
 

 
 
  

 
 

 

Modeling 1-Dimensional Diffusion 
of TDF via an Intravaginal Ring 

 
BENG221A 

 

Tyler Huelsman, Alistair McIntyre, Vikram Rao, Christopher Thomas 

 

10/18/2013 

 



1 
 

Introduction: 
 

HIV is a sexually transmitted disease that infects an individual’s T cells. This 
slowly cripples the body’s ability to fight off invader and eventually leads to immune 
system failure and death. Condoms are effective at preventing the spread of HIV, but 
transmission can still occur due to condom failure or other unforeseen 
circumstances. Current data estimates that there are over one million people in the 
United States alone with HIV, and the disease has reached near epidemic levels in 
some African countries where researchers speculate almost half the population may 
be infected. At the moment, there is no cure. 

 
 When HIV enters an individual’s system, the retrovirus infects him/her by 
attaching to their T cells and injecting its own RNA. An enzyme known as reverse 
transcriptase is involved in the maintenance of genetic material in the cell. It 
generates double stranded DNA from an RNA template, and it is this function that 
retroviruses, such as HIV exploit. If the injected HIV RNA undergoes reverse 
transcription, the resulting DNA may insert itself into the host cell’s DNA. Should 
this happen, the host cell will begin creating more of the retrovirus until the cell 
inevitably dies and the newly fabricated HIV seek out more T cells to infect. 
 
 Tenofovir Disoproxil Fumarate or TDF is a prescription drug that blocks the 
transmission of HIV. It is currently prescribed as a pill, but other methods of 
administering it are being explored. One that shows a great deal of promise is the 
use of intravaginal rings. An intravaginal ring is a polymeric drug device that 
provides controlled release of a drug over an extended period of time.  It has been 
determined for TDF that “Topical preexposure prophylaxis interrupts HIV 
transmission at the site of mucosal exposure.” With this in mind, a model for the 
diffusion of TDF in cervicovaginal mucus was created to better understand the 
process. Additionally, environmental changes were taken into account due to the 
cyclic nature of the menstrual cycle.  
 
The assumptions used for the model are outlined below: 

– The concentration of TDF at the interface between the intravaginal 
ring and mucus remains stable. 

– The concentration at the interface between the mucus and the vaginal 
wall is zero. 

– Diffusion of TDF only travels away from the ring, toward the tissue 
wall. 

– The distance between the ring and the tissue remains fixed. 
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Analytical Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
Our system is modeled by the partial differential equation (PDE): 
 

1) 
  

  
  

   

   
 

 
with initial condition (IC) and boundary conditions (BC): 
 

2)     (   )    
 

3)     {
 (   )    
 (   )   

 

 
Here,  (   ) is the concentration of the drug (dependent on time   and length  ),   
is the distance measured from the ring (from where the drug is released) to the end 
boundary of the cervicovaginal mucosal layer, its target destination, and   is the 
diffusion coefficient for the drug as it travels from the ring to the length of the 
cervicovaginal mucosal layer. 
 
The problem is that we cannot use Separation of Variables to solve this PDE because 
our boundary conditions are non-homogeneous. Normally, Separation of Variables 
works if the PDE and BC are both linear and homogeneous. 
 
Now, let’s consider the problem from some perspective. There are no sources to 
basically decrease or increase the drug concentration between the ring and 
cervicovaginal mucosal layer. Based on our boundary conditions, they are fixed 
concentrations, thus they cannot change with time and there’s no flux on the 
boundaries to increase or decrease the drug concentration.  
 
This means there is no type of concentrated forcing of drug, so while the drug 
concentration is flowing out of the ring, eventually, the concentration distribution 
within the range of the ring and cervicovaginal mucosa should stabilize and no 
longer be time-dependent. 

Cervicovaginal 
mucosa 

ring wall 

TDF 

L 

Figure 1: Diagram of Diffusion from Intravaginal Ring into Mucus 
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We define an equilibrium concentration, or steady-state concentration,   ( ) by the 
infinite   limit for  (   ). In other words, 

4)        (   )    ( ) 

  ( ) will satisfy the diffusion equation and boundary conditions, but not the initial 
condition because it defines the concentration profile as    , but the initial 
condition is for    . Instead, it satisfies 
 

5) 
    

   
           {

  (   )    
  (   )   

 

 
The solution for this 2nd order ODE is a linear equation:   ( )       Solving for 
the values of   and   using the boundary conditions, we get      and         
and now, we substitute these values. 

6)   ( )     
  

 
  

 
We define another function  (   ) in terms of  (   ) and   ( ) as the difference 
between the two and solve for  (   ) from it: 
 

7)  (   )   (   )    ( ) 
  (   )   (   )    ( ) 

 
Note that the units are still consistent with units of concentration. Compute some 
partial derivatives in relation to the diffusion equation: 
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We use the fact    is the equilibrium concentration, it’s time-independent, and is a 
solution to  

10) 
    

   
           {

  (   )    
  (   )   

 

 
Both  (   ) and  (   ) satisfy the equation directly above. Let’s define the initial 
condition and boundary condition by  (   ): 
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11)  (   )   (   )    ( )    (   
  

 
 )  

  

 
     

12)  (   )   (   )    ( )          

13)  (   )   (   )    ( )       
  

 
( )    

 
Now, even though the initial condition is a bit odd, we now have homogenous 
boundary conditions! 
 

 (   ) must satisfy 
  

  
  

   

   
 with IC  (   )  

  

 
     and BC: {

 (   )   
 (   )   

 

 
Solution to the diffusion equation is given by 
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This is a Fourier series for sine. The coefficients given by  
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∫ ( (   )    ( ))    (
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We can try to also find an expression for the coefficients of   . Substituting that 

 (   )    and   ( )     
  

 
  into the equation: 
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( )
⇒  

   
  
 (         ) 

 
The ( ) refers to the evaluation of the integral using integration by parts. The 
solution makes sense because in the final expression for  (   ) below, we want 
units of concentration and since the sine and exponential term are dimensionless, 
   should have units of concentration. 
 

Since  (   )  ∑      (
   

 
)    (

  

 
)
 
  

    and  (   )    ( )   (   ), we have 

our final solution. 
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Numerical Method: 
 Recall our equation for diffusion of the drug: 
 

18) 
  

  
  

   

   
 

 

We used the Crank Nicolson method to numerically determine 
concentrations at positions x and times t.  Equation 18 must be rewritten in a 
form that can be solved using Crank Nicolson method.   
 

19) 
  
      

 

  
 

 

 (  ) 
((    

       
        

   )  (    
     

      
 )) 

 

Where Δt is the time step, Δx is the size of the x-step, D is the diffusion 
coefficient, and   

  indicates the concentration at time-step n and x-step i.  The x-
step, t-step, and diffusion constants can be rearranged to give constant a: 

 

20)   
   

 (  ) 
 

Allowing equation 19 to be rewritten simply: 
 

21)        
    (    )  

         
          

  (    )  
       

  
 

At this point, the equation can be rewritten in matrix form: 
 

22) [ ][    ]  [ ][  ] 
 

Where A and B are tridiagonal matrices as shown below.   
 

23)   [

 

 
     

  
 

 
    

    

] 

24)   [

 

 
    

 
 

 
   

   

] 

 

For purposes of solving in Matlab, equation 22 should be rewritten to solve for [Cj+1]. 
 

25)  [    ]  [ ] [ ][  ] 

Note that the backslash indicates a left division.  Additionally, the time-step and x-
step should be chosen such that the ratio between the time-step and the square of 
the x-step is less than one half: 
 

26) 
  

   
 
 

 
 

 In the case of a two-layer problem in which the diffusion coefficient is 
different in the second layer, simply change constant a in matrices A and B at A(≥ j-
interface, ≥ jinterface) and B(≥ jinterface, ≥ jinterface), where jinterface is the x node closest to the 
interface of the two boundaries.   
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 The plots in Figure [2] show how TDF diffuses across the cervicocvaginal 
mucosa with time. The analytical and the numerical solution plots are virtually the 
same when the first 100 terms in the series are used for the analytical solution and a 
time step of 100 seconds is used for Crank-Nicolson (as shown). However, the 
analytical solution produces a sine wave that disappears with time due to the sine 
term in the analytical solution equation. 
 
 Diffusion is slower when the mucosa has a higher viscosity and quicker when 
the mucosa has a lower viscosity, as expected. Therefore, at lower viscosity, the 
system reaches steady state sooner. At steady state, the concentration profile of TDF 
across the mucosa is linear, from a concentration of 10 μM at distance 0 μm to a 
concentration of 0 μM at distance 100 μm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

μ=10 kPa•s 

μ=100 kPa•s 

Analytical Solution Crank-Nicolson Solution 

μ=1 kPa•s 

Figure 2: Comparison of the analytical solution using separation of variables and numerical solution using Crank-

Nicolson at dynamic viscosities of 1, 10, and 100 kPa•s. 
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 Using the Crank-Nicolson method, the system was then modeled with two 
layers, the 100 μm mucosa layer and the 800 μm vaginal wall layer, with viscosities 
of 10 kPa•s and 0.01 kPa•s respectively. The resulting plot is shown in Figure [X2]. 
In this model, diffusion begins slowly, but proceeds rapidly after the mucosa layer at 
100 μm. Eventually, a linear steady state profile is reached, as in the single-layer 
model. However, the plot shows that diffusion through the vaginal wall should be 
considered. The two-layer model is an improved model for TDF diffusion from a 
vaginal ring. 

 
Figure 3: Two-layer model plotted using the Crank-Nicolson method.  



8 
 

Appendix: 
 
 Plotting the analytical solution 
% Homogeneous PDE: Linear (1-D) Diffusion 

% Analytical solutions on bounded and infinite domain 

% ns: number of terms in the infinite series 

  

% diffusion constant 

ns=100; 

D = 4.541*10^-10*(10^4)^2; % um^2/s 

C0=10; %uM 

% domain 

dx = 1; % step size in x dimension (um) 

dt = 100;  % step size in t dimension (s) 

L=100; %um 

endtime=300000; %(s) 

xmesh = 0:dx:L; % domain in x; um 

tmesh = 0:dt:endtime;  % domain in t 

nx = length(xmesh); % number of points in x dimension 

nt = length(tmesh); % number of points in t dimension 

GS=C0-C0*xmesh/L; 

  

% solution on bounded domain using separation of variables 

sol_sep = zeros(nt, nx); 

  

for n = 0:ns-1 

    k = (2*(n+1))*pi/(2*L); % L = 2 

    Bn= -2*C0/(pi*(n+1)); 

    sol_sep = sol_sep + Bn*exp(-D*(k^2)*tmesh)' * (sin(k*xmesh)); 

  

end 

  

C_final=NaN(size(sol_sep)); 

for i=1:length(tmesh) 

%     sol_sep(i,:)=sol_sep(i,:)+(4-4*cos((pi/(2*L))*xmesh)); 

    C_final(i,:)=GS+sol_sep(i,:); 

end 

  

figure(1) 

surf(tmesh,xmesh,sol_sep', 'Edgecolor','none') 

surf(tmesh,xmesh,C_final', 'Edgecolor','none') 

title(['Separation of variables on bounded domain (first ', 

num2str(ns), ' terms in series)']) 

xlabel('t') 

ylabel('x') 

zlabel('u(x,t)') 

  

title(['Separation of variables on bounded domain (first ', 

num2str(ns), ' terms in series)']) 

xlabel('Time (s)') 

ylabel('Distance (mum)') 

zlabel('Concentration (muM)') 
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Crank Nicolson Method-1 Layer 
clear;close all; clc; 

% Set the number of grid points and build a cell-center grid 

% N=input(' Enter N, cell number - ') 

N=900; 

L=900; %um 

Lm=100;%um 

h=L/N; % step size 

x=-.5*h:h:L+.5*h; 

x=x'; % Turn x into a column vector. 

% Load the diffusion coefficient array (make it a column vector) 

D=ones(N+2,1); % (just 1 for now--we'll change it later) 

% Load Dm with average values D(j-1/2) and Dp with D(j+1/2) 

Dm=zeros(N+2,1);Dp=zeros(N+2,1); % Make the column vectors 

Dm(2:N+1)=.5*(D(2:N+1)+D(1:N)); % average j and j-1 

Dp(2:N+1)=.5*(D(2:N+1)+D(3:N+2)); % average j and j+1 

C0=20; % 

Dmu=4.541*10^-10*(10^4)^2; % um^2/s 

Dt=1.135*10^-6*(10^4)^2;% um^2/s 

  

  

D=Dmu; 

% C=sin(pi*x/L); % Set the initial concentration distribution 

C=zeros(N+2,1); 

C(1)=C0; 

Cmat=C; 

Tmax=max(C);Tmin=min(C); % Find the maximum of T for setting plot 

limits 

% Choose the time step tau. 

% The max tau for explicit stability is a reasonable choice 

% fprintf(' Maximum explicit time step: %g \n',h^2/max(D)) 

% tau = input(' Enter the time step - ') 

tau = 10; %timestep (s) 

t=0; 

  

check1=tau*Dmu/(h^2); 

check2=tau*Dt/(h^2); 

disp('\deltat*D_m/(\deltax^2)=') 

disp(check1) 

disp('\deltat*D_t/(\deltax^2)=') 

disp(check2) 

% Create the matrices A and B by loading them with zeros 

A=zeros(N+2); 

B=zeros(N+2); 

% load A and B at interior points 

const = 2*h^2 / tau*D; 

% Set the number of time steps to take. 

% tfinal=input(' Enter the total run time - ') 

tfinal=6000; 

nsteps=tfinal/tau; 

for j=2:N+1 

A(j,j-1)= -Dm(j); 

A(j,j) = const + (Dm(j)+Dp(j)); 

A(j,j+1)= -Dp(j); 

B(j,j-1)= Dm(j); 

B(j,j) = const-(Dm(j)+Dp(j)); 
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B(j,j+1)= Dp(j); 

end 

% load the boundary conditions into A and B 

A(1,1)=0.5; A(1,2)=0.5; B(1,1)=0.; % T(0)=0 

A(N+2,N+1)=0.5; A(N+2,N+2)=0.5; B(N+2,N+2)=0; % T(L)=0 

  

% This is the time advance loop. 

for mtime=1:nsteps 

% define the time 

t(mtime+1)=mtime*tau; 

% find the right-hand side for the solve at interior points 

r=B*C; 

% apply the boundary conditions 

r(1)=C0; % T(0)=0 

r(N+2)=0; % T(L)=0 

% do the linear solve to update T 

C=A\r; 

C(1)=C0; 

C(length(x))=0; 

% Make a plot of T every once in a while. 

Cmat(:,mtime+1)=C; 

if(rem(mtime,1) == 0) 

plot(x,C) 

axis([0 L Tmin Tmax]) 

pause(.001) 

end 

  

end 

figure 

surf(t,x,Cmat, 'EdgeColor', 'none') 

xlabel('Time (s)') 

ylabel('Distance (\mum)') 

zlabel('Concentration (\muM)') 

 

Crank Nicolson Method-2 Layers 
clear;close all; clc; 

% Set the number of grid points and build a cell-center grid 

N=100; %number of x nodes 

L=900; %um 

Lm=100;%um 

h=L/N; % step size 

x=-.5*h:h:L+.5*h; %x vector 

x=x'; % Turn x into a column vector. 

% Load the diffusion coefficient array (a column vector) 

D=ones(N+2,1); %this is NOT THE DIFFUSION COEFF 

% Load Dm with average values D(j-1/2) and Dp with D(j+1/2) 

Dm=zeros(N+2,1);Dp=zeros(N+2,1); % Make the column vectors 

Dm(2:N+1)=.5*(D(2:N+1)+D(1:N)); % average j and j-1 

Dp(2:N+1)=.5*(D(2:N+1)+D(3:N+2)); % average j and j+1 

C0=10; %concentration at edge of ring (um) <NEED TO CHANGE THIS TO A 

REASONABLE NUMBER 

Dmu=4.541*10^-10*(10^4)^2; % um^2/s 

Dt=1.135*10^-6*(10^4)^2;% um^2/s 

  

%alternative diffusion coefficients based on my calculations 

% Dmu=5.3393 e-10  ; % um^2/s low viscosity 
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% Dmu=1.5164e-10  ; % um^2/s high viscosity 

% Dt=3.7909 e-07  ;% um^2/s 

  

C=zeros(N+2,1);% Set the initial concentration distribution 

C(1)=C0; 

Cmat=C; 

Tmax=max(C);Tmin=min(C); % Find the maximum of T for setting plot 

limits 

tau = 1000; %timestep (s) 

tfinal=300000; 

t=0; % set t0 

jm=1; 

% calculates jm, the x-node closest to the mucus/tissue barrier  

while Lm>x(jm) 

    jm=jm+1; 

end 

  

check1=tau*Dmu/(h^2); 

check2=tau*Dt/(h^2); 

disp('\deltat*D_m/(\deltax^2)=') 

disp(check1) 

disp('\deltat*D_t/(\deltax^2)=') 

disp(check2) 

%both check1 and check2 should be <0.5 to avoid spurious oscillations 

in 

%the solution.  change tau or N to make this happen.   

  

% Create the matrices A and B by loading them with zeros 

A=zeros(N+2); 

B=zeros(N+2); 

% load A and B at interior points 

const1 = 2*h^2 / (tau*Dmu); 

const2 = 2*h^2 / (tau*Dt); 

% Set the number of time steps to take. 

nsteps=tfinal/tau; 

  

for j=2:N+1 

    if j<jm 

        A(j,j-1)= -Dm(j); 

        A(j,j) = const1 + (Dm(j)+Dp(j)); 

        A(j,j+1)= -Dp(j); 

        B(j,j-1)= Dm(j); 

        B(j,j) = const1-(Dm(j)+Dp(j)); 

        B(j,j+1)= Dp(j); 

        else 

        A(j,j-1)= -Dm(j); 

        A(j,j) = const2 + (Dm(j)+Dp(j)); 

        A(j,j+1)= -Dp(j); 

        B(j,j-1)= Dm(j); 

        B(j,j) = const2-(Dm(j)+Dp(j)); 

        B(j,j+1)= Dp(j);    

    end 

end 

% load the boundary conditions into A and B 

A(1,1)=0.5; A(1,2)=0.5; B(1,1)=0.; % C(0)=0, see later 

A(N+2,N+1)=0.5; A(N+2,N+2)=0.5; B(N+2,N+2)=0; % C(L)=0 
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% time advance loop. 

for mtime=1:nsteps 

% define the time 

t(mtime+1)=mtime*tau; 

% find the right-hand side for the solve at interior points 

r=B*C; 

% apply the boundary conditions at each iteration 

r(1)=C0; % T(0)=0 

r(N+2)=0; % T(L)=0 

% do the linear solve to update T 

C=A\r; 

C(1)=C0; 

C(length(x))=0; 

% Make a plot of T as code is running. 

Cmat(:,mtime+1)=C; 

if(rem(mtime,1) == 0) 

plot(x,C) 

axis([0 L Tmin Tmax]) 

pause(.001) 

end 

end 

  

%Plots surface figure 

figure 

surf(t,x,Cmat, 'EdgeColor', 'none') 

xlabel('Time (s)') 

ylabel('Distance (\mum)') 

zlabel('Concentration (\muM)') 
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