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BACKGROUND 
 
Scopolamine is drug used primarily for treating motion sickness and nausea through various 
administration methods including topical, oral, subcutaneous, ophthalmic and intravenous routes (1).   
However, one of the main issues with the drug is that it has a relatively short half-life and can have 
adverse effects on the body. When the transdermal route is used to deliver the drug, the adverse effects 
are minimized but the drug’s effect is still maintained (2).  
 
In this report, we will mainly focus on enhancing the transdermal delivery of the drug to the systemic 
blood flow through the use of permeation enhancers (3). To investigate the spread of the drug from the 
patch into the skin and surrounding tissue, the first part of our report uses a simple model that 
incorporates the diffusion and permeation coefficients of the skin and drug in order to mimic the delivery 
pathway of the drug.  The model depicts the system as a two-compartment model taking into account the 
skin and patch as separate compartments linked by a common interface flux. In the second part of the 
report, we will investigate the delivery of the drug using a more complex three-compartment model where 
the skin is divided into the epidermis and dermis. 

 

 
Figure 1. Structure of Scopolamine. 

 
Figure 2. Scopolamine patch.  
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SIGNIFICANCE 
 
The model of transdermal delivery of a drug through a multilayer skin model dependent on time and 
position of drug will allow us to find a delivery profile for a specific drug and fine tune the amount of 
drug delivered to the target site. Transdermal drug delivery is preferred over other delivery methods due 
to the fact that it is non-invasive and has relatively high patient compliance. It does not involve 
procedures that cause the patient pain, nor does it require frequent dosages that are frequently skipped by 
patients, thus negatively affecting the therapeutic effects of the drug. Knowing the concentration profile 
of the drug with respect to time will provide the information necessary to maintain therapeutic levels of 
drug in a patient. 
 
PROBLEM STATEMENT 
 
Scopolamine is a type of drug used to treat motion sickness and nausea. Recent studies have shown that 
permeation enhancers may improve overall drug delivery into the skin and surround tissues. To further 
investigate the effect of transdermal drug delivery method, clinicians and researchers decide to use 
transdermal patch to deliver scopolamine through the skin to the systemic blood flow. Model and 
determine the concentration profile of drug in the skin over time. Assume the patch has a uniform 
distribution of the drug over time.  
 
PROBLEM SET-UP 
 
Scopolamine delivery from the transdermal patch through the intervening skin layers and into the 
microvasculature underneath can be simplest modeled by Fick’s 2nd Law of diffusion in one-dimensional 
Cartesian coordinates (Equation 1) (4). C is concentration of drug in the skin, t is time, x is position, and 
D is diffusivity.  
      !"

!"
= 𝐷 !!!

!!!
              (1) 

 
A simple schematic describing the system is shown in Figure 3. We consider the skin as one 
compartment. The drug diffuses freely from the patch to the skin in x-direction only over time. For 
simplicity, we will be only considering diffusion of drug through the skin (0 ≤ x ≤ L). The diffusivity of 
the skin is constant.   
 
 
 
 
 
 
 
 

Figure 3. Simple schematic of the system in which the drug is diffusing from the patch to the skin. 
 
Initially, the skin is free of drug, and the drug is uniformly distributed within the patch. A perfect sink 
condition is assumed because the drug diffusing through the skin is constantly carried away by blood 
circulation at x = L (5). The initial condition here is 𝐶 𝑥, 0 =  0, indicating that the drug concentration is 
zero in the skin at t = 0. Two boundary conditions are 𝐶 0, 𝑡 =  𝐶!, assuming that the patch is a constant 
source of the drug over time, and 𝐶(L, 𝑡) =  0, referring to the perfect sink condition.  
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C 
D 
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ANALYTICAL SOLUTION 
 
Differential Equation: 
 
!"
!"
= 𝐷 !!!

!!!
                   (1) 

Initial Condition: 
 
𝐶 𝑥, 0 =  0                   (2) 
 
Boundary Conditions: 
 
𝐶 0, 𝑡 =  𝐶!                    (3) 
 
𝐶(L, 𝑡) =  0                    (4) 
 
The one-dimensional partial differential equation can be solved by separating into homogeneous and 
particular solutions.  
 
𝐶 𝑥, 𝑡 = 𝐶! 𝑥, 𝑡 + 𝐶!(𝑥, 𝑡)                  (5)  
 
In this case, particular solution is the steady-state solution. 
 
!"
!"
= 𝐷 !!!

!!!
 = 0                   (6) 

 
!!!
!!!

 = 0                    (7) 
 
Integrate twice: 
 
𝐶! 𝑥, 𝑡 = 𝐴!𝑥 + 𝐵!                  (8)  
 
Apply boundary condition: C(0, t) = C0: 
 
𝐶! 0, 𝑡 = 𝐴! 0 + 𝐵! = 𝐶!     𝐵! = 𝐶!              (9) 
 
Apply boundary condition: C(L, t) = 0: 
 
𝐶! 𝐿, 𝑡 = 𝐴! 𝐿 + 𝐶! = 0     𝐴! = − !!

!
            (10) 

 
Substitute (9) & (10) into (8) to obtain particular solution: 
 
𝐶! 𝑥, 𝑡 = 𝐶! −

!!
!
𝑥                (11)  

 
Homogeneous solution can be found by using separation of variables. 
 
Let 𝐶! = 𝜙!(𝑥)𝐺!(𝑡)                 (12) 
 
Take derivative of Ch with respect to t: 
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!!!
!"

= 𝜙!(𝑥)
!!!
!"

                  (13) 
 
Take second derivative of Ch with respect to x: 
 
!!!!
!!!

= 𝐺!(𝑡)
!!!!
!!!

                  (14) 
 
Substitute (13) & (14) into (1): 
 
∅!

!!!
!"

= 𝐷 !!!!
!!!

𝐺!                 (15) 
 
Equation (15) can be rearranged as: 
 
!

!!!

!!!
!"

= !
∅!

!!!!
!!!

                  (16) 
 
For two differential equations to be equal, both sides should be equal to the same constant: 
 
!

!!!

!!!
!"

= !
∅!

!!!!
!!!

= −𝜆                 (17) 
 
Equation (17) can be rewritten as a system of two ODEs: 
 
!

!!!

!!!
!"

= −𝜆                    (18) 
 
!
∅!

!!!!
!!!

= −𝜆                   (19) 
 
Solve for equation (18): 
 
!!!
!!

= −𝜆𝐷𝑑𝑡                   (20)  
 
𝐺! 𝑡 = 𝐺!𝑒!!"#                  (21)  
 
Solving equation (19): 
 
!!!!
!!!

+ 𝜆𝜙! = 0                  (22) 
 
Characteristic equation of ODE is: 
 
𝑚! + 𝜆 = 0                  (23) 
 
Solution to equation (23) where λ>0 is given as: 
 
𝑟 = ±𝑖 𝜆                    (24) 
 
Thus, the form of the general solution to equation (22) is given as: 
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𝜙! 𝑥 = 𝑏! cos 𝜆𝑥 + 𝑏!sin ( 𝜆𝑥)                (25)  
 
General homogeneous solution of C(x, t) is given as: 
 
𝐶! 𝑥, 𝑡 = 𝜙! 𝑥 𝐺! 𝑡   
                = 𝐺!𝑒!!"# 𝑏! cos 𝜆𝑥 + 𝑏! sin 𝜆𝑥   
                = 𝑒!!"# 𝐴! cos 𝜆𝑥 + 𝐵! sin 𝜆𝑥               (26) 
 
To find the values of An and Bn, boundary conditions given will be applied. As stated before, the overall 
initial and boundary conditions for the system are the sum of the initial and boundary conditions for both 
homogeneous and particular solutions. Therefore, homogeneous boundary conditions will be found as 
below.  
 
𝐶 0, 𝑡 = 𝐶! 0, 𝑡 + 𝐶! 0, 𝑡                 (27)  
 
𝐶! 0, 𝑡 = 𝐶 0, 𝑡 − 𝐶! 0, 𝑡 = 𝐶! − 𝐶! = 0                (28) 
 
𝐶 𝐿, 𝑡 = 𝐶! 𝐿, 𝑡 + 𝐶! 𝐿, 𝑡                 (29)  
 
𝐶! 𝐿, 𝑡 = 𝐶 𝐿, 𝑡 − 𝐶! 𝐿, 𝑡 = 0 − 0 = 0                (30) 
 
Apply boundary condition (28): 
 
𝐶! 0, 𝑡 = 𝑒!!"# 𝐴! cos 𝜆 ∙ 0 + 𝐵! sin 𝜆 ∙ 0 = 0                𝐴! = 0           (31) 
 
Substitute equation (31) into (26): 
 
𝐶! 𝑥, 𝑡 = 𝑒!!"# 𝐵! sin 𝜆𝑥                   (32) 
 
Apply boundary condition (30): 
 
𝐶! 𝐿, 𝑡 = 𝑒!!"# 𝐵! sin 𝜆 ∙ 𝐿 = 0                
 
                                   𝐵! sin 𝜆 ∙ 𝐿 = 0                (33) 
 
For non-trivial solution, 𝐵! ≠ 0, so: 
sin 𝜆 ∙ 𝐿 = 0  
 
           𝜆 ∙ 𝐿 = 𝑛𝜋  
 
                 𝜆 = !"

!
                  (34) 

 
Substitute equation (34) into (32) to solve for homogeneous solution, 𝐶! 𝑥, 𝑡 : 
 
𝐶! 𝑥, 𝑡 = 𝐵!sin (

!"#
!
)𝑒!(

!"
! )

!!"!
!!!                (35)  

 
Find homogeneous initial condition, 𝐶! 𝑥, 0 : 
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𝐶 𝑥, 0 = 𝐶! 𝑥, 0 + 𝐶! 𝑥, 0                 (36)  
 
𝐶! 𝑥, 0 = 𝐶 𝑥, 0 − 𝐶! 𝑥, 0    
                 = 0 − 𝐶! −

!!
!
𝑥   

                 = !!
!
𝑥 − 𝐶!                  (37) 

 
Substitute initial condition (37) into equation (35): 
 

 𝐶! 𝑥, 0 = 𝐵! sin
!"#
!

𝑒!
!"
!

!
! ! =!

!!!  !!
!
𝑥 − 𝐶!  

 
                                             𝐵! sin

!"#
!

=!
!!!  !!

!
𝑥 − 𝐶!             (38) 

 

Based on orthogonality of sines, sin !"#
!

sin (!"#
!

!
! )𝑑𝑥 =

0 𝑤ℎ𝑒𝑛 𝑚 ≠ 𝑛
!
!
 𝑤ℎ𝑒𝑛 𝑚 = 𝑛 

 
So, when m = n, 𝐵! = !

!
𝑓 𝑥 sin (!

!
!"#
!
)𝑑𝑥, where 𝑓 𝑥 = !!

!
𝑥 − 𝐶!: 

 
𝐵! =

!
!

𝐶!(
!
!
− 1)sin (!

!
!"#
!
)𝑑𝑥  

  
𝐵! =

!!!
!

[!
!
sin (!"#

!
) − sin (!

!
!"#
!
)]𝑑𝑥  

 
𝐵! =

!!!
!
[− !

!"
cos !"#

!
+ !

!!!!
sin !"#

!
+ !

!"
cos !"#

!
] !!   

 
𝐵! =

!!!
!
[− !

!"
−1 ! + !

!"
−1 ! − !

!"
]  

 
𝐵! = − !!!

!"
                   (39) 

 
Substitute equation (39) into (35) to get homogeneous solution: 
 
𝐶! 𝑥, 𝑡 = − !!!

!"
sin (!"#

!
)𝑒!(

!"
! )

!!"!
!!!               (40)  

 
Thus, the general solution, equation (5) will be found by adding particular solution, equation (11) and 
homogeneous solution, equation (40): 
 
𝐶 𝑥, 𝑡 = 𝐶! 𝑥, 𝑡 + 𝐶!(𝑥, 𝑡)  
 
𝐶 𝑥, 𝑡 = 𝐶! −

!!
!
𝑥 − !!!

!"
sin (!"#

!
)𝑒!(

!"
! )

!!"!
!!!              (41)  
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NUMERICAL ANALYSIS 
 
I. Simple System: Analytical Solution 
 

 
Figure 4. Surface plot of scopolamine concentration profile in skin based on analytical solution. 

 
II. Simple System: PDEPE 
 

 
Figure 5. Surface plot of scopolamine concentration profile in skin using PDEPE. 
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a  

b  
 

Figure 6. Scopolamine concentration profile in skin in different (a) distances and (b) times. 
 
In Figure 5, we can observe that the scopolamine concentration is maximal at x = 0, which is the interface 
between the patch and the skin. The concentration drops drastically to near zero around x = 0.015 cm. At 
different time points, the concentration of the drug varies in x-direction as shown in Figure 6(a). Figure 
6(b) shows that at different positions in the skin, the concentration of scopolamine decreases over time. 
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II. More Complex System: Finite Element 
 
We expanded the previous system to account for the patch and 2 different layers of skin as shown in 
Figure 7.  
  

 
Figure 7. System diagram in which the drug is diffusing from the patch to the skin. 

 
Our model now can be described by the following set of governing equations: 
 
!!!

!"
− 𝐷! !!

!"!
𝑐! = 0,                     0 <  𝑥 < Γ! Within the patch, the drug diffuses out with 

diffusivity DA and follows simple diffusion as 
described by Fick’s second law. 

!!!

!"
− 𝐷! !!

!"!
𝑐! = 0,                     Γ! < 𝑥 < Γ! Within the epidermis, drug diffusion is also 

governed by Fick’s second law with a diffusivity 
of DB1. 

 
!!!

!"
− 𝐷! !!

!"!
𝑐! = −𝑘𝑐!              Γ! < 𝑥 < Γ!   Within the dermis, drug concentration changes 

due to both diffusion and perfusion into the 
circulatory system. Diffusion is again defined by 
Fick’s law with constant DB2, and the perfusion 
constant is –k. 

 
Our model has the following initial and boundary conditions: 
 

1
0

1
1 1
1 2

1 2
1 2

1
1 2

2 3
2 3

2
2 3

3
3

0 : , 0; 2,3

0 : 0, 0

:
           

:
           

:             0

it C C C i
Cx C C
x

C CD D
x x x

C C

C CD D
x x x

C C

x C

= = = =

∂
= = − =

∂

 ∂ ∂
= 

= Γ ∂ ∂ 
 = 

 ∂ ∂
= 

= Γ ∂ ∂ 
 = 

= Γ =  
 
We can assume that the concentration at the boundary between two compartments is equal since the 
concentration is continuous with position and time.  The concentration of drug is 0 at the far boundary of 
the dermis because the drug is carried away by perfusion within the dermis layer. 
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The variables C, t, and x can be made dimensionless and expressed in the following forms: 
 

1

2
10 1

1
1

2
1
1

; ; ;

, ; 1,2,3; 1,2,3

i
i

i
i k

k

C tD x
C

D i k
D

k
D

ψ τ ζ

β η

α

= = =
ΓΓ

Γ
= = = =

Γ

Γ
=

 
 
Inserting the above dimensionless variables into our governing equations gives the following set of 
dimensionless equations: 
 

1 2 1

1 12

2 2 2
2

1 22

3 2 3
3 3

2 32

, 0 1

,

,

ψ ψ
ζ η η

τ ζ

ψ ψ
β η ζ η

τ ζ

ψ ψ
β αψ η ζ η

τ ζ

∂ ∂
= < ≤ =

∂ ∂

∂ ∂
= < ≤

∂ ∂

∂ ∂
= − < ≤

∂ ∂  
 
The initial and boundary conditions in dimensionless form are expressed as: 
 

1 2 3

1

1 2
2 1 2

1

2 3
2 3 2 3

2

3
3

0 : 1, 0, 0

0 : 0

:  ,

:  ,

: 0

τ ψ ψ ψ

ψ
ζ

ζ

ψ ψ
ζ η β ψ ψ

ζ ζ

ψ ψ
ζ η β β ψ ψ

ζ ζ

ζ η ψ

= = = =

∂
= =

∂

∂ ∂
= = =

∂ ∂

∂ ∂
= = =

∂ ∂

= =  
 
 
 
 
 
 
 
 
 
 



 11 

The compartments fall under the following ranges of index values for concentration and their respective 
governing equations are as follows: 
 

( )

( )

( )

1 12

2

1 12

3

1 12

: : 2,3,4,..., 2, 1;

1 2

: : 1, 2,..., 2, 1;

2

: : 1, 2,..., 2, 1;

2

i

i
i i i

i

i
i i i

i

i
i i i i

Patch i x x
d
d

Epidermis i x x x y x y
d
d

Dermis i x y x y x y z x y z
d
d

ψ

ψ
ψ ψ ψ

τ ζ

ψ

ψ β
ψ ψ ψ

τ ζ

ψ

ψ β
ψ ψ ψ αψ

τ ζ

+ −

+ −

+ −

= − −

= − +
Δ

= + + + − + −

= − +
Δ

= + + + + + + − + + −

= − + −
Δ

 

 
The above boundary conditions can be discretized in the following manner: 
 

( ) ( )
( ) ( )

1 2

1 2 1 1 2 2 2
1 1 1

2 3 2 2 2 3 3 3
2 1 1

3

( 0) 1:  0

( ) :  ,       

( )  :  ,     

( )  : 0

x x x x x x

x y x y x y x y x y x y

x y z

i

i x

i x y

i x y z

ζ ψ ψ

ζ η ψ ψ ψ ψ β ψ ψ

ζ η ψ ψ β ψ ψ β ψ ψ

ζ η ψ

− +

+ + + + − + + +

+ +

= = − =

= = = − = −

= = + = − = −

= = + + =

 

 
These boundary conditions can be incorporated into the discretized governing equations to get the 
following distinctive equations: 
 
Patch: i = 2 
 

!
1
=!

2
,   
d!

2

d!
=
1

!! 2
!
3
" 2!

2
+!

1( )     #    
d!

2

d!
=
1

!! 2
!
3
"!

2( )  

 
At the patch/epidermis interface: 
 
d!

x!1

d!
=
1

"" 2
#
x!2
+

1

1+! 2
! 2

#

$
%

&

'
("

x!1
+

! 2

1+! 2
"
x+1

#

$
%%

&

'
((

d!
x+1

d!
=
1

"" 2
1

1+# 2( )
!
x!1
+

! 2

1+! 2( )
! 2

#

$

%
%

&

'

(
(
!
x+1
+!

x+2

#

$

%
%%

&

'

(
((
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At the epidermis/dermis interface: 
 

d!
x+y!1

d!
=
" 2

"# 2
$
x+y!2

+
! 2

! 2 +! 3( )
! 2

#

$

%
%

&

'

(
(
!
x+y!1

+
! 3

! 2 +! 3
"
x+y+1

#

$

%
%%

&

'

(
((

d!
x+y+1

d!
=
" 2

"# 2
" 2

" 2 +" 3( )
!
x+y!1

+
! 3

! 2 +! 3( )
! 2

#

$

%
%

&

'

(
(
!
x+y+1

+!
x+y+2

#

$

%
%%

&

'

(
((

 

 
At the dermis/hyperdermis interface: 
 

!
x+y+z

= 0,     
d!

x+y+z!1

d!
=
" 3

"# 2
!2$

x+y+z!1
+!

x+y+z!2( )!!"x+y+z!1
 

 
We then renumbered the concentration variable so that: 
 

2 1 1

1 1 1

1 1 1

: :

: :

: :

x k

x x y k l

x y x y z l m

ψ ψ φ φ

ψ ψ φ φ

ψ ψ φ φ

−

+ + − +

+ + + + − +

=

=

=
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The concentration across all three layers can be modeled by the following equation: 
 

1

2

2

11 2

11 2 1 2

1: ( 1: )

2 1 0 0 0 0
1 2 1 0 0 0
0 1 2

1 0 1 1 0
0 0 2 1 0

0 0 1 2

j

j

k

k k

d
Ax b

d
rows k j k

d
d

row

φ

τ

φ

φ

φ

τ ζ
φ

β β
φ φ

β β β β

−

+

= +

=

 −   
     −      
     −
     

= +     Δ      −      
      −      + +    

L
O
O M M M

M
M O M

M
M O

L O

( )

( )

( )
2 1

1

2
2

2

1
2 3

12 3

1 2 1 2

2 3
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2 1 0 0 0

1 2 1 0 0 0
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0 1 1 0
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k
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k
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l

l
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φ

φ

φ β
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φ
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β β

β β β β

β β
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+

−
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   −   
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+
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L O
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The following parameter values were chosen: 
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Figure 8. Scopolamine concentration profile in skin for a more complex system. The time points for 
the various taus correspond to: 0, 1 minute, 8 minutes, 50 minutes and 24 hours. 
 
CONCLUSION 
 
This report focused on two main components of modeling the delivery of scopolamine from a transdermal 
patch. In the first part of the report, a simple two-compartment model consisting of the patch and skin was 
established to study the concentration profile inside the skin. Several key assumptions were made in order 
to simplify our analytical solution. Based on the plots obtained, it appears that our analytical (Figure 4) 
and numerical (Figure 5) solutions correspond. The surface plots demonstrate expected results as the 
initial concentration at the boundary between the patch and the skin at x = 0 should be C0, the uniform 
concentration of the patch based on our assumptions. Furthermore, as the concentration reaches the 
boundary of the skin that would be exposed to the body’s vasculature, the concentration of the drug 
becomes zero as it is carried away by the blood. Lastly, the surface plots also indicate that the 
scopolamine concentration profile in the skin is depleted with time. This is expected because the 
concentration inside the skin would decrease with time as the drug is carried away by the 
microvasculature.  
 
A similar pattern is observed in Figure 6(a), which shows the concentration profiles inside the skin at 
various times. The most gradual profiles appear to be at t = 1.25 and t = 2.5 minutes. In terms of practical 
applications, the desired profile would likely be around 2.5 minutes, where the concentration is slowly 
depleted by doesn’t reach zero anywhere in the skin. Figure 6(b) shows how the concentrations change 
with respect to time at various locations in the skin. The results are expected as the skin moves the fastest 
away from the boundary of the patch and skin and toward the rest of the skin and hence, one would 
expect to observe a faster drop in the concentration profile. This pattern continues and at the boundary of 
the skin in contact with the vasculature, the concentration of the drug with respect to time is virtually 
linear because the drug is carried away from the right boundary of the skin quickly and, consequently, the 
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concentration is uniformly decreasing. 
 
For the second part of our report, we investigated a slightly more complex 3-compartment model, which 
involved splitting the skin into the epidermis and dermis. We studied the concentration of the drug in the 
patch and how it changed with distance along the patch at various time points. This more complex model 
has a similar time scale for the release of scopolamine as we observed in the simple model, on the order 
of minutes. For practical applications, it seems as though the ideal release profile would correspond to τ = 
0.0085 (8 minutes) because the profile is rather uniform within the patch as compared to the other τ 
values. The graph shown in Figure 8 is slightly misleading in that it shows there is some leakage 
occurring from the patch as not all the plots start from the same point (dimensionless concentration 1) 
while our model does not account for that leakage. This could be a potential issue to investigate in our 
future work. 
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APPENDIX 
 
I. MATLAB Codes for Numerical Analysis of Simple System: Analytical & PDEPE 
 
function SkinPatch 
  
    %Declare variables 
    global L C0 D; 
    L = 0.038;%cm 
    simulation_time = 10; %minutes 
    D=4.4*10^-5;%cm^2/min 
    C0=1; %1 mol/cm^3 
     
    %Plotting Analytical Solution 
    Cn = @(n) (-2*C0)/(n*pi); 
    u=@(x,t,n) ((sin(n*pi*x./L).*exp(-1.*D.*((n.*pi/L)^2).*t))); 
     
    %Defining time steps 
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    delta_x = 0.00095; 
    delta_t = 0.25; 
    x=0:delta_x:L; 
    t=0:delta_t:simulation_time; 
    [x, t] = meshgrid(0:delta_x:L, 0:delta_t:simulation_time); 
    u_analytical = 0*x; 
  
   for i=0:35 
     u_analytical = u_analytical + u(x,t,i+1)*Cn(i+1); 
 end 
 figure(1) 
 surf(x, t, u_analytical+C0-(C0/L).*x); 
 xlabel('Distance(cm)'); 
ylabel('Time (minutes)'); 
zlabel('Oxygen Concentration (mol/cm^3)'); 
title('Surface Plot of Scopolamine Concentration in Skin: Analytical 
Solution'); 
AXIS([0 0.04 0 10  0 1]) 
x_a = 0:delta_x:L; 
 t_a = 0:delta_t:simulation_time; 
  
%% pdepe part 
%solving pde 
x = 0:delta_x:L; 
t = 0:delta_t:simulation_time; 
sol = pdepe(0,@pdefunc, @icfunc, @bcfunc, x, t); 
u_pdepe = sol(:, :, 1); 
x_pdepe = x; 
t_pdepe = t; 
%Creating surface plot of numerical solution 
figure(2) 
surf(x, t, u_pdepe); 
xlabel('Distance(cm)'); 
ylabel('Time (minutes)'); 
zlabel('Scopolamine Concentration in Skin (mol/cm^3)'); 
title('Surface Plot of Scopolamine Concentration in Skin: PDEPE'); 
x_pdepe = x; 
t_pdepe = t; 
  
%Creating plot of numerical solution versus distance at various times 
figure(3) 
hold on; 
plot(x,C0-u_pdepe(:,1,:),'r'); 
plot(x,C0-u_pdepe(:,5,:),'b'); 
plot(x,C0-u_pdepe(:,10,:),'m'); 
plot(x,C0-u_pdepe(:,25,:),'g'); 
plot(x,C0-u_pdepe(:,39,:),'c'); 
hold off; 
xlabel('Distance(cm)'); 
ylabel('Scopolamine Concentration in Skin (mol/cm^3)'); 
title('Scopolamine Concentration in Skin vs Distance'); 
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legend('t=0.25 minutes','t=1.25 minutes','t=2.5 minutes','t=6.25 
minutes','t=9.75 minutes'); 
x_pdepe = x; 
t_pdepe = t; 
  
%Creating plot of numerical solution versus time 
figure(4) 
hold on; 
plot(t,u_pdepe(1,:),'r'); 
plot(t,u_pdepe(5,:),'b'); 
plot(t,u_pdepe(10,:),'m'); 
plot(t,u_pdepe(25,:),'g'); 
plot(t,u_pdepe(39,:),'c'); 
hold off; 
xlabel('Time (minutes)'); 
ylabel('Scopolamine Concentration in Skin (mol/cm^3)'); 
title('Scopolamine Concentration in Skin versus Time'); 
legend('x=0.00095 cm','x=0.00475 cm','x=0.00950 cm','x=0.0275 
cm','x=0.0371 cm'); 
x_pdepe = x; 
t_pdepe = t; 
end 
 
 %%pdepe functions 
    function [c,f,s] =pdefunc(x, t, u, ux) 
        global D G; 
        c = 1; 
        f = D*ux; 
        s = 0; 
    end 
  
 %Initial conditions 
   function u =icfunc(x) 
        global C0; 
     u = 0; 
   end 
  
    %boundary conditions 
   function [pl, ql, pr, qr] =bcfunc(xl, ul, xr, ur, t) 
global C0; 
pl = ul-C0; 
ql = 0; 
pr = ur; 
qr = 0; 
   end 
 
II. MATLAB Codes for Numerical Analysis of More Complex System: Finite Element 
 
function [T,S]=skin 
clc;clear all;close all; 
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k=199;% Defines the number for the patch layer 
l=40;% Defines the number for the epidermis layer 
m=79;% Defines the number for the dermis layer 
  
%Unitless layer thicknesses 
g1=1; 
g2=1.2; 
g3=1.6; 
  
delr=(g3-g1)/(k+l+m);%Defines step size for patch and 2 skin layers 
%Position vectors for 3 layers 
r1=linspace(delr/2,g1-delr/2,k); 
r2=linspace(g1+delr/2,g2-delr/2,l); 
r3=linspace(g2+delr/2,g3-delr/2,m); 
  
r=[r1 r2 r3];%length of patch plus skin layers 
  
tspan=linspace(0,10,600); 
y0=zeros(length(r),1); 
y0(1:length(r1))=1; 
  
[T,Y] = ode15s(@odeskin,[0 2],y0); 
  
% plot concentration in the device vs time 
figure; 
hold on; 
plot(r,Y(1,:),'r'); 
plot(r,Y(100,:),'b'); 
plot(r,Y(120,:),'m'); 
plot(r,Y(140,:),'g'); 
plot(r,Y(192,:),'c'); 
hold off; 
title('Drug Concentration in the Patch'); 
xlabel('Dimensionless Distance'); 
ylabel('Dimensionless Concentration'); 
legend('tau=0','tau=0.0013','tau=0.0085','tau=0.06','tau=1.9'); 
  
function [yprime]=odeskin(t,y) 
%yprime are col vectors with the concentration of drug in the 
%patch first followed by the discretized radial positions through the 
%patch and skin layers. 
  
k=199;% Defines the number for the patch layer 
l=40;% Defines the number for the epidermis layer 
m=79;% Defines the number for the dermis layer 
  
%Unitless layer thicknesses 
g1=1; 
g2=1.2; 
g3=1.6; 
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delr=(g3-g1)/(k+l+m);%Defines step size for the patch and 2 skin 
layers 
%constants 
D_a=2*10^-10;%cm2/sec as obtained from the paper Chandrasekaran et al. 
k1=4*10^-10; %perfusion constant in cm3/sec from the paper 
Percutaneous drug penetration: Choosing candidates for transdermal 
development 
D_b1=3*10^-10;%cm2/sec as obtained from the paper Chandrasekaran et 
al. 
D_b2=5*10^-10;%cm2/sec as obtained from the paper Chandrasekaran et 
al. 
  
%Dimensionless constants  
beta_B1=(D_a)/(D_a); 
beta_B2=(D_b1)/(D_a); 
beta_B3=(D_b2)/(D_a); 
alpha=(k1*(g1)^2)/(D_a); 
  
% Create Coefficient Matrix 
A=zeros(k+l+m,k+l+m); 
  
% Within the Patch: 
A(1,1)=-2/delr^2; 
A(1,2)=1/delr^2; 
for n=2:k-1 
    A(n,n)=-2/delr^2; 
    A(n,n-1)=1/delr^2; 
    A(n,n+1)=1/delr^2; 
end 
A(k,k-1)=1/delr^2; 
A(k,k)=(beta_B1/(beta_B1+beta_B2)-2)/delr^2; 
A(k,k+1)=beta_B2/(beta_B1+beta_B2)/delr^2; 
  
%Within the Epidermis: 
A(k+1,k)=beta_B1/(beta_B1+beta_B2)*(beta_B2/delr^2); 
A(k+1,k+1)=(beta_B2/(beta_B1+beta_B2)-2)*(beta_B2/delr^2); 
A(k+1,k+2)=1*(beta_B2/delr^2); 
for n=k+2:k+l-1 
    A(n,n)=-2*(beta_B2/delr^2); 
    A(n,n-1)=1*(beta_B2/delr^2); 
    A(n,n+1)=1*(beta_B2/delr^2); 
end 
A(k+l,k+l-1)=1*(beta_B2/delr^2); 
A(k+l,k+l)=(beta_B2/(beta_B2+beta_B3)-2)*(beta_B2/delr^2); 
A(k+l,k+l+1)=beta_B3/(beta_B2+beta_B3)*(beta_B2/delr^2); 
  
%Within the Dermis: 
A(k+l+1,k+l)=beta_B2/(beta_B3+beta_B2)*(beta_B3/delr^2); 
A(k+l+1,k+l+1)=(beta_B3/(beta_B2+beta_B3)-2-
((delr^2)*alpha/beta_B3))*(beta_B3/delr^2); 
A(k+l+1,k+l+2)=1*(beta_B3/delr^2); 
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for n=k+l+2:k+l+m-1 
    A(n,n)=(-2-((delr^2)*alpha/beta_B3))*(beta_B3/delr^2); 
    A(n,n-1)=1*(beta_B3/delr^2); 
    A(n,n+1)=1*(beta_B3/delr^2); 
end 
A(k+l+m,k+l+m-1)=1*(beta_B3/delr^2); 
A(k+l+m,k+l+m)=(-2-((delr^2)*alpha/beta_B3))*(beta_B3/delr^2); 
  
yprime=A*y 


