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Introduction and Background 
Yeasts are eukaryotic organisms that serve many practical purposes in today’s world. One 

well known type of yeast, Saccharomyces cerevisiae, is especially useful. One such purpose is 
for biological research. Saccharomyces cerevisiae can easily be grown in large quantities, which 
makes the yeast cells readily available for laboratory experiments.1 Also, its genome is known, 
making it a great cell type for genetic engineering.  

Saccharomyces cerevisiae is also useful for its ability to produce ethanol. At the end of 
glycolysis, pyruvate is formed1. If oxygen is present in the environment (aerobic conditions), this 
molecule will be turned into acetyl-CoA and go to the citric acid cycle to eventually make CO2 
and H2O. If oxygen is not present in the environment (anaerobic conditions), pyruvate is reduced 
with the help of lactate dehydrogenase to lactate. In yeast cells, pyruvate is not converted to 
acetyl-CoA. Instead, it is first converted to acetaldehyde and then ethanol with the help of 
pyruvate decarboxylase and alcohol dehydrogenase, respectively. This process, known as 
fermentation, is used industrially to make alcoholic beverages, but also alternative fuel. 

In both research and industrial uses, the function of yeast cells can be enhanced by having 
more yeast cells. A factor that can set back the functionality of one type of yeast can possibly be 
contamination by another type of yeast. When placed in the same environment, two or more 
yeast species may be in competition for resources.2 In the case of yeast cells, different species 
may compete for nutrients. As one species grows, it consumes and therefore can deplete nutrients 
in the environment. This depletion can then hinder the growth of the other species. Another 
environmental change that can affect the other species may be the waste products created. 

The scenario presented above is a short description of conditions laid out in Georgii 
Frantsevich Gause’s 1932 article “Experimental Studies on the Struggle for Existence.” In this 
article, Gause used the logistic equation to model growth of a mixed population and applied it to 
two different types of yeast, Saccharomyces cerevisiae and Schizosaccharomyces kefir. A 
similar scenario was examined in this project. The numerical solutions were compared with the 
results found by Gause.	
   
 
Problem Statement 

Write and solve, analytically and numerically, a system of equations that appropriately 
modeled the growth of the two yeast species, growing in a common environment, given the 
initial mass of both species.  
 
Analytical Solution 

Two functions, y1 and y2, were defined such that: 
y1(t) = mass of yeast 1 (Saccharomyces cerevisiae) at time t (in hours), and	
  	
  
y2(t) = mass of yeast 2 (Schizosaccharomyces kefir) at time t (in hours). 

To model the growth of each species of yeast individually, the logistic equation was used: 
dy1
dt

= b1y1
K1 ! y1
K1
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where b1 = intrinsic growth rate of the species and K1 = carrying capacity of the environment. 
However, this logistic equation does not take into account the presence of the other species in 

the environment. In order to model the competitive nature of their growth, a particular term in 
the equation was further examined:

 K1 ! y1
K1
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It was observed that this term in the differential equation represents the limiting nature of the 

environment as the population reaches its capacity. It can be shown that as y1 K1, dy1/dt  0. 
Taking the presence of y2 into account, it is assumed that the presence of y2 will accelerate this 
process. To reflect this assumption, the following term is used instead:	
  

 K1 ! (y1 +!y2 )
K1
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where α = proportionality constant. 
Applying this term to the original logistic equation, the following set of differential equations 

was obtained:
 
                                 dy1

dt
= b1y1

K1 ! (y1 +!y2 )
K1
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dy2
dt

= b2y2
K2 ! (y2 + ßy1)

K2
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It can be shown that this set of differential equations is difficult to solve using the methods 
covered in class. In order to simplify the equations, the following assumptions were made:

 y1 >> y2,
 ! !1, 	
  

ß !1.
 The first assumption would be valid if y1 represents the yeast species of interest and y2 

represents contamination. The assumptions regarding α and ß were based on experimental values 
determined by Gause. Then, equations (1) and (2) simplify to: 

                dy1
dt

= b1y1
K1 ! y1
K1
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 dy2
dt

= b2y2
K2 ! ßy1
K2
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Now, (3) can be solved analytically, in the following way:	
  
dy1
dt

= b1y1(
K1 ! y1
K1

) 	
  

K1dy1
y1(K1 ! y1)
" = b1 dt"
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Using partial fractions,
	
  

A
y1
+

B
K1 ! y1

=
K1

y1(K1 ! y1)
 

AK1 ! Ay1 +By1 = K1
AK1 = K1 !! > A =1.
(B! A)y1 = 0!! > B =1.  

Integrating, 
1
y1
+

1
K1 ! y1
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'( dy1 = b1 dt(

ln(y1)! ln(K1 ! y1) = b1t +C '

ln K1 ! y1
y1
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'= !b1t +C

 

K1 ! y1
y1

= e!b1t+C = Ae!b1t

y1 =
K1

1+ Ae!b1t  
Using initial conditions to find A: 

y1(0) = y10 =
K1
1+ A

A = K1 ! y10
y10

y1 =
K1

1+ K1 ! y10
y10
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Final solution for y1(t) is: 

y1 =
K1y10

y10 + (K1 ! y10 )e
!b1t

   (5) 

Now, the analytical solution for y1 can be used to find the solution for y2: 

dy2
dt

= b2y2
K2 !!y1
K2
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K2 !!
K1y10

y10 + (K1 ! y10 )e
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= b 2!b2!
K1
K2

y10
1

y10 + (K1 ! y10 )e
!b1t
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Substituting for variables to simplify the equation, 
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M = b2!
K1
K2

y10;!B = y10;!A = K1 ! y10;!" = !b1

 !
dy2
y2

= ! b2dt "M
dt

B+ Ae!t!

 
A table of integral was used to integrate the right hand side:3 

ln(y2 ) = b2t !M
!t ! ln(Ae!t +B

B!
"

#
$

%

&
'+C

!!!!!!!!!!= b2t ! ß
b2
b1
K1
K2

(b1t + ln((K1 ! y10 )e
!b1t + y10 )+C

 

N = ß b2
b1
K1
K2

y2 = e
b2te!Nb1te!N ln (K1!y10 )e

!b1t+y10( )eC

A = eC

y2 =
Aeb2t

eb1t (K1 ! y10 )e
!b1t + y10( )( )

N =
Aeb2t

K1 + y10 (e
b1t !1)( )

N

 

Using initial conditions to find A: 

y2 (0) = y20 =
A
K1

N

A = y20K1
N

 

Finally, 

      y2 = y20e
b2t K1

K1 + y10 (e
b1t !1)
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N

,!!N = ß b2
b1
K1
K2

  (6) 

 
Numerical Plots (Note: Matlab code included in Appendix) 

The analytical and numerical solutions to equations (1) and (2) were plotted in Matlab for the 
purpose of comparing the analytical and numerical solutions. The blue curve represents the 
solution curve for the growth of species 1 (Saccharomyces cerevisiae or Sce) and the green curve 
represents the solution for the growth of species 2 (Schizosaccharomyces cerevisiae or Ske). The 
numerical solutions were obtained by using Euler’s approximation method and the ode23 
function in Matlab. Different cases with varied initial conditions were considered. The cases 
were defined as follows: 

Case 1: y1(0) = y2(0) 
Case 2: y1(0) >> y2(0) 
Case 3: y1(0) << y2(0) 
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For cases 1 and 2, the solutions were plotted from t = 0 to t = 50 hours. For case 3, the 
solutions were plotted from t = 0 to t = 100 hours. These time intervals were chosen based on 
what intervals gave the best view of the yeast growth models in each case. Also, the numerical 
values for constants were obtained from Gause’s article and are as follows: 

α = 3.15; ß = 0.439; b1 = 0.21827; b2 = 0.06069; K1 = 13; K2 = 5.8 
 

Analytical Solution 
Figures 1-3 show the plots of the analytical solutions (equations 5 and 6) for the competitive 

yeast growth model for cases 1, 2, and 3, respectively. In each plot, the general shape for species 
1 looked the same. The initial conditions dictated where the curve began, but the change in the 
mass of species 1 first increased. The change in the mass then remained constant. Finally, the 
change in the mass leveled out and eventually the mass remained constant, at its carrying 
capacity (K1).  

Figures 1 (top left), 2 (top right), and 3 (bottom). 
Plots of the analytical solution for cases 1, 2, and 
3, respectively. 
 
 

The initial conditions had a greater effect 
on the growth curve for species 2. For case 1, 
the mass of species 2 increased slightly before 
remained relatively constant. For case 2, the 
mass of species 2 appeared to remain constant 
at its initial value. In case 3, the curve for 

species 2 showed more of a resemblance to the curve for species 1. The mass increased, but 
eventually leveled off to a relatively constant value. 

The figures clearly showed the effect of assuming that y1 >> y2. The shapes of the curves for 
species 1 were generally identical. The final mass of species 1 was greater than that for species 2 
in all cases. The curves for species 1 also leveled off at the same value of 13, which was the 
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carrying capacity for the species. This showed that the presence of species 2 did not have any 
effect on the growth of species 1. In contrast, the presence of species 1 did have an effect of the 
growth of species 2. 
 
Numerical Solution Using Euler’s Method 

Figures 4-6 show the numerical solutions for the model using Euler’s approximation method 
for cases 1, 2, and 3, respectively. In case 1, the mass of species 1 appeared to increase for the 
first 30 hours then decreased. The mass of species 2 increased more constantly and at a much 
lower rate than the increase for species 1. Also, the mass of species 2 did not decrease. 

Figures 4 (top left), 5 (top right), and 6 (bottom). 
Plots of the numerical solution using Euler’s 
method for cases 1, 2, and 3, respectively. 

 
 
The growth curves for case 2 using the 

Euler approximation were almost identical to 
the curves obtained with the analytical for the 
same case. There was an increase in the mass 
of species 1, until about 25 hours. After this 
point, the mass remained relatively constant. 
The mass of species 2 seemed to remain 

constant throughout. 
For case 3, the mass of species 1 initially increased, but then began to decrease after about 60 

hours. The mass of species 2 increased. Interestingly, in this case the mass of species 2 increased 
at a higher rate than the mass of species 1. The final mass for species 2 was also greater than the 
final mass for species 1. 

The solutions obtained with Euler’s method did not include the assumption that y1>>y2. This 
was evident from the maximum mass that each species reached. The maximum varied for the 
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three different conditions, showing that the initial amount of each species had an effect on the 
growth of the other.  

 
Numerical Solution Using ode23 

Figures 7-9 show the numerical solutions for the model using the ode23 function in Matlab 
for case 1, 2, and 3, respectively. In case 1, the mass of species 1 increased until around 30 
hours. It then remained relatively constant. The mass of species 2 increased slightly and at a 
fairly constant rate. 

Figures 7 (top left), 8 (top right), and 9 (bottom). 
Plots of the numerical solution using ode23 for 
cases 1, 2, and 3, respectively. 

 
 
In case 2, the growth curves for both 

species resembled the curves obtained 
analytically and with Euler’s method with the 
same initial conditions. In case 3, the mass of 
species 2 was greater and grew at a faster rate 
than that of species 1. Species 1 seemed to 
increase in mass initially but decreased again 

to a negligible value. Similar to the solution through Euler’s method, this was the only case when 
the mass of species 2 remained higher and grew at a faster rate than that of species 1.  
 
Conclusion 

From the results, several conclusions may be drawn. First, the results demonstrated the 
usefulness and exactness of the analytical solution when accurate assumptions are made. In this 
case, the assumption that y1 >> y2 was true only in case 2, and as figures 2, 5 and 8 show, the 
analytical solution is identical to the numerical solutions. On the other hand, the other two cases 
demonstrated the importance of the dependence of one parameter on the other. the assumption 
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made in obtaining the analytical solution for y1 removed the dependence of y1 on y2, which made 
the analytical solution inaccurate for cases 1 and 3. Furthermore, the results exhibit the superior 
usefulness of the numerical method. Analytical solutions are useful when the problem is 
reducible to sets of equations that are solvable; however, the types of questions that the analytical 
methods can answer are limited. On the other hand, numerical methods, as demonstrated above, 
are more versatile in producing solutions for more complex sets of differential equations. 
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Appendix 

For the plotting of the analytical solution: 
% 
clear all 
close all 
clc 
  
t = 0:.01:50; 
  
al=3.15; 
B=0.439; 
b1=0.21827; 
b2=0.06069; 
K1=13; 
K2=5.8; 
y10=.5; 
y20=.5; 
N=B*b2/b1*K1/K2; 
  
y1 = K1*y10./(y10+(K1-y10)*exp(-b1*t)); 
  
for i = 1:5001 
    y2(i) = y20*exp((b2-N*b1)*(i-1)*(.01))*(K1/((K1-y10)*exp(-b1*(i-1)*(.01)) + 
y10))^N; 
end 
  
figure(1) 
plot(t, y1, t, y2) 
set(gca, 'fontsize', 17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=.5 y2(0)=.5'); 
legend('Sce','Ske'); 
  
y10=1; 
y20=.01; 
  
y1 = K1*y10./(y10+(K1-y10)*exp(-b1*t)); 
  
for i = 1:5001 
    y2(i) = y20*exp((b2-N*b1)*(i-1)*(.01))*(K1/((K1-y10)*exp(-b1*(i-1)*(.01)) + 
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y10))^N; 
end 
  
figure(2) 
plot(t, y1, t, y2) 
set(gca, 'fontsize', 17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=1 y2(0)=.01'); 
legend('Sce','Ske'); 
  
y10=0.01; 
y20=1; 
  
t = 0:.01:100; 
  
y1 = K1*y10./(y10+(K1-y10)*exp(-b1*t)); 
  
for i = 1:10001 
    y2(i) = y20*exp((b2-N*b1)*(i-1)*(.01))*(K1/((K1-y10)*exp(-b1*(i-1)*(.01)) + 
y10))^N; 
end 
  
figure(3) 
plot(t, y1, t, y2) 
set(gca, 'fontsize', 17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=.01 y2(0)=1'); 
legend('Sce','Ske'); 
 

For the plotting of the solution using Euler’s method: 
clc 
clear all 
% 
al=3.15; 
B=0.439; 
b1=-0.21827; 
b2=-0.06069; 
K1=13; 
K2=5.8; 
% 
y1(1)=.5; 
y2(1)=.5; 
t=1; 
% 
% Euler 
% 
for i=1:50 
    y1(i+1)=y1(i)+t*(-b1/K1)*y1(i)*(K1-(y1(i)+al*y2(i))); 
    y2(i+1)=y2(i)+t*(-b2/K2)*y2(i)*(K2-(y2(i)+B*y2(i))); 
end 
% 
t1 = 0:1:50; 
figure(1) 
plot (t1,y1,t1,y2) 
set(gca,'fontsize',17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=0.5 y2(0)=0.5'); 
% ylim([0 35]); 
% xlim([0 t_end]); 
legend('Sce','Ske'); 
% 
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y1(1)=1; 
y2(1)=.01; 
t=1; 
% 
% Euler 
% 
for i=1:50 
    y1(i+1)=y1(i)+t*(-b1/K1)*y1(i)*(K1-(y1(i)+al*y2(i))); 
    y2(i+1)=y2(i)+t*(-b2/K2)*y2(i)*(K2-(y2(i)+B*y2(i))); 
end 
% 
t1 = 0:1:50; 
figure(2) 
plot (t1,y1,t1,y2) 
set(gca,'fontsize',17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=1 y2(0)=0.01'); 
% ylim([0 35]); 
% xlim([0 t_end]); 
legend('Sce','Ske'); 
% 
y1(1)=.01; 
y2(1)=1; 
t=1; 
% 
% Euler 
% 
for i=1:100 
    y1(i+1)=y1(i)+t*(-b1/K1)*y1(i)*(K1-(y1(i)+al*y2(i))); 
    y2(i+1)=y2(i)+t*(-b2/K2)*y2(i)*(K2-(y2(i)+B*y2(i))); 
end 
% 
t1 = 0:1:100; 
figure(3) 
plot (t1,y1,t1,y2) 
set(gca,'fontsize',17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=0.01 y2(0)=1'); 
% ylim([0 35]); 
% xlim([0 t_end]); 
legend('Sce','Ske'); 
 

For the plotting of the solution using ode23: 
function numode() 
  
t_start = 0; %s -- the point when your simulation starts 
t_end = 50; %s -- the point when your simulation ends 
  
% ODE Solver  
Initials = [.5; .5]; % Your initial values of x and y are stored in a column vector 
[t,Q] = ode23(@get_derivs_solver, [t_start; t_end], Initials); 
 
figure (1) 
plot(t, [Q(:,1) Q(:,2)]); %Plots each column of Q vs. time 
set(gca,'fontsize',17) 
xlabel('Time (h)'); 
ylabel('Amount of Yeast (in mass unit)'); 
title('Yeast Growth over Time; y1(0)=0.5 y2(0)=0.5'); 
xlim([0 t_end]); 
legend('Sce','Ske'); 
  
return 
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% Function to Calculate Derivatives 
function derivatives = get_derivs_solver(t,Q) 
  
x = Q(1); %unpack - Q(1) is passed from ode23 above - it is the value of the x-
variable 
y = Q(2); 
  
al=3.15; 
B=0.439; 
b1=-0.21827; 
b2=-0.06069; 
K1=13; 
K2=5.8; 
% 
  
dxdt = (-b1/K1)*x*(K1-(x+al*y)); % compute the derivatives 
dydt = (-b2/K2)*y*(K2-(y+B*x)); 
  
derivatives = [dxdt; dydt]; %pass back the derivatives in a column vector 
return 
(The same code was used for all three cases, changing initial conditions each run.) 


