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Introduction 

Action potential, a process during which the electrical membrane potential rapidly rises and falls 

with a distinctive pattern, is almost a universal process in all organisms. Action potential exists 

in neurons, muscle cells, and other types of endocrine cells. In neurons, propagation of action 

potential enables the communication between neurons, leading to cognitive functions. In other 

types of cells, action potential triggers cascades of intracellular processes. For instance, in 

muscle cells, the propagation of action potential triggers the release of calcium and further 

results in muscle contraction. Action potential is generated by voltage-gated ion channels that 

respond to membrane potentials. When the incoming membrane potential is above a certain 

threshold, these ion channels open. The electrochemical gradient then drives sodium and 

potassium ions across membrane. Rushing in of the sodium ions is responsible for the 

depolarization phase (increase in membrane potential), while outward movement of potassium 

ions, which lags behind the movement of sodium ions, results in repolarization and 

hyperpolarization phases. The sodium/potassium ion transporters then actively transport these 

ions against their gradients to restore the original electrochemical gradients. 

Propagation of action potential is such an essential process in all organisms as they are 

responsible for cellular processes in multiple organs. The impairment of conduction of action 

potential can lead to diseases such as multiple sclerosis or even sudden death. Here we try to use 

transmission equations and Hodgkin-Huxley model to mathematically model the propagation of 

action potentials as a function of time and distance. As the model depends on a wide array of 

parameters, such as the input voltage, membrane capacitance, resistance, etc., with such a model 

established, one can simply modify the parameters, such as these affected by a certain disease, 

and examine the effects on propagation of action potential. Also, knowing the spatial and 

temporal distribution of action potential of a specific can let us reversely model the parameters 

and shed light on the physiological origins of certain diseases. 

 

Set-up 

An unmyelinated axon with radius a would be modeled. Current is allowed to leak back and 

forth across a cylindrical membrane, every point in 

the membrane, to the interstitial fluid through 

capacitive and ion-transport mechanisms. Modeling 

of membrane as a capacitor is reasonable because it 

is thin so that the accumulation of charged particles 

on one side will pull the oppositely charged particles 

to the other side of the membrane. Interstitial fluid is 

treated as a shunt, so it does not have resistance. The 

differential equations that will be derived are also 
Figure 1  Excitatory postsynaptic potential and an 
action potential. 



adapted to muscle fibers as muscle fibers are not myelinated. In our model, a voltage v is 

implemented at x=0 as an initial -15 mV sawtooth impulse returning to V=0 after 3 ms (more 

detailed initial and boundary conditions would be 

described in the next section). A sawtooth impulse 

is chosen to mimic the shape of an excitatory 

postsynaptic potential (EPSP), depicted in figure 1. 

In addition, as current passes through the axon, it 

generates self-inductance. In summary, the axon 

model can be described as the circuit diagram, 

which is also the circuit for telegrapher’s equations, 

in figure 2. 

The differential equations that are derived from the circuit are described as following: 
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In which v is potential difference across membrane, i is membrane current per unit length, I is 

membrane current density, ia is axon current per unit length, r is resistance per unit length of 

axon material, R is specific resistance of axon, L is axon specific self-inductance, and Ca is axon 

self-capacitance per unit area per unit length. 

 

Solution 

Figure 3 is the circuit diagram of Hodgkin-Huxley model. The lipid bilayer is represented as a 

capacitance (  ). Voltage-gated and leak ion channels are represented by nonlinear (gn) and 

linear (gL) conductances, respectively. The electrochemical gradients driving the flow of ions are 

represented by batteries (E), and ion pumps and exchangers are represented by current sources 

(Ip). 

 

Figure 3  Circuit diagram for Hodgkin-Huxley model 

(Reference: http://en.wikipedia.org/wiki/File:Hodgkin-Huxley.jpg) 

Figure 2  Circuit diagram for axon model and 
telegrapher’s equations. 



The time derivative of the potential across the membrane is proportional to the sum of the 

currents in the circuit. This is represented as follows, 

   

  
  

 

  
    

 

  

 

The Hodgkin-Huxley expression for I can be separated into four parallel components, the 

capacitive current (  ), ion currents of potassium and sodium (   and    ), and a smaller current 

(  ) made up of chloride and other ions. 

               

 

The parameters used in the Hodgkin-Huxley equation are as follows, the specific resistances 

corresponding to the component ion currents can be denoted by   ,    , and   . 

   
 

  
      

 

   
     

 

  
     

 

From here on the 
   

  
 will be written as     . 

 ,  , and   are quantities of empirical convenience. They can also be thought of as the 

probabilities of given ion in a specific location. 
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Also, let the Vk, VNa, and Vt denote the equilibrium potential of the corresponding ions and CM 

the membrane capacitance per unit area. 

The full Hodgkin-Huxley excitation equation is 
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Now we apply    
        

  
   to equation (1), 
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While using the left term of equation (2), we can get 

   

   
    

   

   
         

  

  
    

 

   

  

  
 

 

Since   
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The transmission equation can be written as  
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Replacing the current by the value we got in equation (4), the following equation for membrane 

voltage can be obtained, which combines both the processes of transmission down the axoplasm 

and excitation across the membrane. 



    
 

 
  

 

 
         

 
 

 
  

 

 
         

 

 
      

      
          

     
 

 
     

  

 
           

     
 
 

 
     

 

 
                     

     
 

 
         

 

The   can be replaced by    without significant loss since the (
 

 
  ) is pretty small compared 

to   . 
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and thus                        

 

The final partial differential equation is as follow, 

        
 

 
      

 

  
     

      
               

 

 
    

 

  
           

     
 
 

 
     

 

  
                    

     
 

 
         

Numerical Simulation 

The analytical equation derived above is not one that can be easily solved.  To simplify, the 

equations above can be rewritten as a system of first order equations and simulated using a 

finite difference method.  This is accomplished by defining variables ψ and φ where ψ =    and 

φ =   .  Thus the final differential equation we obtained can be rewritten as, 

 

      
 

 
     

 

  
     

      
              

 

 
    

 

  
            

    
 
 

 
     

 

  
                    

     
 

 
                       

 



Using a finite difference approach, the above equation and the hodgkin huxley parameters can 

be written as, 

                                      
                                      
                                      
                            
                                      

                                                                               
 

By iterating the variables i and j, the full space and time dependent profile of voltage can be 

obtained.   

 

Figure 4: results of the finite difference method for voltage profiles over time.  An action potential formed by a -15 volt 

impulse is shown propagating along the axon. 

The first graph shows the action potential over time across different x points which is distance 

away from the input wave point. This shows how the action potential is initiated by the square 

wave of -15mV and propagates along the axon (x axis) with the same peak. This makes sense 
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because action potential is all or nothing event unlike graded potentials. The undershoot caused 

by high transient potassium permeability is also apparent in the graph. 

 

 

Figure 5: System response to a -5 millivolt impulse wave.  The impulse is not above threshold and thus no action potential 

occurs. 

The second graph shows how the action potential is not achieved when an input wave of much 

lower amplitude is introduced. This is important because it verifies the property of action 

potential that high enough difference in membrane potential has to be introduced to trigger an 

action potential. The input signal just dies out over time. 

 

Conclusion 

Our project involved using Hodgkin Huxley’s current law to derive a wave equation and 

simulating the membrane potential in x and t domain using Eulers finite difference method. From 

the analytical solution, the behavior of an action potential was understood as a wave equation. 
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From the numerical simulation with high enough input wave to induce an action potential, the 

well-known property of an action potential was verified: An action potential is all or nothing 

event that is only triggered above the certain threshold. Understanding the propagation of action 

potentials is very important because it is responsible for not only communication between the 

cells but also many cellular processes in multiple organs. The solutions match the current 

knowledge of action potential propagation in time and space domain. And with modifications, 

they could be used to model the propagation of action potential when there is a change in certain 

parameter or in intensity of an input wave. 

 

Future Work 

Our model could be improved by assuming myelinated axon in which the majority of the axon is 

myelinated which, in circuit, means high membrane resistance and low capacitance. This would 

result in faster propagation of action potential across the axon. Using the myelination, multiple 

sclerosis could be modeled and its behavior could be compared to normal myelinated axon as 

well. Instead of a large change like myelination, simple modifications could be introduced to the 

model when, for example, certain ion channels are damaged or ion permeability across a 

membrane are altered, resulting in parameter changes in the model. The numerical 

approximation method could be improved as well. In this study, Eulers finite element difference 

method was used but other numerical approximation could be used such as Gram–Schmidt 

process. 
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MATLAB SIMULATION CODE 

project.m 

 

clc; 
close all; 
clear all; 

  
dt=0.0001; 
dx=1; 
s=dt/dx; 
t=0:dt:10; 
x=0:dx:10; 

  
alpha_n0=0.01*(0+10)/(-1+exp((0+10)/10)); 
beta_n0=0.125*exp(0/80); 
alpha_m0=0.1*(0+25)/(-1+exp((0+25)/10)); 
beta_m0=4*exp(0/18); 
alpha_h0=0.07*exp(0/20); 
beta_h0=(1+exp((0+30)/10))^-1; 

  
n=zeros(length(x),length(t)); 
m=zeros(length(x),length(t)); 
h=zeros(length(x),length(t)); 
v=zeros(length(x),length(t)); 
psi=zeros(length(x),length(t)); 
phi=zeros(length(x),length(t)); 

  
n(:,1)=alpha_n0/(alpha_n0+beta_n0); 
m(:,1)=alpha_m0/(alpha_m0+beta_m0); 
h(:,1)=alpha_h0/(alpha_h0+beta_h0); 

  
%-15mV impulse 
for i=1:1:30000 
    v(1,i)=-15; 
end 

  
%below threshold 
%for i=1:1:30000 
%    v(1,i)=-5; 
%end 

  
for i=1:1:length(x)-1 
    phi(i,1)=1.5; 
    v(i+1,1)=v(i,1)+dx*phi(i,1); 
end 

  
for j=1:1:length(t)-1 
    %indicator for completion (in percent) 
    j/(10/dt)*100 
    for i=1:1:length(x)-1 
        n(i,j+1)=n(i,j) + dt*N(n(i,j),v(i,j)); 
        m(i,j+1)=m(i,j) + dt*M(m(i,j),v(i,j)); 
        h(i,j+1)=h(i,j) + dt*H(h(i,j),v(i,j)); 
        v(i,j+1)=v(i,j) + dt*psi(i,j); 



        phi(i+1,j)=phi(i,j) + s*(psi(i+1,j)-psi(i,j)); 
        psi(i,j+1)=psi(i,j) + s*(phi(i+1,j)-phi(i,j)) - 

dt*F(psi(i,j),v(i,j),n(i,j),m(i,j),h(i,j)); 
    end 
end 

  
figure(1) 
plot(t,v(1,:)) 

  
figure(2) 
plot(t,v(1,:),t,v(2,:),t,v(3,:),t,v(4,:),t,v(5,:),t,v(6,:),t,v(7,:),t,v(8,:),

t,v(9,:),t,v(10,:)) 
legend('1','2','3','4','5','6','7','8','9','10') 

 

F.m 

function f=F(psi,v,n,m,h) 
R2_a=2974.8991; 
theta=1.23138148; 
C=0.001; 
g_k=0.036; 
g_n=0.12; 
g_l=0.0003; 
v_k=12; 
v_n=-115; 
v_l=-10.5989; 
N_f=N(n,v); 
M_f=M(m,v); 
H_f=H(h,v); 

  
f=R2_a*C*theta*psi + (1/(theta*C))*(g_k*n^4 + g_n*m^3*h + g_l)*psi + 

g_k*(R2_a*n^4 +(4/(theta*C))*n^3*N_f)*(v-v_k) + g_n*(R2_a*m^3*h + 

(1/(theta*C))*(3*m^2*h*M_f + m^3*H_f))*(v-v_n) + g_l*R2_a*(v-v_l); 
end 

 

H.m 

function [H_prime] = H(h,v) 
theta=1.23138148; 

  
alpha_h=0.07*exp(v/20); 
beta_h=(1+exp((v+30)/10))^-1; 
H_prime=(1/theta)*(alpha_h*(1-h)-beta_h*h); 
end 

 

M.m 

function [M_prime] = M(m,v) 
theta=1.23138148; 

  
alpha_m=0.1*(v+25)/(-1+exp((v+25)/10)); 



beta_m=4*exp(v/18); 
M_prime=(1/theta)*(alpha_m*(1-m)-beta_m*m); 
end 

 

N.m 

function [N_prime] = N(n,v) 
theta=1.23138148; 

  
alpha_n=0.01*(v+10)/(-1+exp((v+10)/10)); 
beta_n=0.125*exp(v/80); 
N_prime=(1/theta)*(alpha_n*(1-n)-beta_n*n); 
end 

 


