slow the degradation rate and allow for more acetylcholine to bind to the postsynaptic 
receptors.

4
 

 
Sarin gas also targets acetylcholinesterase inhibitors, but the level of inhibition is much greater.  Sarin 
gas is a highly volatile nerve agent that is both colorless and odorless; its devastating effects on the 
nervous system make it an extremely potent chemical weapon.  The mechanism utilizes competitive 
inhibition to bind to the active site of acetylcholinesterase and renders it biologically inactive.  Since there 
is no method for acetylcholine to be removed from the synaptic cleft, it continues to bind to receptors and 
send signals.  As a result, the affected individual begins to convulse as the muscles seize up.  Eventually, 
the synaptic membranes depolarize and halt all receptor activation causing the individual to lose control 
of muscle function.  Long-term exposure can lead to paralysis, respiratory failure, and death.

5, 6
 

 
Computational models can provide insight into the complex dynamics of acetylcholine diffusion during 

normal and pathological states.  They also provide an opportunity to test potential pharmaceutical 

interventions in-silico.   The goal of this project was to create a simple model of acetylcholine diffusion 

across a synapse and determine how this diffusion is altered by sarin gas.  Three levels of modeling were 

performed.  The first was an analytical solution for acetylcholine diffusing in one dimension.  The next 

level numerically approximated the one dimensional diffusion equation in MATLAB.  Lastly, the diffusion 

of acetylcholine from a vesicle across the synaptic cleft was modeled in a representative two dimensional 

geometry using Finite Element Analysis in MATLAB. 

Figure 2: Acetylcholine diffusion across synapse
1
 Figure 1: Acetylcholine diffusion across synapse

1
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Set-up 

For the analytical solution and one dimensional numerical approximation, the diffusion of acetylcholine 
across the synaptic cleft was modeled as a slab with the presynaptic neuron located at X=0 and the 
postsynaptic neuron at X=L.  The basic setup for the problem can be seen in Figure 2 and all required 
constant values are listed in Table 1. The differential equation governing this problem is given as 
Equation 1, with boundary conditions given as Equation 2 and Equation 3, and the initial condition given 
as Equation 4. 
 

 
Figure 2: Simplified diagram of synapse illustrating problem setup 
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Table 1: Values for the constants shown in Figure 2 

Constant Description Variable  Value 

Diffusivity of acetylcholine 
7
 D 400 µm

2
/s 

Synaptic cleft distance 
8
 L 20nm 

Acetylcholinesterase rxn rate 
9
 k 2333 s

-1
 

Acetylcholine receptor binding rate 
9
 β 4.7 E 7 M

-1
s

-1
 

Initial [acetylcholine] released 
10, 11 

Ci 0.006 mmol/m
2
 

Synapse shape 
11

 - r = 150nm 
L = 20nm 

 
At the presynaptic neuron, no reabsorption was modeled thus we had a no flux boundary condition (Eq. 
2).  At the X=L boundary acetylcholine bound to the ligand gated ion channels.  When bound, the 
acetylcholine was no longer free to contribute to the overall concentration of acetylcholine.  Thus, at the 
postsynaptic neuron, a Robin boundary condition (Eq. 3) was utilized. Furthermore, to model the 
degradation of acetylcholine by acetylcholinesterase, there was a general consumption term that 
consumed according to a standard first order reaction. To model the release of acetylcholine from the 
presynaptic neuron, an initial condition with a delta function was used (Eq. 4). 
 
In modeling the synaptic cleft in this manner, some key assumptions were made. 
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 Assumptions: 
1) The concentrations of acetylcholine are of a magnitude large enough that diffusion can be 

looked at in a continuous manner. Unfortunately, due to very low number of neurotransmitter 
molecules released (~3000 molecules) a continuous model may not be ideal. To make this 
solvable within the scope of the diffusion equation, this assumption was made. 

2) The neurotransmitters cannot diffuse out of the synaptic cleft. Once again, physiologically 
speaking, this is not ideal since surrounding the synaptic cleft there are typically glial cells 
which are able to absorb neurotransmitters. However, this was assumed to be negligible 
compared to the degradation of acetylcholine.  

3) Degradation of acetylcholine by acetylcholinesterase is a first order reaction. This assumption 
ensures that our problem is linear and thus solvable. This assumption is quite accurate as 
long as inhibitors are not involved. For the pathological study, in which the inhibition of 
acetylcholinesterase is modeled, the reaction term was eliminated. 

 

Numerical Analysis Set-up: PDEPE 
MATLAB’s numerical partial differential equation solver is PDEPE.  It solves partial differential equations 
(PDEs) in the form shown below. 
 



c(x,t,u,
u

x
)
u

t



x
( f (x,t,u,

u

x
)) s(x,t,u,

u

x
). (5) 

 

To match the PDE for this problem (Eq. 1) to this form, c=1, 
x

C
Df



 , and s=



kC, where D is the 

diffusion coefficient of acetylcholine, and k is the rate constant of the degradation of acetylcholine 
catalyzed by acetylcholinesterase.  These coefficient values were used in the sub-function pdex1pe to 
define the PDE. 
 
The initial condition in this case was a delta function.  Although MATLAB has no delta function for 
numerical purposes, the delta function can be approximated by making the initial condition vector such 
that C=Ci at x=0 and C=0 at all other x data points.  This was done using an “if-else statement” in the 
initial condition sub-function, pdexlic.  Since there is a finite number of x points used in the simulation, this 
method only approximates the delta function initial condition. 
 
PDEPE also requires that the boundary conditions satisfy the form in Equation 6. 

 



p(x,t,u)q(x,t) f (x,t,u,
u

x
)  0, (6) 

where 



f  D
C

x
. 

 
In this problem, the boundary conditions were that there was no flux of acetylcholine at the left synapse 
boundary (Eq. 2), and that the flux at the right synapse boundary was proportional to the amount of 
acetylcholine present (Eq. 3).  To write these boundary conditions in the form of Equation 6, p=0 and q=1 

at the left boundary and 



p  CRand q= -1 at the right boundary, where  is the binding rate of the 

acetylcholine receptor, and CR is the concentration of acetylcholine at the right boundary.  These 
coefficients were used in the sub-function pdex1bc to define the boundary conditions. 

 

The main purpose of implementing the numerical solution in this problem was to find the flux of 
acetylcholine out of the right boundary. This corresponds to the amount of acetylcholine bound to 
receptors on the postsynaptic membrane and this is what ultimately activates the neural response.  By 
estimating the integral of the flux at the right boundary, the approximate number of acetylcholine 
molecules bound to the receptors per unit area was determined.  In order to implement this in MATLAB, a 
“for loop” was used to approximate the flux at each time point as follows: 
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

J  D
C(t,x  L) C(t,x  L  x)

x
, (7) 

 

where x is the distance between x points in the simulation (0.5nm in this case).   
 
The integral of the flux at each successive time point was then approximated by multiplying the flux by the 
time step and adding it to the previous value of the integral: 
 

 






t tt

i

i tJdtJ
0

/

1

. (8) 

 
This approximated integral represents the bound acetylcholine molecules per unit area as a function of 
time, and was plotted as such.  Appendix B contains the MATLAB code used to implement PDEPE. 

 

Numerical Analysis Set-up: Finite Element Analysis (FEA) 
The MATLAB PDE Toolbox provides a graphical user interface (GUI) to construct and 

numerically approximate the solution to PDEs in two spatial dimensions using Finite 

Element Analysis (FEA).  FEA constructs a network of triangles, called a mesh, from 

the defined geometry and approximates the solution to the PDE as a system of 

ordinary differential equations at each of the nodes of the mesh.   

The PDE Toolbox can be opened by calling pdetool in the command window.  The 

geometry generated for our simulation, shown in Figure 3, contained a vesicle fusing 

to the presynaptic membrane (left side), the post synaptic membrane (right side), and 

the edges of the synaptic cleft (top and bottom).  As with the previous methods, a no 

flux boundary condition was given for the presynaptic membrane and a Robin 

boundary condition was defined for the postsynaptic membrane.  The edges of the 

synaptic cleft were defined as a no flux boundary condition.  Figure 3 also contains 

the mesh generated by the PDE Toolbox.  The geometry, boundary conditions, and 

mesh were exported to the MATLAB workspace for additional analysis.   

A MATLAB script was used to add the initial conditions and consumption terms.  The 

initial condition was a high concentration of acetylcholine inside the merging vesicle 

and zero elsewhere (Figure 4).  For the normal synaptic physiology simulation, a 

consumption term was used to represent the effects of acetylcholinesterase.  In the 

pathological sarin gas simulation, the 

consumption term was removed.  The function 

parabolic was used to iteratively approximate the 

PDE solutions for multiple action potentials.  For 

each subsequent action potential, identical initial 

conditions were added to the solution from the 

previous action potential. 

Appendix C provides a more detailed explanation 

of the set-up using the PDE Toolbox, and 

Appendix D contains the MATLAB code for 

Figure 3: FEA 
Geometry and 

Mesh 

Figure 4: FEA Initial Conditions 
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implementing the construction and analysis of the FEA solution.  

Solution 

Analytical Solution 
See Appendix A for the derivation of this solution. 

 

 (   )  
   

 
∑ √[  

 

   

    (    )]   (   
   )     (   )
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      (   )  
 

 
   (   )    (10) 

 

Numerical Solution & Observations: PDEPE 
A three-dimensional plot illustrating how the concentration of acetylcholine in a normal synapse fluctuates 
with space and time can be seen in Figure 5.   

 
Figure 5: 3D plot of the concentration of acetylcholine as a function of distance and time in a 

normal synapse 

 
The pathological study in which the presence of sarin gas inhibits the degradation of acetylcholine was 
also simulated by setting the consumption term coefficient in the PDE equal to zero.  When the two cases 
were simulated, it was clear that the presence of sarin gas results in a much larger number of 
acetylcholine molecules bound to receptors on the postsynaptic membrane. Also, the time required to 
reach steady state was greater with sarin present than in the normal state.  The number of acetylcholine 
molecules per unit area that bound the receptors in a normal synapse and a sarin-affected synapse can 
be seen in Figure 6. 
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Figure 6: Number of bound acetylcholine molecules over time in the a) normal and b) sarin gas 

synapse 

Numerical Solution & Observations: Finite Element Analysis 

 

 

 

 

 

 

 

 

 

 

Appendix E (the attached CD) contains a movie of FEA solution, and Figure 7 contains two screenshots 

from that movie.  In Figure 7a the high concentration of acetylcholine in the vesicle can be seen diffusing 

throughout the synaptic cleft.   Figure 7b shows acetylcholine concentration returning to zero in the 

synaptic cleft for the normal simulation and building up in the synaptic cleft of the sarin gas simulation.  

This result is consistent with pathophysiology of sarin gas.  The post synaptic cell will fire more rapidly 

due to the high acetylcholine concentration and will eventually saturate the cell.   

a) b) 

Figure 7: FEA solution a) during the first action potential and b) after the fourth action potential 

a) b) 
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Conclusions 

Three models of increasing complexity were created to examine the diffusion of acetylcholine in the 
synaptic cleft and how the concentration levels were affected by sarin gas.  While the analytical solution 
showed that a closed form solution to this problem is possible, it was laborious to derive and did not 
provide much insight into the dynamics of acetylcholine diffusion in the normal and sarin gas states.  The 
numerical simulations were approximations of the solution, but they allowed for multiple iterations and 
additional analysis to examine the effects of sarin gas.  By integrating the flux at the postsynaptic 
membrane, the PDEPE solution demonstrated that acetylcholine builds up at the postsynaptic membrane 
faster for the sarin gas simulation.  The FEA solution demonstrated that sarin gas causes the 
acetylcholine to build up in the synaptic cleft over multiple action potentials.  Both of these results are 
consistent with the pathophysiology of sarin gas exposure.  The build-up of acetylcholine over-stimulates 
the postsynaptic cell, causing it to rapidly depolarize first, before eventually saturating.   

 

Future Work 

While the models provided some insight into acetylcholine diffusion, they were very simple portrayals of 
an extremely complicated process.  Much more sophisticated models would be required to be useful in 
developing novel hypothesis and testing potential pharmaceutical interventions in-silico.   
 
Future work could relax some of the assumptions to provide a more realistic model.   One assumption 
was that neurotransmitters cannot diffuse out of the synaptic cleft. This diffusion out of the synaptic cleft 
and absorption by the glial cells play a large role in the regulation of neurotransmitter concentration. Thus, 
to approach a more realistic model, this would have to be included. This would however preclude the use 
of a one dimensional slab model and involve at least a two-dimensional problem with two additional Robin 
boundary conditions at the additional boundaries to model the glial cell uptake of neurotransmitters. With 
the proper constant values, this could be incorporated into the FEA solution.  This would be particularly 
important in the sarin gas simulations where the acetylcholine has no other means of leaving the synaptic 
cleft.  
 
Additionally, this problem could be adapted to incorporate the fate of the neurotransmitters after activating 
the postsynaptic receptor.  This model stopped once the molecules adhered to the receptor surface.  
However, in reality, these molecules are eventually released from the receptor and either reabsorbed by 
the presynaptic membrane for later use or enzymatically degraded within the cleft. 
 
One important assumption was the use a continuous model of diffusion for neurotransmitters in the 
synaptic cleft. A more realistic model would employ the use of individual molecule models with a random 
walk distribution that follows Brownian motion. However, this would not be an addition to the previously 
proposed model, but would require completely new design.  If this model were created, the time required 
for a postsynaptic receptor to reach the threshold value for activation could be ascertained. 
 
A sophisticated simulation of this process would likely require a multi-scale model.  On the global level 
this model could incorporate additional relevant molecules and biochemical pathways in a more realistic 
three dimensional geometry using Brownian motion to dictate their movements.  On the protein level, the 
model could use statistical properties to dictate interactions between molecules.  A model of this 
complexity could have enormous potential as a way to preliminarily investigate novel pharmaceutical 
agents for diseases like Alzheimer’s, myasthenia gravis and depression.   
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Appendix A: Analytical Solution 

The following differential equation (Eq. 1) with the given boundary conditions (Eq. 2 and Eq. 3) and initial 
condition (Eq. 4) is solved using Finite Fourier Transforms

12
. Notice that this equation incorporates a 

Robin boundary condition (Eq. 3). 

  (   )

  
  

   (   )

   
   (   ) (1) 

  

  
|
(     )

   (2) 

  
  

  
|
(     )

   (     ) (3) 

 (     )     ( ) (4) 

The solution is first written as a Fourier series (Eq. 5). 

 (   )  ∑  ( )  ( )

 

 (5) 

The orthonormal basis set expansion function is then found by solving the eigenvalue problem in x (Eq. 6) 
using the boundary conditions of the original differential equation but for the homogenous case (Eq. 7 and 
Eq. 8). Equation 7 is used to evaluate one constant of integration, while Equation 8 is used to obtain an 
expression for  . The other constant of integration is evaluated using the definition of an orthonormal 
function. 
 

    ( )

   
    

   ( ) (6) 

   ( )

  
|
(   )

   (7) 

   ( )

  
|
(   )

 
 

 
  (   )    (8) 

 
Solving and applying the boundary conditions: 

  ( )      (   )      (   ) (9) 

   ( )

  
       (   )        (   ) (10) 

 

Applying Equation 7: 
 

   ( )

  
       ( )        ( )    (11) 

    (12) 
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  ( )      (   ) (13) 

   ( )

  
        (   ) (14) 

Applying Equation 8 with Equations 13 and 14: 
 

   ( )

  
 

 

 
 ( )         (   )  

 

 
    (   )    (15) 

Thus, the values of    are given by Equation 16, which must be solved numerically, where n corresponds 
to the n

th
 positive root (n=1,2,3,…): 

      (   )  
 

 
   (   )    (16) 

The constant B must still be evaluated and is done so by making   ( ) orthonormal: 

∫   ( )  ( )    
 

 

 (17) 

  ∫     (   )    (   )    
 

 

 (18) 

 

 
  ∫        (    )     

 

 

 (19) 

 

 
    ∫     (    )    

 

 

 (20) 

 

 
    [

 

   

    (    )]
 

 

   (21) 

 

 
    

 

   

    (    )    (22) 

  √(
 

 
) [  

 

   

    (    )] (23) 

  ( )is now specified by combining  Equation 23 with Equation 13: 

  ( )  √(
 

 
) [  

 

   

    (    )]     (   ) (24) 

 

Next,   ( ) must be evaluated by first multiplying both sides of Equation 5 by   ( ) (an orthonormal 

function), and then integrating both sides from 0 to L: 

  ( )  ∫  (   )  ( )

 

 

 (25) 

 

To obtain a differential equation for   ( ), the original differential equation (Eq. 1) and initial condition (Eq. 

4) are multiplied by   ( ) and integrated over x from 0 to L. This multiplication and integration is 

performed term by term. 
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Applying these operations to the first term on the left of the equals sign in Equation 1: 
 

∫
  (   )

  

 

 

  ( )   
 

  
∫  (   )  ( )  

 

 

 
   ( )

  
 (26) 

 
Sturm- Liouville theory

12
 (Equation 27) is used to perform these operations on the first term to the right of 

the equals sign in Equation 1: 
 

 ∫
   (   )

   

 

 

  ( )    [  ( )

  (   )

  
  (   )

   ( )

  
]
 

 

    
   ( ) (27) 

 ∫
   (   )

   

 

 

  ( )    [  ( )

  (   )

  
|
 
  (     )

   ( )

  
|
 
]     

   ( ) (28) 

 ∫
   (   )

   

 

 

  ( )    [  ( ) (
  

 
) (     )   (     )

   ( )

  
|
 
]     

   ( ) (29) 

 ∫
   (   )

   

 

 

  ( )      (     ) [(
 

 
)  ( )  

   ( )

  
|
 
]     

   ( ) (30) 

 
Applying Equation 8 to Equation 30: 

 ∫
   (   )

   

 

 

  ( )       
   ( ) (31) 

 
Applying these operations to the second term to the right of the equals sign in Equation 1: 

∫    (   )  ( )

 

 

       ( ) (32) 

 
Applying these operations to the initial condition: 

  (   )  ∫  (     )  ( )  
 

 

 ∫    ( )  ( )  
 

 

     ( ) 

 

(33) 

  (   )    √(
 

 
) [  

 

   

    (    )] (34) 

 
Assembling the differential equation (Equation 35 – includes terms evaluated in Eq. 26, Eq. 31, and Eq. 
32) and initial condition (Equation 36 – includes the term evaluated in Eq. 34) which have been multiplied 
by   ( ) and integrated over the x from 0 to L: 
 

   ( )

  
     

   ( )     ( ) (35) 

  (   )    √(
 

 
) [  

 

   

    (    )] (36) 

 
Solving for   ( ): 

  ( )    √(
 

 
) [  

 

   

    (    )]   (   
   )  (37) 
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Assembling the solution for  (   ) using Equations 5, 24, and 37; where    is defined by Equation 16: 

 (   )  
   

 
∑ √[  

 

   

    (    )]   (   
   )     (   )

 

   

 (38) 

Appendix B: MATLAB Code for Numerical Solution Using PDEPE 

functionSynapseandflux 
 
%Parameters 
L=0.02; %µm 
tfinal=1e-7; %seconds 
D=400; %µm^2/s 
 
tpoints=501;  
xpoints=41;  
 
%m=0 denotes that our problem is in a slab 
m = 0; 
%Create time and distance vectors 
x = linspace(0,L,xpoints); 
t = linspace(0,tfinal,tpoints); 
 
%Call pdepe to solve the equation 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
%Solution is first component of sol 
C = sol(:,:,1); 
 
%Estimating flux at boundary 
Flux=zeros(1,length(t)); 
for i=2:501 
dFlux=-D*((C(i,41)-C(i,40))/(L/xpoints))*(tfinal/tpoints); 
Flux(i)=Flux(i-1)+dFlux; 
end 
 
%Plotting Flux vs time 
figure 
plot(t,Flux*6.022e23) 
xlabel('Time (seconds)') 
ylabel('Bound Receptor Surface Concentration (molecules/µm^2)') 
title('ACh Bound at Post-Synaptic Membrane') 
 
%Create 3d plot 
figure 
surf(x,t,C,'Edgecolor','None')  
title('AChConc in the Synaptic Cleft') 
xlabel('Distance (µm)') 
ylabel('Time (seconds)') 
zlabel('Concentration (mol/m^3)') 
 
%PDE function (define our PDE) 
function [c,f,s] = pdex1pde(x,t,Conc,DCDx) 
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D=400; %µm^2/s 
k=23e7; %1/s, kcat of AChE 
%Time derivative coefficient 
c = 1; 
%x derivative coefficient (includes first derivative to make a second 
%derivative in x) 
f = D*DCDx; 
%Forcing function coefficient 
G=-k*Conc; %mol/µm^3 s 
s = G; 
 
%IC function 
function C0 = pdex1ic(x) 
L=0.02; 
Cs=6e-13; %mol/µm^2, concentration pulse into synapse 
%Delta function initial condition, concentration is Cs at x=0 and 0 
%elsewhere 
if x==0 
    C0=Cs; 
else 
    C0=0; 
end 
 
%BC function 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
D=400; %µm^2/s; 
beta=4.7e22; %µm^3/mol*s Receptor binding rate 
%dCdX=0 at x=0 
pl = 0; 
ql = 1; 
%-beta*Conc-D*dCdx=0 at x=L (Robin BC) 
pr = -beta*ur; 
qr = -1; 
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Appendix C: MATLAB PDETOOL set-up of FEA solution 

The PDE Toolbox can be opened by calling pdetool in the command window.  This opens a GUI to guide 

the user through setting up a PDE in two spatial dimensions and numerically approximating the solution 

using FEA.  The general steps of the process are outlined in the command bar (Figure 8): draw the 

geometry, define the boundary conditions, set the PDE parameters, mesh the geometry, solve the PDEs, 

and plot the solution.  First, the desired two-dimensional geometry was constructed in the GUI from a 

library of basic shapes (Figure 10).  Next, the boundary conditions and problem specific diffusion equation 

parameters were entered.  This included a source term correlating to acetlycholinesterase in the normal 

condition and no source term in the sarin gas case.  The PDE Toolbox then meshed the defined 

geometry (Figure 3).  The final step in the PDE Toolbox is to export all of the parameters to the MATLAB 

workspace for further analysis. 

 

 
Figure 8: PDE Toolbox command bar 

  

 

 

  

Figure 9: a) Generating the geometry in the GUI using shape b) the final geometry 
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Appendix D: MATLAB Code for FEA Solution 

The following code will replicate the work performed in the pdetool GUI  

function pdemodel 

[pde_fig,ax]=pdeinit; 
pdetool('appl_cb',10); 
set(ax,'DataAspectRatio',[10 10 1]); 
set(ax,'PlotBoxAspectRatio',[1 1 1]); 
set(ax,'XLim',[0 10]); 
set(ax,'YLim',[0 10]); 
set(ax,'XTick',[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,]); 
set(ax,'YTick',[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,]); 
pdetool('gridon','on'); 
% Geometry description: 
pdeellip(1.7056396148555697,5.0309491059147193,0.29573590096286106,4.87964236

58872072,0,'E1'); 
pdeellip(3.6960110041265466,4.9896836313617605,0.29573590096286106,4.87964236

58872072,0,'E2'); 
pderect([1.7400275103163696 3.7070151306740033 9.745529573590094 

0.33700137551581744],'R1'); 
pderect([4.2434662998624484 1.4099037138927111 9.4979367262723517 

9.9518569463548818],'R2'); 
pderect([3.9546079779917465 1.5199449793672624 0.068775790921597135 

0.50206327372764825],'R3'); 
pdeellip(1.9050894085281982,4.9896836313617614,0.31636863823933936,0.44360385

144429149,0,'E3'); 
set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','R1-E1-R2-

R3+E2-R2-R3+E3') 
% Boundary conditions: 
pdetool('changemode',0) 
pdetool('removeb',[1 2 10 14 15 18 19 ]); 
pdesetbd(14,'neu',1,'0','0') 
pdesetbd(13,'neu',1,'0','0') 
pdesetbd(12,'neu',1,'0','0') 
pdesetbd(11,'neu',1,'0','0') 
pdesetbd(10,'neu',1,'1','0') 
pdesetbd(9,'neu',1,'1','0') 
pdesetbd(8,'neu',1,'0','0') 
pdesetbd(7,'neu',1,'0','0') 
pdesetbd(6,'neu',1,'0','0') 
pdesetbd(5,'neu',1,'0','0') 
pdesetbd(4,'neu',1,'0','0') 
pdesetbd(3,'neu',1,'0','0') 
pdesetbd(2,'neu',1,'0','0') 
pdesetbd(1,'neu',1,'0','0') 
% Mesh generation: 
setappdata(pde_fig,'Hgrad',1.3); 
setappdata(pde_fig,'refinemethod','regular'); 
setappdata(pde_fig,'jiggle',char('on','mean','')); 
pdetool('initmesh') 
% PDE coefficients: 
pdeseteq(2,'4000','0.0','0','1.0','0:100','0','0.0','[0 100]') 
setappdata(pde_fig,'currparam',['4000';'0']) 
% Solve parameters: 
setappdata(pde_fig,'solveparam',... 
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str2mat('0','1000','10','pdeadworst','0.5','longest','0','1E-

4','','fixed','Inf')) 
% Plotflags and user data strings: 
setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 14 1 0 0 0 0 1]); 
setappdata(pde_fig,'colstring',''); 
setappdata(pde_fig,'arrowstring',''); 
setappdata(pde_fig,'deformstring',''); 
setappdata(pde_fig,'heightstring',''); 

 

After running the pdetool GUI and exporting the parameter values, the following code was run to generate 
a movie comparing the normal and sarin gas condition.  Note that the mesh points inside the vesicle used 
for the initial conditions were determined manually in the PDE Toolbox. 

 
%to run first load SynapseModel.m in pdetool and export the parameters 
%must export the variables b,p,e,t,c,a,f,d from pdetool 
clf 
%determine length of simulation and time step 
tlist=0:.01:.5;  
%Define initial conditions 
u0=zeros(size(p,2),1);  %set everything to zero 
n=11;   %number of nodes the initial concentration is spread over 
Cs=10;   %initial concentration 
set=[181,141,140,175,105,133,176,139,104,180,138]; %data points in vescicle 
for i=1:size(set,2) 
    u0(set(i))=Cs/n; 
end 
%u0=ones(size(p,2),1); 
%define global sink term due to cleavage in cleft 
a1='0'; 
a2='5'; 
c='10'; 

  
%solve PDE 
u1=parabolic(u0,tlist,b,p,e,t,c,a1,f,d); 
u2=parabolic(u0,tlist,b,p,e,t,c,a2,f,d); 

  
%run multiple iterations 
for i=1:3 
   ui1=u0+u1(:,size(u1,2));  
   ui2=u0+u2(:,size(u2,2));  
   uf1=parabolic(ui1,tlist,b,p,e,t,c,a1,f,d); 
   uf2=parabolic(ui2,tlist,b,p,e,t,c,a2,f,d);  
   u1=[u1,uf1]; 
   u2=[u2,uf2]; 
end 

 
clear M 
%sum(ul(:,1)) 
%sum(ul(:,2)) 
for j=1:size(u1,2) 
    figure(1) 
    subplot(1,2,2) 
    pdesurf(p,t,u1(:,j)) 
    xlabel('x') 
    ylabel('y') 
    zlabel('ACh Concentration') 
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    title('SARIN GAS') 
    colormap('hsv') 
    caxis([0 .05]) 
    axis([1.5 4 0 10 0 .2]) 
    subplot(1,2,1) 
    pdesurf(p,t,u2(:,j)) 
    xlabel('x') 
    ylabel('y') 
    zlabel('ACh Concentration') 
    title('NORMAL') 
    colormap('hsv') 
    caxis([0 .05]) 
    axis([1.5 4 0 10 0 .2]) 
    M(j)=getframe(figure(1)); 
end 
movie2avi(M,'moviecompressed','compression', 'Cinepak') 

 

Appendix E: FEA Solution Video 

See provided CD. 

 


