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INTRODUCTION 

 One of the goals of systems biology is to create models for intracellular pathway fluxes, 

which can then be used to design new strains or to predict cellular behavior for a strain. A 

pathway network can be mathematically reconstructed using singular perturbation theory. Data is 

gathered from in vitro experiments in which specific pathway components are sequentially 

altered in some way, such as a knockdown/knockout, or perhaps by an inhibitor molecule. Step 

by step, the observed effect of changing individual pathway components allows investigators to 

reverse engineer a metabolic map
1
. The steady state solutions and response characteristics of 

cells can then be found and modeled computationally
2
. These models often suggest strikingly 

coordinated behavior, such as robust bistability and stable limit cycles
3
. There are, however, 

limitations on the predictive power of such models due to certain assumptions, which makes it 

difficult to connect computational results to the real world biology. 

 One such assumption concerns the spatial distribution of both enzymes within a given 

pathway, as well as small molecules such as pathway intermediates and signaling molecules. The 

concentrations of these species are often treated as spatially invariant, thereby treating the cell as 

a well-mixed system with homogeneous distribution of both enzymes and substrates. In reality, 

cells have a highly organized (as well as compartmentalized, in the case of eukaryotes), and the 

laws of mass transfer play a significant role in overall pathway fluxes
4
.  
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 Here we show that the spatial distribution of protein concentration can dramatically alter 

the flux through otherwise equivalent pathways using the same starting substrate, released in a 

finite burst and diffusing through the cell. One assumption that is physiologically accurate is that 

mass transfer in the cytoplasm is by diffusion only. The diffusion length of a small molecule is 

 √  , where D is diffusivity (typically cm
2
/s) and t is time. The distance over which diffusion is 

effective for mass transport is therefore limited by the stability and half-life of the diffusing 

species. Typical cell diameters (~0.1 μm for prokaryotes, 1-10 μm for eukaryotes) are on the 

same order of magnitude as diffusion lengths for most small molecules. 

ANALYTICAL SOLUTION 

 We began by modeling the cell as a rectangular slab with width L. A small molecule u is 

released from a plane representing an organelle in the center of the cell at x = L/2 and diffuses 

outwards. At the edges of the cell, the small molecule rapidly leaks into extracellular 

environment, fixing the concentration at zero for  x = 0 and x = L. We modeled the initial 

concentration U(x,0) as a fourth-power sine function to approximate a finite pulse of the 

molecule (Note: We use U to refer to both the small molecule itself as well as its concentration). 

We then considered two protein pathways which use our small molecule as a starting substrate, 

Pathways A and Pathway B. As we were concerned only with the consumption of small 

molecule U and which pathway consumes it, only the starting proteins in each pathway were 

relevant to our model; we refer to these as Protein A and Protein B, respectively. We first 

considered the case in which A and B are both distributed homogenously (constant 

concentration). Furthermore, we set the total amount of A and B equal, and assumed that their 

binding affinities and rate constants were the same. The consumption of U was therefore 

modeled as a driving source term, 

    (   )   

in the differential equation. Finally, we assumed no convective terms, such that all mass 

transport within the cell was due to random-walk diffusion only, as described by Fick's second 

law of diffusion. The partial differential describing the dynamic behavior of our system was 

therefore 
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We used separation of variables to arrive at general form for our solution: 
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Assuming an exponential function, we solved for G: 
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Because A = B = 0 is a trivial solution, we assumed that    (√  )   : 
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F can therefore be represented by an infinite series on the integer  : 
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Our solution for U combines F and G by principle of superposition: 
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where Bn is an constant coefficient for every n. We solve for Bn by noting that at time t = 0, our 

solution is represented by a Fourier series. By multiplying each side by    (
   

 
) and taking the 

integral from 0 to L, we can arrive at a general expression for Bn: 
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Noting the orthogonality of sines, 
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we can see that only those terms for which m=n contribute to our sum. Our expression therefore 

simplifies to give us an expression for Bn: 
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Our analytical solution can now be expressed in terms of x, t, L, D, R, A, and B: 
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RESULTS 

 Figure 1 shows the surface plot for the analytical solution using 20 terms for the Fourier 

series. 

 

 

 Four different protein distributions were then numerically simulated using MATLABs 

pdepe solver. Each case is discussed in turn. 

Homogenous Distribution of Protein A/Homogenous Distribution of Protein B 

 Without biological cues, the distribution of proteins within a cell will approach a 

homogenous mixture due to simple Brownian motion. Setting the (linear) concentration of 

Protein A and Protein B to 0.375 for all x and t served as the baseline for calculating metabolic 

efficiency. Figure 2 shows the concentration of metabolite U as a function of time and space 

while Figure 3 shows the cumulative protein product as t approaches 300 s. Of note are the 

identical values for production of A and B (0.0905) as is expected when concentration of the 

proteins is identical at all points in time and space. The total amount of U consumed, derived by 

summing the total amount of A and B produced from t=0 to t=300, was 0.181. 

Figure 1: Surface plot of analytical solution 
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Comparing the analytical and numerical solutions for the homogeneous/homogeneous 

distribution model, we found that 89.6% of points have an average difference of 0.15%, with 

most of the variation located at the edges. 

Variable Distribution of Protein A/Homogenous Distribution of Protein B 

 Assuming directed genetic engineering could alter the localization of proteins within the 

cell, a logical target would be to cluster the protein catalyzing the reaction of interest near its 

substrate. A time independent concentration profile for Protein A was set such that [Protein 

A]=sin
4
(πx) for all t. This allowed the total amount of Protein A to be equal to the total amount 

of Protein B for all t. Protein B levels were kept at 0.375 for all x and t. Figure 4 depicts the 

protein distribution. Figure 5 shows the concentration profile of metabolite U for this protein 

distribution. Figure 6 illustrates the resulting cumulative flux split for the cell. The total amount 

of U consumed was 0.1967. Of this, 0.1176 was converted to A and 0.0791 to B.  

  

Figure 2: Spatiotemporal distribution of metabolite 

U with homogenous distribution of both Protein A 

and Protein B. 

 

Figure 3: Cumulative flux through reactions 

catalyzed by Proteins A and B for the metabolie 

distrubtion given by figure 1. 

 

Figure 4: Protein distribution when 

Protein A has been localized and 

Protein B remains homogenous. Total 

areas under each curve are equal. 
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Variable Distribution of Protein A/‘Inverse’Distribution of Protein B 

 The third set of distributions considered probed instances where the transcription and 

translation of Protein A inhibited that of Protein B. Biologically this would occur if Protein A 

were in an operon that contained an enzyme that negatively regulated Protein B. The resultant 

protein concentration profiles (again keeping the total amount of each protein invariant) were 

[Protein A]=sin
4
(πx) and [Protein B]=0.6*[1-sin

4
(πx)] as seen in Figure 7. The accompanying 

concentration profile for U and flux split through the proteins are shown in Figure 8 and Figure 

9, respectively. The total amount of U consumed was 0.1881. Of this, 0.1282 was converted to A 

and 0.0599 to B.  

 

 

Figure 5: Spatiotemporal distribution of metabolite 

U with distribution of proteins in accordance with 

figure 3. 

 

Figure 6: Cumulative flux through reactions 

catalyzed by Proteins A and B for the metabolie 

distrubtion given by figure 4. 
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Variable Distribution of Protein A/Variable Distribution of Protein B 

 The final distribution simulated was that of forced localization of both proteins. [Protein 

A] remained equal to sin
4
(πx) while [Protein B]=1.875*(e

-100x
+e

100(x-1)
), mimicking a protein 

localized as far away (e.g. the membrane) from the source of metabolite U as possible (Figure 

10). The metabolite profile is shown in Figure 11 and the flux split in Figure 12. The total 

amount of U consumed was 0.1734. Of this, 0.1360 was converted to A and 0.0374 to B. 

Figure 7: Protein distribution when 

Protein A has been localized and 

Protein B concentration is inversely 

proportional to that of Protein A. 

Figure 8: Spatiotemporal distribution of metabolite 

U with distribution of proteins in accordance with 

figure 6. 

 

Figure 9: Cumulative flux through reactions 

catalyzed by Proteins A and B for the metabolie 

distrubtion given by figure 7. 
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DISCUSSION 

Two important trends stand out. The first is the relationship between protein distribution 

and total production of A (Figure 13). As expected, the amount of A produced increases when 

Protein A is localized near the source of U and Protein B is localized away from the source of U. 

The most extreme localization (Figure 10), produces 1.5 times more A than a system where the 

proteins are homogenously distributed. 

Figure 10: Protein distribution when 

Protein A has been localized near the  

source of U and Protein B has been 

localized away from the source of U. 

Figure 11: Spatiotemporal distribution of 

metabolite U with distribution of proteins in 

accordance with figure 9. 

 

Figure 12: Cumulative flux through reactions 

catalyzed by Proteins A and B for the metabolie 

distrubtion given by figure 10. 
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This points to the viability of using protein localization as a tool in metabolic engineering efforts 

to bypass the shunt caused by forks in metabolic pathways. Likewise, this production comes at 

the cost of production of B, thus care must be taken to not limit flux through the reaction 

catalyzed by Protein B to such an extent that the cell is not viable. 

 The second notable trend is the change in total U consumed (given by summing total 

production of A and B) with the various protein distributions. With the parameters chosen for 

simulation (r and [Protein] less than U for some x and t, U=0 at the boundaries), some metabolite 

is lost as it diffuses to x=0 or x=L without being consumed. Physiologically this corresponds to 

export of metabolite via diffusion. Figure 14 shows the quantitative difference protein 

distribution can have on total consumption of metabolite. Of note is that maximum use of U is 

achieved with Protein A localized and Protein B homogenously distributed. If metabolic 

frugality is a goal, care must be taken to ensure that the overall metabolic capability of the cell is 

not sacrificed in the name of focused production of a single metabolite. 

Hom-Hom Var-Hom Var-Inv Var-Var
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
o
ta

l 
P

ro
d
u
c
e
d

Figure 13: Total amount of A produced 

for various protein distributions. 

Hom-Hom: Homogenous distributions 

of both proteins 

Var-Hom: Localized distribution of 

Protein A, homogenous distribution of 

Protein B. 

Var-Inv: Localized distribution of 

Protein A, ‘inverse’ distribution of 

Protein B. 

Var-Var: Localized distribution of 

Protein A (near source of U), localized 

distribution of Protein B (away from 

source of U). 
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CONCLUSION 

 By incorporating spatially dependent terms for bothmetabolite and enzyme 

concentrations, rather than assuming well-mixed conditions inside the cell, we hope that existing 

systems models can be refined to better predict cell pathway fluxes. While our parameters are not 

biologically accurate (e.g. R being only 1 order of magnitude larger than D rather than 4-5, the 

value for L, etc., etc.), our findings serve as a proof-of concept showing the utility of targeted 

modification of protein localization. 
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Figure 14: Total consumption of U 

produced for various protein 

distributions. 

Hom-Hom: Homogenous distributions 

of both proteins 

Var-Hom: Localized distribution of 

Protein A, homogenous distribution of 

Protein B. 

Var-Inv: Localized distribution of 

Protein A, ‘inverse’ distribution of 

Protein B. 

Var-Var: Localized distribution of 

Protein A (near source of U), localized 

distribution of Protein B (away from 

source of U). 
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To generate analytical figure/data 

5. function [output]=Analytical(iter) 
6.     L=1; 
7.     D=.001; 
8.     A=.375; 
9.     B=.375; 
10.     r=.01; 

11.   

12.     count1=1; 

13.     for t=0:300 

14.         count2=1; 

15.         for x=0:.01:1 

16.     for n=1:iter 

17.         cn=-48*((-1)^n-1)/(pi*(n^5-20*n^3+64*n)); 

18.         if isnan(cn)==1 

19.             cn=0; 

20.         end 

21.         if n==1 

22.             val2=cn*sin(n*pi*x/L)*exp((-(n*pi/L)^2-

(A+B)*r/D)*D*t); 

23.         else 

24.             pd=cn*sin(n*pi*x/L)*exp((-(n*pi/L)^2-(A+B)*r/D)*D*t); 

25.             val2=val2+pd; 

26.         end            

27.     end 

28.     val=val2; 

29.     output(count1,count2)=val; 

30.     count2=count2+1; 

31.         end 

32.         count1=count1+1; 

33.     end 

34.     tt=0:300; 

35.     xx=0:.01:1; 

36.     figure 

37.     surf(tt,xx,output') 

38.     xlabel('Time (s)','FontSize',16) 

39.     ylabel('Position (cm)','FontSize',16) 

40.     zlabel('Concentraion','FontSize',16) 

41.     axis([0 300 0 1 0 1]) 

42. end 

43.  

44.  

45. To generate all numerical figures/data 

46. m=0; 

47. x=linspace(0,1,101); 

48. t=linspace(0,300,301);   

49. sol_none=pdepe(m,@pdex_none,@pdexic,@pdexbc,x,t); 

50. %figure,surf(t,x,sol_none') 

51.     %xlabel('Time (s)') 

52.     %ylabel('Position (cm)') 

53.     %zlabel('Concentration') 

54.     %title('No Consumption') 

55.   

56. sol_hom=pdepe(m,@pdex_hom,@pdexic,@pdexbc,x,t); 

57. figure,surf(t,x,sol_hom') 

58.     xlabel('Time (s)','FontSize',16) 

59.     ylabel('Position (cm)','FontSize',16) 
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60.     zlabel('Concentraion','FontSize',16) 

61.         axis([0 300 0 1 0 1]) 

62.   

63.     %title('A=B=Homogenous') 

64.   

65. for i=1:length(t) 

66. for j=1:101 

67. Aout(i,j)=.375*.01*sol_hom(i,j); 

68. Bout(i,j)=.375*.01*sol_hom(i,j); 

69. end 

70. end 

71.   

72. figure 

73. %plot(t,.01*sum(Aout,2)) 

74. hold 

75. %plot(t,.01*sum(Bout,2),'r') 

76. %title('hom hom') 

77. for i=1:length(t) 

78.     pd1=.01*sum(Aout,2); 

79.     pd2=.01*sum(Bout,2); 

80.     test1(i)=trapz(pd1(1:i)); 

81.     test2(i)=trapz(pd2(1:i)); 

82. end 

83.   

84. homhoma=test1; 

85. homhomb=test2; 

86.   

87. plot(t,test1,'bo','MarkerSize',16) 

88. plot(t,test2,'r.','MarkerSize',20) 

89. axis([0 300 0 .14]) 

90. xlabel('Time (s)','FontSize',16) 

91. ylabel('Cumulative Product','FontSize',16) 

92. legend('A Produced','B Produced') 

93. total(1)=test1(end)+test2(end); 

94. disp(cat(2,'The total metabolite used in hom-hom was 

',mat2str(total(1)))) 

95.   

96. sol_var_hom=pdepe(m,@pdex_var_hom,@pdexic,@pdexbc,x,t); 

97. figure,surf(t,x,sol_var_hom') 

98.     xlabel('Time (s)','FontSize',16) 

99.     ylabel('Position (cm)','FontSize',16) 

100.     zlabel('Concentration','FontSize',16) 

101.     %title('A var,B hom') 

102.   

103. for i=1:length(t) 

104. for j=1:101 

105. Aout(i,j)=sin(pi*x(j))^4*.01*sol_var_hom(i,j); 

106. Bout(i,j)=.375*.01*sol_var_hom(i,j); 

107. end 

108. end 

109.   

110. figure 

111. %plot(t,.01*sum(Aout,2)) 

112. hold 

113. %plot(t,.01*sum(Bout,2),'r') 

114. %title('var hom') 

115. for i=1:length(t) 
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116.     pd1=.01*sum(Aout,2); 

117.     pd2=.01*sum(Bout,2); 

118.     test1(i)=trapz(pd1(1:i)); 

119.     test2(i)=trapz(pd2(1:i)); 

120. end 

121.   

122. varhoma=test1; 

123. varhomb=test2; 

124.   

125. plot(t,test1,'b','LineWidth',5) 

126. plot(t,test2,'r','LineWidth',5) 

127. axis([0 300 0 .14]) 

128. xlabel('Time (s)','FontSize',16) 

129. ylabel('Cumulative Product','FontSize',16) 

130. legend('A Produced','B Produced') 

131. total(2)=test1(end)+test2(end); 

132. disp(cat(2,'The total metabolite used in var-hom was 

',mat2str(total(2)))) 

133.   

134. sol_var_inv=pdepe(m,@pdex_var_inv,@pdexic,@pdexbc,x,t); 

135. figure,surf(t,x,sol_var_inv') 

136.     xlabel('Time (s)','FontSize',16) 

137.     ylabel('Position (cm)','FontSize',16) 

138.     zlabel('Concentration','FontSize',16) 

139.     %title('A var, B c(1-A)') 

140.      

141. for i=1:length(t) 

142. for j=1:101 

143. Aout(i,j)=sin(pi*x(j))^4*.01*sol_var_inv(i,j); 

144. Bout(i,j)=.6*(1-sin(pi*x(j))^4)*.01*sol_var_inv(i,j); 

145. end 

146. end 

147.   

148. figure 

149. %plot(t,.01*sum(Aout,2)) 

150. hold 

151. %plot(t,.01*sum(Bout,2),'r') 

152. %title('var inv') 

153. for i=1:length(t) 

154.     pd1=.01*sum(Aout,2); 

155.     pd2=.01*sum(Bout,2); 

156.     test1(i)=trapz(pd1(1:i)); 

157.     test2(i)=trapz(pd2(1:i)); 

158. end 

159.   

160. varinva=test1; 

161. varinvb=test2; 

162.   

163. plot(t,test1,'b','LineWidth',5) 

164. plot(t,test2,'r','LineWidth',5) 

165. axis([0 300 0 .14]) 

166. xlabel('Time (s)','FontSize',16) 

167. ylabel('Cumulative Product','FontSize',16) 

168. legend('A Produced','B Produced') 

169. total(3)=test1(end)+test2(end); 

170. disp(cat(2,'The total metabolite used in var-inv was 

',mat2str(total(3)))) 
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171.   

172. sol_var_var=pdepe(m,@pdex_var_var,@pdexic,@pdexbc,x,t); 

173. figure,surf(t,x,sol_var_var') 

174.     xlabel('Time (s)','FontSize',16) 

175.     ylabel('Position (cm)','FontSize',16) 

176.     zlabel('Concentration','FontSize',16) 

177.     %title('A var, B var') 

178.      

179. for i=1:length(t) 

180. for j=1:101 

181. Aout(i,j)=sin(pi*x(j))^4*.01*sol_var_var(i,j); 

182. Bout(i,j)=1.87509*(exp(-10*x(j))+exp(10*x(j)-

10))*.01*sol_var_var(i,j); 

183. end 

184. end 

185.   

186. figure 

187. %plot(t,.01*sum(Aout,2)) 

188. hold 

189. %plot(t,.01*sum(Bout,2),'r') 

190. %title('var var') 

191. for i=1:length(t) 

192.     pd1=.01*sum(Aout,2); 

193.     pd2=.01*sum(Bout,2); 

194.     test1(i)=trapz(pd1(1:i)); 

195.     test2(i)=trapz(pd2(1:i)); 

196. end 

197.   

198. varvara=test1; 

199. varvarb=test2; 

200.   

201. plot(t,test1,'b','LineWidth',5) 

202. plot(t,test2,'r','LineWidth',5) 

203. axis([0 300 0 .14]) 

204. xlabel('Time (s)','FontSize',16) 

205. ylabel('Cumulative Product','FontSize',16) 

206. legend('A Produced','B Produced') 

207. total(4)=test1(end)+test2(end); 

208. disp(cat(2,'The total metabolite used in var-var was 

',mat2str(total(4)))) 

209.  

210.  

211. function u0=pdexic(x) 

212. u0=sin(pi*x)^4; 

213. end 

214.  

215. function [p1,q1,pr,qr]=pdexbc(x1,u1,xr,ur,t) 

216. p1=u1; 

217. q1=0; 

218. pr=ur; 

219. qr=0; 

220. end 

221.  

222. function [c,f,s]=pdex_var_var(x,t,u,DuDx) 

223. c=1; 

224. A=sin(pi*x)^4; 

225. B=1.87509*(exp(-10*x)+exp(10*x-10)); 
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226. r=.01; 

227. f=.001*DuDx; 

228. s=-1*(A+B)*r*u; 

229. end 

230.  

231. function [c,f,s]=pdex_var_inv(x,t,u,DuDx) 

232. c=1; 

233. A=sin(pi*x)^4; 

234. B=.6*(1-A); 

235. r=.01; 

236. f=.001*DuDx; 

237. s=-1*(A+B)*r*u; 

238. end 

239.  

240. function [c,f,s]=pdex_var_hom(x,t,u,DuDx) 

241. c=1; 

242. A=sin(pi*x)^4; 

243. B=.375; 

244. r=.01; 

245. f=.001*DuDx; 

246. s=-1*(A+B)*r*u; 

247. end 

248.  

249. function [c,f,s]=pdex_none(x,t,u,DuDx) 

250. c=1; 

251. f=.001*DuDx; 

252. s=0; 

253. end 

254.  

255. To generate bar graphs 

256. bar(avals,.4) 

257. set(gca,'XTickLabel',{'Hom-Hom', 'Var-Hom', 'Var-Inv', 'Var-Var'}) 

258. ylabel('Total Produced') 

259.  

260. bar(total,.4) 

261. set(gca,'XTickLabel',{'Hom-Hom', 'Var-Hom', 'Var-Inv', 'Var-Var'}) 

262. ylabel('Total Produced') 

263. ylabel('Total Consumed') 


