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Background and Motivation

Glossal immobilization to a metallic beam was a common thematic element in blockbuster
comedies through the 1980’s and 1990’s, and it remains an important comedic tool for
screenwriters in Hollywood. Here we examine two landmark films in the history of glossal
immobilization to a metallic beam: 1983’s A Christmas Story and 1994’s Dumb and Dumber.

A Christmas Story depicts 9-year-old Ralphie Parker’s Christmastime adventures, from his
encounter with the school bully to his family’s Christmas Eve feast at a local Chinese
restaurant—the dogs got a hold of the Christmas turkey—to Ralphie’s inevitable encounter
with the a real Red Ryder BB gun. One of the most memorable moments in the movie is a scene
in which one of Ralphie’s friends convinces another friend to stick his tongue to the metal
flagpole in the middle of winter. (The scene can be viewed here: http://youtu.be/ZLZj3z0UZNs.)
Within a few seconds, the unfortunate boy’s tongue has become frozen to the metal pole, and
he screams and wales until the fire department shows up to free him.

Dumb and Dumber contains a similar, though admittedly less realistic, depiction of glossal
immobilization. In this scene, Harry Dunne has driven from Rhode Island to Aspen, CO, with
best friend Lloyd Christmas to return a suitcase full of money, and now he sits on a ski lift with
Mary Swanson, the woman with whom both men have fallen madly in love. In a moment of
pathetic abandon, Harry notices frost on the metal pole of the ski lift chair, and he sticks his
tongue to it. (The scene can be viewed here: http://youtu.be/-whpvv2KpsQ. It’s pretty
hilarious.) Again, the freezing process takes only seconds.

As children, we have often found ourselves wondering if these depictions of glossal
immobilization to a metallic beam were realistic. Lacking the vacuous courage to try such a
thing, we waited until graduate school to investigate the matter further. The goal of this project
is to evaluate these two scenes by creating a simplified, mathematical model for glossal
immobilization. In this report, we define a 1-dimensional model of the tongue in contact with a
metallic beam below the freezing temperature. We present analytical solutions and numerical
approximations performed with MATLAB, and we ultimately show that our model
demonstrates the mechanics of the glossal immobilization process but does not match the
depictions of the process seen in A Christmas Story and Dumb and Dumber.

Model and Assumptions

To approximate the mechanics of a tongue in contact with a metal bar, a simple, 1-dimensional
model was created, as shown in Figure 1.



Figure 1. A 1-dimensional model for glossal immobilization to a metallic beam.
(Image courtesy of Warner Bros. Studios)

Table 1 shows the constants selected for both the analytical solutions and numerical
approximations. Thermal diffusivity, D, and length of the tongue, L, were found in literature.
Critical freezing distance, Lcritical, Was chosen to be the depth of a lingual papilla. The rational for
this distance is that the saliva at the tip of the tongue must freeze completely before the
tongue becomes immobilized, and this saliva should be present at the tip of the tongue to
about the depth of the lingual papillae. Once frozen, the saliva forms to the contour of the tip
of the tongue, creating a physical immobilization to the metallic beam.



The temperature of the beam was chosen based on our experience with Midwest wintertime
conditions, and the human body temperature has been established to be 37 °C.

Table 1. Constants selected for glossal immobilization model.

Thermal diffusivity D 3.7 « 10* cm?/s [1]
Length of the tongue L 10 cm [2]

Critical freezing distance Leritical 0.75 mm [3]
Temperature of the beam To -10°C

Body temperature T, 37°C

Model 1: 1-D Homogeneous Model

Analytical Solution

In our 1-dimensional case, heat diffusion follows the differential equation

PDE: @ - Da-y.-
or ox

with boundary conditions
10,1 =T,
CT(La) =T,
and initial condition

IC: T(x,0) =T,

The full analytical solution can be found in Appendix A. Using the “Extracting the Poison Tooth”
method, we determine the closed form solution
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Figure 2 shows the analytical solution plotted as a surface plots for n = 50 terms. This plot
shows how temperature decays near the surface of the tongue.
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Figure 2. Surface plot of analytical solution of homogeneous equation.
Calculated using n = 50.

Numerical Analysis

Using the MATLAB pdepe function (code is in Appendix B), the differential equation was
numerically plotted over the same range. Figure 3 shows the surface plot, which matches the
analytical solution nicely.

To investigate the problem at hand—determining how long freezing to the pole will take—we
present this data and incremental time-points over a narrower distance near the tip of the
tongue. This is shown for our pdepe data in Figure 4. The purple line is the steady-state

solution. In this homogeneous system, temperature will approach this distribution as time goes
to infinity.

Our critical freeze length for this model is x = 0.75 mm, and here we see that freezing to this
critical limit will take around 96 seconds.
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Figure 3. Surface plot of PDEPE approximation for homogenous equation.
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Figure 4. Temperature vs. distance plots for the PDEPE approximation of the homogenous
equation. Time points from 48 to 120 seconds are shown along with the steady-state solution.



Model 2: Nonhomogeneous Model with a Heat-loss Term

The assumptions made to simplify our analytical analysis present a number of limitations. For
example, this model:

¢ Assumes a 1 dimensional tongue

* Assumes no heat loss from the sides of the tongue

* |gnores blood flow in the tongue

* |gnores complex geometries of the tip of the tongue
* |gnores exothermic freezing reaction

To make our analysis more rigorous, we chose to address what we believe is the biggest factor
of these limitations: Heat loss from the sides of the tongue. Based on the literature, we were
able to calculate a constant heat loss of 68 °C/hour based on the surface area and mass of an
average human tongue [4,5]. This was added to our differential equation to yield

a°T
PDE: ﬂ -D—sQ,
or ax '
T(0,8) =T,
BC: 0.0)
T(Ln =T,

IC: T(x,0) =T,

where Qg = -68 °C/hour. Green’s function was used to solve this analytically. (See Appendix A
for the complete solution). Our solution as a function of time and distance along the tongue is
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Figure 5 shows the analytical solution plotted with n = 50 terms, and Figure 6 shows the
corresponding numerical approximation. These surface plots have similar shapes, but the

analytical solution trends toward T = 0 at both boundaries. This points to a possible error in our
analysis.

Figure 7 shows temperature plotted against distance for time points between 48 and

120 seconds. Here, we see that the time for critical freezing is still approximately 96 seconds,
not much different from our original solution without a heat loss term. The reason for this is
because at short time frames, the heat loss term does not have enough time to affect the
solution. When plotting to much longer time frames (e.g. 1200 seconds, plot not shown) the
difference between the homogenous PDE and the nonhomogenous PDE with heat loss Qg
becomes much more apparent.
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Figure 5. Surface plot of analytical solution of nonhomogeneous equation
with heat-loss term. Calculated using n = 50.
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Figure 6. Surface plot of PDEPE approximation for nonhomogenous
equation with a heat-loss term.
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Figure 7. Temperature vs. distance plots for the PDEPE approximation of the nonhomogenous
equation with a heat-loss term Qq. Time points from 48 to 120 seconds are shown.

Furthermore, modeling heat loss through the sides of the tongue with a constant Q term is not
the ideal solution for this problem. As the evaporative heat loss is a flux that certainly depends
on the temperature difference between the tongue and the outside air. This system would be
better modeled in two or three dimensions, where heat loss from the tongue can be modeled
as a gradient along the length of the tongue. We chose to use the Q term as a work-around to
solve this analytically in 1-D.

Conclusion

These models demonstrated the mechanism by which a tongue can freeze to a metallic beam at
subfreezing temperatures. For the first, 1-dimensional model, a closed-form solution was
analytically determined, and a numerical analysis was performed using MATLAB’s pdepe
function. This project was focused on the question of how long it might actually take for a
tongue to freeze to a metallic beam. According to our first model, this process would take
approximately a minute and a half.

Many simplifications were made in this first model, so we added another term to encompass
what we thought was the most significant omission in the first model: evaporative heat loss
from the sides of the tongue. A constant heat loss, Q, was added to the differential equation,
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and analytical and numerical analyses were performed again. Unfortunately, this attempt to
improve our model did not decrease the predictive time for tongue freezing noticeably.

It is important to clarify that these models cannot disprove any hypothesis regarding the
freezing of a tongue to a metallic beam. An empirical investigation would be necessary to
determine whether tongue can freeze to a metallic beam as quickly as the movies would have
us believe. However, modeling the process remains important for understanding the heat loss
process, for determining which terms play the biggest role—it seems that evaporative heat loss
is relatively unimportant at shorter timeframes —and for making predictions when similar
situations are encountered. That is the real value of a model like this: It can guide and predict
as we use freezing in a medical or industrial setting.

Impact and Future Work

A number of therapies and procedures rely on cooling or freezing tissues. Modeling the cooling
process could be very valuable for further development of these technologies.

One of the most common is cryotherapy for removing skin abnormalities such as warts or
moles [6]. Generally, liquid nitrogen is applied for a short period of time (less than 1 minute) to
the skin. Liquid nitrogen cools the tissue enough to kill cells in the undesired region, and the
body naturally discards and replaces this tissue.

Another, rather less established, therapy is known as coolsculpting. Here, a cooling treatment is
applied to areas of the body with undesired fat. This procedure is intended to have cosmetic
benefits for the user. It recently gained FDA approval, and one imagines that the folks at
coolsculpting did some mathematical modeling of their cooling device to demonstrate its safety
and effectiveness.

The models that we have developed here could be expanded and improved to help model
therapies such as cryotherapy and coolsculpting. As the models become more complicated
(multi-dimensional, non-homogeneous), leveraging computational approaches such as the
pdepe function in MATLAB becomes extremely valuable.
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Appendix A: Analytical solutions

Homogenous model

Partial differential equations that describe the system, with boundary conditions and initial
conditions

PDE: g . Da-T
or ox

7(0,t) = T,
BC:
T(L1) =T,

IC: T(x,0) =T,

First find the steady state solution Tg(x)

- If % =0, then T (x) =ax +b

- Plugging in the boundary conditions
I, -1,
T-X- i. llx."r'
HX) =T T

Let T(x,t) = Te(x) + Tu(x,t), where Tu(x,t) has a homogeneous PDE and boundary conditions,
which are the following:

i, I, o, T T, #T, 5T,

al
- We know that — = and —; : . -,
o ot ot d'x d'x d'x 8'x

SO

Ty o

ox’

-D

- For the initial conditions, T;,(x,0) = 7(x,0) - T,(x)
IC: T (x,0) = (T, =T )1 - 7)

TH(OJ) -0
BC:
T, (Li)=0

Solving for Ty(x,t) by separation of variables

T, = D(x)G(1r), Q + DA =0, ﬁ - =G
’ ax’ dr

- To find A, plug boundary conditions into ®(x)
o IfA>0, ®(x) = A, cos(y/4,x) + B, sin(y/4_x), after plugging in BC, we find that
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A =0,and 4 =%
. -

o FortheA=0andA <0 cases, we find the trivial solution ®(x) = 0, after plugging
in BC
- By the principle and superposition
. ni -
T, (xt)= YC sin(—x)ye '
§(x1) = Y .C,sin (- =x)

A=l

- Tofind C, we plug in the initial conditions

X, . hx
T, (x.0) = (T, =T.) (1 - Z)Ecn sin(=~)

. L ' X . nx
c,,(z)-fc (T, =Ty (1= ) sin(= = x)d

- After integration and some algebra

AT, -T,)

C,
nx

Combining everything, we get the solution to our original PDE to be

I, -T. ~2(7, -7.) . -2
T(x,t) = ‘.L "1¢-T,,+E¥'sm(%x)-e L

A=l

Non-homogeneous model
With the addition of heat loss, the equation that describes our model becomes

PDE: = - Dﬂ: +Q,
ar ax '

c. T(0,0) =T,
CT(LG) =T,
IC: T(x,0) =T,
Solving this using Green’s Function

- For value-value boundary conditions:

“ [ A 4 .
(i 1(r=2,)

2 n n -
Green’s function: G(x,1.x,,7,) = 2 — sin(flu)' Sirl(f xye F

n=l
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d o 2n n ne - e
—G(x, 00X, 0.) = » —— cos(—x,) sin(—x)ye "
- GUxnx, 1) = 3= 0os(~ - x,) sin(=~x)

n n=l

T(x,t) = f,:‘ 8(x, )G(x.0x, 8, ), + [ ' f, QX 0, )G (X, 10X, 7, )df dX, + ..
Solution: 3 , 3
[nx % o GUnTx, ), - | AES" oo GUBTXout ),

- Plugging in everything
,_an s oo

T(x.r)-_[:’z%- sin(%x..) sin(%x}- e L dr,,+fn I'E;_% sm(%x..)- sm(%x)- e Yo dr dx,...

’ ‘ 27:0'”! 1 = —");':'3 ':":-L" . \ 27:'0’”[(-1)‘ . nw -A'Jl"? [ F
f:.z I% '5“‘(7-“)' e dr, "I,,EL— sm(T xye ! dr,

asl TS|

- After integration and algebra, the solution to the model with heat loss term Q is

T(.r,r)-z (L= (=1)") sin~x) e +§[Dn = (1-¢-1 )+m(T" T,(-1) )] sin(-~x) (1 e ]
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Appendix B: MATLAB code

Homogeneous model
function problemsolving
global D L Tl T2

D = 3.7E-4; % diffusion of heat in the tongue, cm"2/s

L = 10; % length of tongue, cm

Tl = 37; % body temperature, Celcius

T2 = -10; % temperature of metal pole, Celcius

trange = 120; %s

b4 linspace(0,L,101);

t linspace(0,trange,101); % simulation time, seconds

figure(1l);

sol = pdepe(0,@pdefun,@icfun,@bcfun,x,t);
sol = sol';

surf(t,x(1:20),s01(1:20,:));

title( 'PDEPE Solution', 'fontweight', 'b')
ylabel('Distance along tongue (cm)')
xlabel('Time (s)')

zlabel ('Temperature (°C)")

initializer = ones(length(x),length(t));
TB = T2; TH = T1;

nterms = 50;
sol an = TB .* initializer;

Hexp = initializer; Hsin = initializer;

for n = l:nterms
for d = 1l:length(x)
for e = 1l:length(t)
if n==
sol an(d,e) = sol _an(d,e) + (TH-TB)/L*x(d);
end
Hexp(d,e) = exp(-D*(n*pi/L)"2 * t(e));
Hsin(d,e) sin(n*pi/L * x(d));
end
end

Hconst initializer .* ( 2*(TH-TB)/(n*pi) );

sol _an = sol _an + Hconst .* Hexp .* Hsinj;
end

figure(2);

surf(t,x(1:20),s0l_an(1:20,:));
title('Analytical Solution', 'fontweight','b")
ylabel('Distance along tongue (cm) ')
xlabel('Time (s)')
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zlabel (' Temperature ( JC)"')
figure(3);

TSS = (TH-TB)/L .* x + TB .* ones(size(x));

plot(x(1:30),s01(1:30,40)," '--", ...
x(1:30),s01(1:30,60), '—=',...
x(1:30),s01(1:30,80), '—=', ...
x(1:30),s01(1:30,101), " '-=', ...

x(1:30),TSS(1:30),'-");
line([0 31,[0 0], 'Color','red');
legend('t = 48s','t = 72s','t = 96s','t = 120s', 'steady state');
xlabel('Distance along tongue (cm)')
ylabel (' Temperature ( fC)")

end

function [c,f,s] = pdefun(x,t,u pdepe,DuDx)
global D

c =1;

D*DuDx;

s = 0;

Hh
I

function u0 = icfun(x)
global T1
u0 = T1;

function [pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)
global T1 T2
pl = ul - T2;

ql = 0;

pr = ur - T1;
ar = 0;

end

Non-homogeneous model

function BENG221Proj
close all
global DL TO TL Q

D = 3.7E-4; % diffusion of heat in the tongue, cm"2/s
L = 10; % length of tongue, cm

TO = -10; % body temperature, Celcius

TL = 37; % temperature of metal pole, Celcius

Q = -68/3600;

x = linspace(0,L,101);

t = linspace(0,600,101); % simulation time, seconds
figure(1l)

sol = pdepe(0,@pdefun,@icfun,@bcfun,x,t);
u_pdepe = sol(:,:,1);

surf(t,x,sol')

title( 'PDEPE Solution', 'fontweight', 'b')
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ylabel('Distance along tongue (cm) ')
xlabel('Time (s)')
zlabel ('Temperature (©C)")

figure(2)

ana = analytical(x,t,200);

surf(t,x,ana)

title('Analytical Solution', 'fontweight','b")
ylabel('Distance along tongue (cm) ')
xlabel('Time (s)')

zlabel ('Temperature (©C) ")

end

function [fxn sum] = analytical(x,t,series)
global TO TL L D Q
C = zeros(l, series);
fxn = zeros(length(x),length(t), series);
fxn _sum = zeros(length(x),length(t));
for j = 1l:length(x)
for k = 1l:length(t)
for n = 1l:series

lambda = n*pi/L;

fxn(j,k,n) = 2*TL/(n*pi)*(1l-(-1)"n)*sin(lambda*x(j))*exp(-
D*lambda”2*t(k)) + ...
(2*Q*L"2/(D*n"3*pi~3)*(1-(-1)"n) + 2/(n*pi)*(TO-TL* (-

ooe

1)°2))...
*sin(lambda*x(j))*(l-exp(-D*lambda”2*t(k)));
fxn sum(j,k) = fxn sum(j,k) + fxn(j,k,n);
end
end
end
end

function [c,f,s] = pdefun(x,t,u pdepe,DuDx)
global D Q

c =1;

D*DuDx;

s = Q;

Hh
I

function u0 = icfun(x)
global TL

u0 = TL;

end

2 —————

function [pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)
global TO TL
pl = ul - TO;

al = 0;

pr = ur - TL;
qr = 0;

end
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