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The Minimum-Jerk Trajectory for n-DOF Reaching Movements via Calculus of Variations

PROBLEM STATEMENT
Efficient and accurate motor control remains an elusive solution within the field of robotics, 

and the success of a control system depends heavily on what metric is used to define the path taken 
by the motor plant. Calculating the desired movements of a robot with three or more degrees of 
freedom is an extremely complex problem, but the central nervous system controls dozens of degrees 
of freedom very quickly. As such, there is much interest in discovering the policy used by the motor 
nervous system and how it changes. Because fields, including bioengineering, aim to understand, 
implement, and even restore such functions in disabled patients, validating computational models of 
trajectory planning policy in simulation is paramount  to that discovery.

In the motor control framework, this policy must include a description of the trajectory the end 
effector must take – here, “end effector” refers to the (zero-)point on the arm that we desire to reach 
the target destination. By default, the end effector is the hand or gripper of the system, but it may just 
as well be the functional point of a tool, like a hammer or wrench, or another point on the limb, such 
as the center of the forearm or shins. The trajectory of a system is more complex than simply naming 
the Cartesian coordinates along the path; a trajectory function must describe when the end effector is 
expected to be at these positions. The problem here is that, given any starting and ending position in 
Cartesian space, there are infinitely many trajectories. Namely, we can make the trajectory as smooth 
or noisy as we like, even when there are some constraints on where we can move to.

This is the motivation for formulating the trajectory-forming problem as an optimization 
problem. Though not necessarily unique, solutions for this type of problem will at least meet the 
criteria good enough for our purposes.  Thus, the next part of the problem is to decide what must be 
optimized. In motor control, there are primarily two outputs that can be optimized: jerk and energy. 
Optimizing jerk entails finding the smoothest curve connecting an initial position, velocity, and 
acceleration to a desired position, velocity, and acceleration over an already specified time interval. 
Minimum energy models are similar, but they are more complex in that the energy expended by a 
plant is dependent on the architecture of the actuators/musculature, and the time-constraints for 
these models is more relaxed, since shorter time intervals typically involve expending more energy 
because a higher peak velocity is needed. Of key importance is that minimum-energy models 
necessarily rely on the dynamics of the system but minimum-jerk models can suffice on a simply 
kinematic description. It is for this reason that I use a simplified minimum-jerk model instead.

CALCULUS OF VARIATIONS THEORY AND SETUP
Calculus of variations is similar to gradient descent methods in differential equation analysis. 

Like gradient descent, it is a first order approach focused on minimizing the gradient of a given 
function ∇ F . However, in the case of gradient descent, F may be any type of function, but calculus 
of variations deals specifically with functionals F, maps which take other functions as parameters and 
return elements that form the basis of that function's  vector space, which is typically a scalar, as it will 
be in this formulation. The functional will serve as a 'cost' function that needs to be minimized. For 
this experiment, the cost function being minimized is jerk, which is defined as the third-derivative of 
position, the rate of change of acceleration.

x⃛ (t)



We define jerk as only a function of time to simplify the calculations. In realistic conditions, 
other factors will determine the jerk, such as forces due the the environment and muscle weakness 
and fatigue. As such, the definition of jerk is easily extendable to other domains and partial differential 
equations. In order to turn this definition of jerk into a cost, we must ensure that it is always positive 
and take the totality of this measurement over the entire movement. As each movement is 
continuous, we define this sum as an integral over the time of the movement tI to tf, the initial and 
final time points, respectively.

C (t)=∫
t i

t f

( x⃛ ( t))2dt

Calculus of variations works by finding not the minimum of this functional, but its minimum 
with respect to an arbitrary perturbation function, which we will call u(t). This perturbation function is 
multiplied by a perturbation constant α and added to the original jerk function. Below is shown the 
total function's new form, as well as a graph of how it affects the overall position and trajectory.The 
plot, modified from Shadmehr et al. (2005), shows the original function x (t ) in black, the 
pertubation function u(t) in pink, and the sum of the two, with an α equal to 1 (green) and greater 
than 1 (orange).

x (t)+αu (t)

Thus, the final form of the functional that we will use for this problem has the form 
C (r (t))→C (r (t)+αu (t ))

To be useful, we must first apply some constraints to the perturbation function. The key 
aspects we wish to capture, as shown in the plot above, are that the perturbation function and all of 
its defined derivatives vanish at the endpoints ti and tf.  Because we are dealing with the third-
derivative of position, we need to make sure u(t) and its first three derivatives are zero.

u (t i)= u̇( ti)=ü (t i)=u⃛ (ti)=0
u (t f )=u̇( t f )= ü(t f )=u⃛ (t f )=0

 Just as in single-variable optimization and gradient descent, calculus of variations takes the 
derivative of the cost functional. Instead of just seeking where the functional itself equals 0, however, 
we also evaluate the integral when the perturbation constant α equals 0, and use integration by parts 
to find which derivative of position must equal zero for the cost (i.e. jerk) to be minimized. In addition 
to this mapping from function to functional, a critical step to using calculus of variations that allows us 



to determine which derivative of x(t) must equal zero is the fundamental lemma of calculus of  
variations. This lemma states the following:  If it is the case that, given a k-times continuously 
differentiable function f,

∫
a

b

f (x )h( x)dx=0  

for every k-times continuously differentiable function h(x) such that h(a) = h(b) = 0, then f(x) is 
identically zero on the entire interval [a,b]. We can see from our definition of u(t) above that it 
satisfies the conditions for h(x). This lemma will allow us to know the order of the derivative of r(t) 
that must equal zero in order to minimize the jerk. 

SIMPLIFIED ANALYTICAL SOLUTION
The first step in our derivation is to take the derivative of the function with respect to the 

perturbation variable α. Then, we evaluate this derivative at the point where this variable equals 0 to 
characterize the point where the perturbation is minimized.

C (r (t)+αu (t))=1
2∫ti

t f
( r⃛ (t )+α u⃛ (t))2dt

∂C (r+αu)
∂α

=∫ti

t f
(r⃛ (t)+α u⃛( t)) u⃛ (t)dt

∂C (r+αu)
∂α

∣@α=0 =∫t i

t f
r⃛ (t) u⃛ (t)dt

Now that we have our integral, the next step is to use integration by parts to iteratively 
redefine this integral until we find the point where u(t) = 0. Recall that the perturbation function u(t) 
vanishes at the endpoints ti and tf.

∫
ti

t f

r⃛ (t) u⃛ (t)dt= r⃛ (t) ü (t)∣ti
t f−∫

ti

t f

r(4)( t ) ü( t)=−∫
t i

t f

r(4)( t) ü(t )

−∫
ti

t f

r(4)( t) ü( t)dt=−r(4)(t) u̇ (t)∣ti
t f+∫

ti

t f

r(5) (t) u̇( t )=∫
ti

t f

r(5 )(t) u̇( t )

∫
ti

t f

r(5 )(t) u̇ (t)dt=r(5) (t) u̇( t)∣t i
t f−∫

t i

t f

r(6)( t )u(t )=−∫
t i

t f

r(6)(t)u (t)=0

The final equality satisfies the fundamental lemma of calculus of variations. By that lemma, we 
can state that r(6)=0. Thus, we can conclude that any position function whose sixth derivative is zero  
minimizes the jerk. To make the sixth derivative of a function zero, we guess that the equation for 
position has the general form of a fifth-order polynomial.

r (t)=A+Bt+Dt2+Et3+Ft4+Ht5

ṙ (t)=B+2Dt+3Et2+4Ft3+5Ht4

r̈ (t)=2D+6Et+12Ft 2+20Ht3

The values of the coefficients are, as usual, found by applying the known properties of the 
problem, defined in the previous section. More generally, the trajectory depends only on the duration 
of the movement, rather than the absolute starting and ending times, ti and tf. Since it is only the 
difference we are interested in, we can reset ti=0 and tf = tf – ti. Assuming that the end-effector begins 
and ends the movement at rest (i.e. no acceleration or velocity initially), we find that A, B, and D equal 
xi, 0, and 0, respectively. The values of E, F, and H depend on what the value of tf is. Namely, the 
following three equations must be met in order to solve for E, F, and H.



r (t f )= x f ⇒ Et f
3 +Ft f

4+Ht f
5

ṙ (t f )=0⇒3 Et f
3+4 Ft f

4+5Ht f
5

r̈ (t f )=0⇒6 Et f
3 +12 Ft f

4+20Ht f
5

Symbolically manipulating the equation into matrix form gives an easy method for determining 
the values of E, F, and H. As noted by Flash & Hogan (1985), the general form of this equation comes 
out to a relatively simple expression.

r (t)=[ x1i+( x1f− x1i)(10(t /d )3−15(t /d )4+6 (t /d )5)
x2i+(x2f−x2i)(10 (t /d )3−15(t /d )4+6( t /d )5)

⋮
xn i+(xnf −xn i)(10(t /d )3−15(t /d )4+6( t / d )5)]

In this trajectory, each element in the vector corresponds to one of the degrees of freedom. It's 
easy to see that each element follows the same pattern and dependency on the time and duration. 
Another, less obvious but equally important consequence of the above form is that any minimum-jerk 
trajectory in two or three dimensions is necessarily a straight line. 

NUMERICAL VALIDATION
The previous section mentioned the importance of the overall duration time to the overall 

minimum-jerk trajectory. Biologically reasonable times for reaching movements in humans will 
typically be between 0.5 and 1 second. Below is displayed a surface plot demonstrating the change in 
trajectory  (i.e. expected position with respect to time) against different time-points and total 
displacements (given as the magnitude) for the analytical solution.

The primary effect of increasing the displacement is, naturally, an increase in the gain of the 
sigmoid shape of the plot.  The figure to the right shows the cross section of the graph with respect to 
time, more clearly showing the sigmoid shape of the overal trajectory. Similarly, we show the change 
in the velocity and acceleration profiles over differing displacements, calculated numerically based off 



the given trajectory points. As expected, there is bell-shaped velocity profile, indicating the limb 
reaches maximum velocity at the mid-point of the total movement. This shape is negligibly different 
from human psychophysical experiments, seen in the text by Shadmehr et al. Note that the 
displacement-axis on the acceleration profile is reversed, to more clearly show the sinusoidal shape.

Finally, we show the minimum-jerk profile, which is the aspect we aim to minimize. One key 
aspect to note is that the jerk is inversely proportional to velocity. That is, the faster we make a 
movement, the more we minimize jerk. If we expect the motor system to plan trajectories based on 
minimum jerk, we also infer that it plans trajectories with the highest peak-velocity.



DISCUSSION
Optimization of the movement trajectory for an end-effector is a difficult problem in motor 

control research. What is presented here is the most simplified version of the problem that 
demonstrates useful results. I considered a the general case of an n-dimensional end-effector that in a 
reaching motion, providing there are no obstacles that might impede the movement of the end-
effector and that the task is discrete, not part of a more complex set of goals. I further simplified our 
solution to be variable with time and constant or symmetric about any other variables. In this case, I 
reproduced the bell-shaped velocity profile and the sigmoid position profile observed in 
psychophysical experiments. One of the most important numerical results shown is the inverse 
proportionality between velocity and jerk. The symmetry of these curves will be broken if we assume 
different starting and ending conditions, namely, that the initial velocity or acceleration may be 
different from the final values, which would be the case if this reaching movement were only one step 
of a more complex plan, for example, in reaching for an object with the intent of moving it to another 
location. 

Another issue to discuss, as is often mentioned in discussing optimal motor control policies, is 
whether or not there is another function which should be optimized. That is, could jerk be defined in 
terms of another derivative of position, such as fourth, fifth, or sixth? Perhaps, optimizing 
acceleration, the second derivative of position, would work just as well. The best policy should be that 
which most accurately matches the observations of psychophysical experiments in humans and 
primates. A common way of measuring this accuracy is to measure the ratio of peak-velocity to 
average-velocity. In humans, this ratio is observed to be about 1.75, so the average velocity is two-
thirds of the global maximum during the movement. In the velocity data gathered above, this ration 
was 2.0, for every value of displacement – The value  cited measured by Shadmehr et al. (2005) is 
1.825. The difference may be due to resolution along time. Experiments taking the second and fourth 
derivatives as the function to be optimized resulted in values of 1.5 and 2.186, respectively. Thus, the 
higher the order of the derivative we use to optimize our function, the greater the ratio becomes. 
Thus, the psychophysical value of the ratio falls exactly half-way between the measured value 
optimizing the third derivative and the cited value optimized the second derivative  - though the cited 
value for the third derivative is closer than the one I measured. As such, we may hypothesize that the 
'function' optimized by the nervous system is a fractal derivative in between the second and third. 
Therefore, optimizing jerk provides one of the optimal approximations of motor planning 
computation. 
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