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DRUG DIFFUSION THROUGH A COATED STENT
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1. INTRODUCTION:

In this report, a bioengineering application of the one-dimensional diffusion equation, solved in both
rectangular and cylindrical coordinates, is considered. An example of this is the diffusion of a drug

through an arterial wall via a coated stent.

A stent is a metallic prosthesis implanted into the arterial wall and coated with a layer of a therapeutic
drug. It is used to treat heart diseases such as atherosclerosis, which can be considered a form of
chronic inflammation. When it affects coronary arteries, symptoms such as angina pectoris and heart
attack can occur'™. So as to revascularize coronary arteries, a stent can be used. A stent is an
expandable metal or polymeric tubular mesh. A drug diffusing stent is a normal metal stent that has
been coated with a pharmacologic agent (drug) that is known to interfere with the process of restenosis

(reblocking).

In this problem, a drug-diffusing stent coated with heparin is considered. Once the stent is inserted into
an artery, it starts diffusing through the arterial wall. The solution indicates the concentration of the
drug at different distances in the wall, at different time intervals. This is important as it helps to
determine the rate at which the drug is diffusing through the artery. Depending on the time at which all
drug has diffused through the wall, we can determine if modifications in the system are required for

sustained drug delivery.

2. SET-UP:
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Figure 2.1 Cross section of artery



a.) CASE I: Consider one portion of the arterial wall
We can make the following assumptions in this condition:

* Asthe vacant space in the artery is much larger than the thickness of either the stent or the
wall, we can consider only one part of the blood vessel, and assume the stent and wall to be
two parts of a slab. Considering this assumption, the problem can be solved in rectangular
coordinates.

* The diffusivities of both the coated stent and the wall are constant.

* The stent is impervious to flow of blood (that is, the drug will only diffuse in one direction).

* The outer edge of the wall is impermeable to the drug.

_ _ ) Ju J*u
* Differential equation: — = >
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* Initial condition: C(x,0)=0; initially, the drug concentration in the wall is zero.
* Boundary condition:
1. C(0,t)=Cphax=1 mol/cm?; the amount of drug on the surface of the stent is much higher
than at any other point in the wall. So, the stent is a constant source of the drug over
time.

2. Dc/dt(L,t)=0; at the end of the arterial wall, the flux is zero due to impermeability.

This problem is first solved analytically considering the entire setup to be made up of one slab. Then,

the problem is solved numerically considering two layers.

b.) CASE II: Consider the artery to be a cylinder. A stent is an expandable metal or polymeric tubular
mesh. It is difficult to solve this problem with the stent as a mesh, as it is then not a uniform
source of the drug. Certain assumptions are therefore made to modify our problem into a more

convenient form, mathematically.
The assumptions made in this case are:

* The stent is assumed to be a film of uniform thickness coating the inner wall of the blood vessel.
* The artery is assumed to be a cylinder of uniform thickness.

* The diffusivities of both the coated stent and the wall are constant.

* The stent is impervious to flow of blood (that is, the drug will only diffuse in one direction).

* The outer wall of the blood vessel is impermeable to the drug.



* Differential equation: ——
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* Initial condition: C(x,0)=0
* Boundary conditions:

1. C(rt)=Cha=1 mol/cm®,

2. dc/dx(r2,t)=0

3. SOLUTION:

3.1 ANALYTICAL SOLUTION FOR CARTESIAN COORDINATE:

Diffusion Equation

& _pZ 3.1.1
ar = 8x*? (3.1.1)
Initial Condition

C(x,00=0 (3.1.2)
Boundary Conditions

C(0,t) = Cppax (3.1.3)
%L, =0 (3.1.4)
dx

This is a diffusion problem in one-dimensional slab with constant physical properties and no sources. To
solve this equation, solution can be separated into homogeneous and particular solutions. Particular

solution is the steady state solution where A=0.

2Pz (3.1.5)
a*c
P 0 (3.1.6)
ac
ax P (3.1.7)
Cy(x,t) =A,x+B, (3.1.8)

Applying boundary condition C(0,t) = Ca. gives
C,(0,8) = A,(0) + By, = Cpax (3.1.9)

By = Conax (3.1.10)



ac
Applying boundary condition a(L, t) = 0 gives
ac
EL=4,=0

Particular solution becomes

Cplx,t) = Crna

Homogeneous solution can be found using separationof variables

Let C,(x,t) = F(x)G(t)

Take derivative of C withrespecttot
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Take second derivative of C withrespect to x

*cy _ . 8°F
8x% Bx=

Substituting into dif fusion equation gives

a*F
dx2

ac
F;—DG

Equations are rearranged as

DG 8t Fax®

Both sides should be equal the same constant.

Then,these two ODE can be solved separately.
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Solving equation (3.1.19)
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G(t) = cge~ 4Dt

Solving equation (3.1.20)

(3.1.11)

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)
(3.1.22)

(3.1.23)



= —A2F

dx?

Characteristic equation of ODE is as follows:
r2+212=0

The physically relevant solution is found for A = 0. TEis gives
r=*tid

The form of the general solution is

F(x) = cie™™ + cye™

F(x) = c3cos(Ax) + c4sin(Ax)

General homogeneous solution of C(x,t)
Cnlx,t) = G(t)F(x)
= coe APt (cycos(Ax) + cysin(Ax))

= e #*Pt(4cos(Ax) + Bsin(1x))

(3.1.24)

(3.1.25)

(3.1.26)

(3.1.27)

(3.1.28)

(3.1.29)

(3.1.30)
(3.1.31)

(3.1.32)

To find A and B, boundary conditions are applied. However, initial condition and boundary

conditions for each solution (particular and homogeneous)should add up to the overall

initial and boundary conditions.Thus,homogeneous boundary conditions should be found as:

€(0,t) = C,(0,) + C,(0,2)

Cx(0,t) = €(0,2) — C,(0,2)

Cx(0,t) = Cpoax — Crnax =0

Applying this boundary condition gives

Cx(0,£) = e=4*Pt (4 cos(A(0)) + Bsin(A(0))) =0
A=0

Ci(x,t) = e 4Pt(B sin(Ax))

ac
Applying homogeneous boundary condition 6_xh (L,t) = 0 gives

22 = =04 (1B cos(Ax)

(3.1.33)
(3.1.34)

(3.1.35)

(3.1.36)
(3.1.37)

(3.1.38)

(3.1.39)



2.0, - > GBconaL) -

Bcos(AL) =0
fornon trivial solution,B = 0 socos(AL) = 0

AL = '.Zn:i}n

(2Zn—1}n
A=
2L

Solving for homogeneous solutionof Cy(x,t)

Ch(x' t) = ZQETB,, sin ((2"2;1)”3[) exp (_ ((Zn-i}n)z Dt)

2L
Apply homogenous initial condition C(x,0) = C,(x,0) + C,(x,0)
Ch(xJ 0) = C(xp 0) - C-p (xJ 0)

Crl(x,0) = 0 — Cprgx =—Comax

zoop . ((2n—1) (2n—1)m\2
Ca(,0) = 357 Bsin (22272 exp (- (Z227) D(0)) = ~Conas

(2n—-1)m

oL x) = _Cmax

n=oa :
n=1 Bn Sin (

Owhenm=n
L
Ewhen m=n

nSwp o (2n—-1)m . f2m-Dr \ c . fl2m-1)m
Yim=1 Bysin ——x)sin(———x) = —Cpgsin(——x

2 2L 2L

Using orthogonality of sines, f: sin (nlﬁ) sin (ﬁ) dx = {

- L (Zn—-1)m (2m-1x L (2m-1x
n=oo : & % . ~ N —_ : . ~
Ym=1 Bn fo sin ( " x) sm( I x) dx = —Cnax fo sin (_21., x) dx

Whenm =n, B, f:sinz(g) dx = —Cmax[— = cos(lzzn_ﬂ”x)r

(2n—-1)m 2L 0

L 2L (2n-1r \1*

B, -= —C [—, cos(‘ - x)]
n 2 max|  (an-1n 2L 0

B,= (::T:;” [cos(f“znz;n”l.) - cos(O)]

B, = 4Cmax [COS(I;zn—nn) _ 1]

(Zn—-1)m 2

Bn=m[o_1]

(2Zn—-1)x

B, = — ——max_
(2n—1)n

Homogeneous solution becomes

Ch(x, £) = Z:;T_ 4Cmax sin (I:Zn-i}nx) e (_ ((Zn—i}n)z Dt)

(2n—-1)m 2L 2L

(3.1.40)

(3.1.41)

(3.1.42)

(3.1.43)

(3.1.44)

(3.1.45)
(3.1.46)

(3.1.47)

(3.1.48)

(3.1.49)

(3.1.50)

(3.1.51)

(3.1.52)

(3.1.53)

(3.1.54)

(3.1.55)

(3.1.56)

(3.1.57)

(3.1.58)

(3.1.59)



Final solution is found by adding particular and homogeneous solutions:

Clx,t) =C,(xt) + Ch(x, 1) (3.1.60)
. n=oo 4Cmax _._ [l2n—1ix [ flan-Dm?
C(x,t) = Crax — Ym=yq (.i:‘;nsm (\' ,,Ll x) exp ( - (\' ﬂ}_l ) Dt) (3.1.61)

3.2. ANALYTICAL SOLUTION FOR CYLINDRICAL COORDINATE:

Diffusion Equation

10 oC 1 oC
AP (3.2.1)

ror or D ot

Initial Condition

C(x,0)=0 (3.2.2)
Boundary Conditions

C(r,t)=C,,, (3.2.3)
9 1) =0

ox (3.2.4)

This is a diffusion problem in r-direction with constant physical properties and no sources. To solve this
equation, solution can be separated into homogeneous and particular solutions. Particular solution is

the steady state solution where A=0.

1d dC
2959 ) 3.25
r dr(r dr) ( )
F9C _ 4 (3.2.6)
dr
A
dC = [—d 3.2.7
Jae=[ P (3.2.7)
C,(x,t)=Alnr+B (3.2.8)

At r=0, Cy(x,t) should be finite. Since In(0) is not a finite value:

A=0 (3.2.9)



C,(x,1) =B

Applying boundary condition C(r,,t)=Cax gives
Crmax=B

Particular solution becomes

C,(x,1)=C,,

Homogeneous solution can be found using separation of variables
Cy(r,t) = G(r)F (1)
Substituting into diffusion equation

1 d G dF
PG 7” D dr

| dG _1d’G_ 1 dF
G*r dr G dar? F*D dt

Both sides should be equal the same constant.

1 ﬁ{_laﬂG 1 dF )
G*rdr Gdr* F*D dt

where A is greater than 0.

Then, these two ODE can be solved separately.

F*D dr

ld_G ldG__)Lz
G*rdr G dr*

Solving equation (3.2.17)

L _dF _

F*D dt

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)



d7F= —f/VDdt

InF =-ADt+K
F = Foe—AZDI
Solving equation (3.2.18)

L dG_1d°G __,

+ =
G*rdr G dr*

Multiplying by r* and G gives

2
r? d E;+rd—G+Gr2)L2 =0
dr dr

The general solution of any linear homogeneous second-order differential equation is a linear

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

(3.2.24)

combination of two independent solutions. Thus, the general solution of Bessel’s differential equation:

G(r) = A* J,(Ar)+ B*Y,(Ar)

At r=0, C should be finite. Since Yq(0)=
B=0

Applying the second homogeneous boundary condition
d d
—(C(ry,0)) = —(AJ ((Ar)) = =A4AJ, (Ar,) = 0
or dr
There are multiple eigenvalues that make J;(Ar;) zero. Let’s call A=A,
G=A4*J,(A,r)

Solving for homogeneous solution of Cy(x,t)

-DAt

C,(x,t)=G*F = ECne "I ()
n=1

where C, = AxF,

C, can be found by applying homogeneous initial condition.

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)



C(x,1) = C, (x,0) + C, (x,1)

(3.2.30)
Ch (X,O) = C(X,O) - Cp (X,O) =0- Cmax = _Cmax (3231)
The Fourier-Bessel representation of f(r):
C(1.0) = ~Cpy = £ (1) = 3 C, Ty (2,7)
n=l (3.2.32)
Using the orthogonality property of the eigenfunctions:
frJO (A7) f(r)dr =anJO (A, yd o (A, r)dr
i i (3.2.33)
F rzz 2 2 V12 2 2
frJo()Lmr)f(r)dr =C, (7(*]0 (A, 1)+ J7(A,r)) - 7(']0 A,n)+J7(A,n)
i (3.2.34)
n r2 }"2
frJO (Amr)f(r)dr =Cn (% (J02 (Amrz) - 1?(‘]02 (A'mrl) + le (Amr] ))
i (3.2.35)
C = 2 }VJ (A7) f(r)dr
’ rZZJ(?(A'MFZ)_rlz(le(A’mrl)+J(?(A’mrl)) n ’ " (3236)
The right hand side of the equation can be found as:
f A i}
frJo (A7) f(r)dr = P (ryJ (A1) =1, (A1) (3.2.37)
where f(r)=constant
C = 2Cmax (FZJI(AmFZ)_rlJI(A’mrl))
’ r22‘]§ (A‘mr2) - rlz (']l2 (Amrl) + J(? ()Lmrl )) A’m (3238)
Due to the eigenvalues, J;(Anr,)=0 (3.2.39)
B 2Vl‘]l (Amrl)cmax

C, = 2 72 2/ 712 2
)Lm (VZ JO (A’mFZ) - rl (‘]1 (A'mrl) + JO (A‘mrl ))) (3240)



Homogeneous solution becomes

—DAt

C,(x,t)=G*F = ECne "I ()
n=1

Final solution is found by adding particular and homogeneous solutions:

C(x,1) =C,(x,0) + C,(x,1)

B 2Vl‘]l (A‘nrl )Cmaxe_DAn[']O (An}") + C
A’m (}/‘22'](? (A'n r2 ) - ,,-12 (‘]12 (A’nrl ) + J(? (A’n }"1 ))) -

C(x,1) = C,(x,1) + C, (x,1) = i

3.3. NUMERICAL ANALYSIS IN CARTESIAN COORDINATES:

Starting from the original diffusion equation:

o o*
fu=D I;
ot ox

we need to write our equation in a form that matlab can solve it:

c(x, tu, %) % =y % (xm f (x, tu, %)) + s(x, t U,

for Cartesian coordinates m = 0, so with simplification we have:

311

3

P )
ox M _9
ot ox

comparing equations 3.1 and 3.3 we have:
c=1

u

ou
f(x,t,u,—)=D* —
ox ox

s=0

(3.2.41)

(3.2.42)

(3.2.43)

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)



The solution needs to satisfy the initial condition u(x,0) = 0, so we have the term u0 = 0 which is

identified in the icpde() in the matlab code.

Also the solution needs to satisfy the boundary conditions xI=0 and xr = L1+L2

plx,t,u) + qg(x, t) f(x t, u, EE) =0
dx

(3.3.5)
We already have f found in equation 3.4, so we have:
p+q*D* % =0
ox
For the left boundary, u(0,t) = Cmax, so u(0,t)-Cmax =0
. ou
ul— Cmax = 0. As a result, pl = ul— Cmax and gl=0, since we don’t have any d_ term.
Ix
For the right boundary, we assumed the flux in the outside wall of the blood vessel to be zero:
u .
—=0 , so we can write:
ox
ou
0+1* — =0 (3.3.6)

ox

as aresult, pr=0and qr=1.

3.4.NUMERICAL ANALYSIS IN CYLINDRICAL COORDINATES:

In cylindrical coordinates, all the initial and boundary conditions are the same. The only term which

varies is m=1.



Matlab results (Plot) for Cartesian Coordinates:

PDEPE Approximation Method in cartesian coordinates

Concentration (M)

0.005

i 0
Time (5) Y Distance (cm)

0.015

Figure 3.3.1 Surface plot of PDEPE numerical analysis in Cartesian coordinates.
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Figure 3.3.2 Drug concentration profile in

different times in Cartesian coordinates

L
0 05s 1 15 2 25 3

Drug Concenftration profile at particular distances

0.14 : r
x=L112
¥=L1
012} x=L1+L22
x=L1+L2
01 R
=3
< 0.08f ]
o
s
-
=
3 006} B
<
8
0.04 | R
002} R
0 . " . , .
0 20 40 60 80 100 120

Time (s)

Figure 3.3.3 Drug Concentration profile in

different distances in Cartesian coordinates

Observation: The drug concentration suddenly drops after a very short distance from the stent wall.

Figure 3.3.3 shows that the concentration in certain distance (L1/2) in the middle of the stent is

increased overtime, which is reasonable but the concentrations in distances further from the origin all



fall into the zero level and barely increase. This indicates that the drug diffusion needs to be much

slower.

Matlab results (Plot) for Cylindrical Coordinates:

PDEPE Approximation Method in ¢cylindrical coordinates
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Figure 3.3.4 Surface plot for PDEPE numerical analysis in cylindrical coordinates



Drug concentration profiles in different times
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Figure 3.3.5 rug concentration profile in different times in cylindrical coordinates
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Figure 3.3.6 Drug Concentration profile in different distances in cylindrical coordinates

Observation: Using cylindrical coordinates, the plots demonstrate more realistic conditions.
The surface plot shows a more gradual change in the drug concentration over time and
distance. As a result, compared to the Cartesian coordinates, the concentration drops to zero at
a farther distance away from the origin. Also, in figure 3.3.6, the concentration increase over

time, approaching the maximum concentration, is more visible.



Matlab Code (Cartesian Coordinates Method):

This code presents numerical analysis of diffusion equation in Cartesian coordinates using MATLAB
PDEPE method.

function presentation()
%define constants taken from the research papermm

L1 = 5e-4; % stent thickness in cm

L2 =0.01; % artery wall thickness in cm

x = linspace( 0, L1+L2, 500); % distance variable starting from inside radius going to outside radius
t = linspace(0,120,500); % time variable in s

% pdepe method in cylindrical coordinates

sol = pdepe(0,@mypde,@icpde, @bcpde,x,t);

% Extract the first solution component as C.

C=sol(:,:,1);

% A surface plot representing the concentration vs. distance and time
figure(1)

surf(x,t,C);

title('PDEPE Approximation Method in cartesian coordinates');
xlabel('Distance (cm)'), ylabel('Time (s)'), zlabel('Concentration (M)');

% A solution profile observing concentration change in certain distances
% over time

figure(2)

plot(t,C(:,12),'m")

hold on

plot(t,C(:,24),'b")

hold on

plot(t,C(:,262),'g)



hold on

plot(t,C(:,499),'r")

title('Drug Concentration profile at particular distances');
legend('x=L1/2",'x=L1",'x=L1+1L2/2",'x=L1+L2");

xlabel('Time (s)'), ylabel('Concentration (M)');

% A solution profile observing concentration change in certain times
% over distance

figure (3)

plot (x, C(5,:),'b")

hold on

plot (x, C(50,:), 'r')

hold on

plot (x, C(499,:), 'g')

title('Drug concentration profiles in different times');

legend ('t=1.2s', 't=12s','t=120s');

xlabel ('Distance (cm)'), ylabel('Concentration (M)");

% function to define the components of pde as Matlab can recognize
% from the general form D*d2C/dx2 = dC/dt

% find c, f, s such that our equation fits c(x,t,C,DC/Dx) * DC/Dt = x*(-m)
% * D(x m * f(x,t,C,DC/Dx))/Dx + s(x,t,C,DC/Dx) , where m=0, so c*dC/dt =
% df/dx + s

function [c,f,s] = mypde(x,t,C,DCDx)

% since our slab is composed of two parts with different diffusion



% constants, we need to define D depending on the distance away from te
% origin

D1 = 1e-10; %diffusion constant of stent (cm2 s-1)

D2 = 7e-8; %diffusion constant of artery wall (cm2 s-1)

L1 = 5e-4; %thickness of stent (cm)

L2 = 0.01; %thickness of artery wall (cm)

if x<L1

end

f = D*DCDx;

s=0;

% function to define initial conditions
function cO = icpde(x)

% initial condition atx =0

% function to define boundary conditions

% p and q for left and right side boundaries are determined to fit:

% p(x,t,u) + q(x,t) * f(x,t,u,Du/Dx) =0

function [pl,qgl,pr,qr] = bcpde(xl,cl,xr,cr,t)

Cmax = 1; %maximum concentration (M)

% in the left side we have cl = Cmax so, cl - Cmax =0 fitting to pl+qgl*f =0

pl = cl - Cmax;



% in the right side we have dc/dx =0, so to fit p + g*du/dx =0
pr=0;

ar=1;

Matlab Code (Cylindrical Coordinates Method):

This code presents numerical analysis of diffusion equation in cylindrical coordinates using MATLAB
PDEPE method.

function presentation_cylindrical()

%define constants taken from the research paper

L1 = 5e-4; % stent thickness

L2 =0.01; % artery wall thickness

Rout = 0.341; % outside vein radius

Rin = Rout - L1 - L2; %inside vein radius

x = linspace( Rin, Rout, 100); % distance variable starting from inside radius going to outside radius
t = linspace(0,120,100); % time variable

% pdepe method in cylindrical coordinates

sol = pdepe(1,@mypde,@icpde,@bcpde,x,t);

% Extract the first solution component as C.

C=sol(:,:,1);

% A surface plot representing the concentration vs. distance and time
figure(1)

surf(x,t,C);

title('PDEPE Approximation Method in cylindrical coordinates');
xlabel('Distance (cm)'), ylabel('Time (s)'), zlabel('Concentration (M)');

% A solution profile observing concentration change in certain distances

% over time



figure(2)

plot(t,C(:,12),'m")

hold on

plot(t,C(:,24),'b")

hold on

plot(t,C(:,262),'g')

hold on

plot(t,C(:,499), 'r")

title('Drug Concentration profile at particular distances');
legend('x=L1/2",'x=L1",'x=L1+1L2/2",'x=L1+L2");
xlabel('Time (s)'), ylabel('CONCENTRATION (M)');

% A solution profile observing concentration change in certain times
% over distance

figure (3)

plot (x, C(5,:),'b")

hold on

plot (x, C(50,:), 'r')

hold on

plot (x, C(499,:), 'g')

title('Drug concentration profiles in different times');
legend ('t=1.2s', 't=12s','t=120s');

xlabel ('Distance (cm)'), ylabel('Concentration (M)');

% function to define the components of pde as Matlab can recognize
% from the general form D*d2C/dx2 = dC/dt

% find c, f, s such that our equation fits c(x,t,C,DC/Dx) * DC/Dt = x*(-m)



% * D(x m * f(x,t,C,DC/Dx))/Dx + s(x,t,C,DC/Dx) , where m=0, so c*dC/dt =
% df/dx + s

function [c,f,s] = mypde(x,t,u,DCDx)

c=1;

% since our slab is composed of two parts with different diffusion

% constants, we need to define D depending on the distance away from te
% origin

D=0;

D1 = 1e-10; %diffusion constant of stent (cm2 s-1)

D2 = 7e-8; %diffusion constant of artery wall (cm2 s-1)

L1 = 5e-4; %thickness of stent (cm)

L2 = 0.01; %thickness of artery wall (cm)

if x<L1

end

f = D*DCDXx;

s=0;

% function to define initial conditions
function cO = icpde(x)

% initial condition atx =0

% function to define boundry conditions

% p and q for left and right side boundries are determined to fit:



% p(x,t,u) + q(x,t) * f(x,t,u,Du/Dx) =0

function [pl,qgl,pr,qr] = bcpde(xl,cl,xr,cr,t)

Cmax = 1; %maximum concentration (M)

% in the left side we have cl = Cmax so, cl - Cmax =0 fitting to pl+qgl*f =0

pl = cl - Cmax;

% in the right side we have dc/dx =0, so to fit p + g*du/dx =0

pr=0;

ar=1;

4. CONCLUSION:

This problem has been solved in both rectangular and cylindrical coordinates. We can find the most

accurate method of solving this problem by calculating the boundary layer thickness.

Boundary Layer Thickness Approximation:

8 =[4D,1

Time to ‘rléach steady-state for cylindrical coordinates (found by MATLAB simulation) is 20 s.

8 =4*T*E-8%20
5. 0 =0.0024 cm
Actual length through which diffusion is taking place is 0.01 cm. This is almost 4-fold larger than
boundary layer thickness. Therefore, solving the problem in Cartesian coordinate system is not a very
accurate method. It can thus be seen that solving this problem in cylindrical coordinate system is a more

accurate technique than by Cartesian system.

The numerical and analytical analysis shows that the drug gets diffused through the arterial wall in a
very short period of time. Considering that the stent is coated with only the drug, and that the thickness

of the arterial wall and of the stent is very small, this is a reasonable conclusion. However, in actuality,



we want the stent to show sustained release. This would therefore mean that our solution indicates that
another top-coat (such as a polymer which decreases drug diffusion) must be taken into account if we

are to achieve diffusion over longer periods of time, for better therapeutic efficacy.

5.FUTURE WORK:

In this problem, we have assumed the stent to be impervious to blood flow. However, if this were not
the case, convection would come into play. The equation would then include terms for both diffusion
and convection. Another case that can be considered is that of a polymeric coat encapsulating the drug-
coated stent. This would be a more practical application, and in this case, the problem would have three
layers: one for the stent, one for the polymeric coating and one for the arterial wall. The polymeric coat

would decrease the rate of diffusion of the drug, thus leading to a longer duration of action.

REFERENCES:

1. Thomas Lemke, David Williams, (2006), Foye’s principles of medicinal chemistry—Gth edition, USA:
Lippincott, Williams & Wilkins.
2. G. Pontrelli, F. de Monte; (2007). Mass diffusion through two-layer porous media: an application

to the drug-eluting stent. Int. J. Heat Mass Transf., Vol. 50, pp. 3658-3669
3. C. J.van Andel, P. V. Pistecky, C. Borst; (2001). Mechanical Properties Of Coronary Arteries And
Internal Mammary Arteries Beyond Physiological Deformations, Engineering in Medicine and

Biology Society, vol 1, pp. 113 - 115



