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The term 'neuromorphic engineering' was coined by Carver Mead almost 20 years 
ago (Mead, 1990) but neuromorphic engineering has been in the making since integrated 
circuits first came into existence. Once engineers were able to implement mathematical 
models in silicon, silicon neurons based on a variety of mathematical models for neuron 
behavior became a research focus. The Hodgkin-Huxley (HH) model of a squid giant 
axon is arguably the most well known mathematical model of neuron firing; however, 
design and fabrication of a bank of HH neurons, each with 6 parameters, consumes 
valuable space on a chip, and is not straightforward to implement. Integrate and fire (IF) 
silicon neurons are a less complicated alternative to HH neurons since they do not model 
the opening and closing of ion channels. Rather, they simply accumulate charge on the 
membrane and produce a spike when the membrane voltage reaches a threshold value. 
The objective of this project was to design and simulate a coupled neuron pair using an IF 
neuron model and a conductance based synapse.  

The synapse was designed to implement a standard conductance-based model, 
while the IF neuron was designed to emulate the biological signal. The simulated synapse 
to neuron connection successfully produced biologically realistic spikes in the 
postsynaptic neuron. A cascade of two synapses interposed with two neurons also 
produced spikes at each neuron. However, the spike width decreased as the spike 
propagated along the synapses, an issue that would need to be addressed in 
implementations of longer chains of synaptically-coupled neurons. 
 
 



Introduction 
 
Hodgkin-Huxley model 
   

The most widely used mathematical model of a neuron, the Hodgkin-Huxley (HH) 

model, was published in 1952 based on studies of a squid giant axon.  The work earned Hodgkin 

and Huxley a shared Nobel Prize in physiology and medicine in 1963.  The squid giant axon was 

chosen as the study subject for its size; working on an axon ~1mm in diameter was much more 

accessible than human neurons.  Hodgkin and Huxley determined that membrane action potential 

generation can be described by electric circuits and voltage-dependent conductances of ion 

channels, more specifically sodium and potassium channels (figure 1).   

 Figure 1.  Circuit schematic of the elements in the Hodgkin-Huxley model of the squid 
giant axon   

The equations that represent the circuit above are given below (equations 1-4).  A leak current is 

incorporated into the calculations in addition to the sodium and potassium ion channel currents.  

With four variables (V, n, m, and h) and six parameters (an α , and β  for n, m, and h 

respectively) the equations are complex; however, n, m, and h are only affected by cell potential, 

V.   
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 Equations 1-4.  Hodgkin-Huxley equations to model the behavior of the squid giant axon.  
See BGGN260 class notes for definitions of α and β. 



As expected of a model that quantitatively represents neuron behavior the HH model produces an 

accurate action potential and a refractory period post-action potential that impacts electrical 

properties (Abbott and Kepler, 1990).  While the HH equations model channel activation and 

inactivation as kinetically independent, and estimates a short time to the first open channel 

(Destexe et al., 1994), the model accurately represents macroscopic currents.   

 
Morris-Lecar model 
 

In 1981 Morris and Lecar published a modified set of Hodgkin-Huxley equations that 

represented neuron behavior in barnacle giant muscle fibers (BGMF) (equations 5-7).   
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Prior to 1981, studies on the BGMF indicated voltage dependent Ca2+ and K+ channels, which 

were rarely inactive, comprised the membrane conductance system (Morris and Lecar, 1981).  

However, the voltage behavior of the BGMF proved more complex.  Morris and Lecar 

questioned if a system of just two non-inactivating conductances could adequately represent the 

oscillatory voltage behavior of the BGMF.  They feared their system would not be able to 

account for other complicating factors such as ion accumulation, slow inactivation, and 

inhomogeneous distribution of channel types.  For their simple model they assigned two 

independent voltage-dependent conductances (gk and gCa) and assumed the relaxation kinetics 

were first order.  They also used linear relations for the instantaneous current-voltage curves 

through open channels, ignoring the deviation from linearity that occurs under high permeable-

ion gradient.  In spite of their concerns, what became known as the Morris-Lecar model of a 

neuron performed well quantitatively when compared to current-clamp data.  The system was 

capable of two modes of oscillation, damped and limit cycle (see figure 2), but did have 

limitations.  Generating oscillations that begin small and grow or a bistable oscillation pattern 

were beyond the scope of the model.   

 



 Figure 2.  Examples of output limit-cycle oscillations generated with the Morris-Lecar 
third-order system  

 
 
 
Markov model 
 

Markov models or Markov chains were first proposed for the study of discrete-time 

stochastic processes by Russian mathematician Andrey Markov in 1906.  They have since been 

employed to study a broad spectrum of topics ranging from games of chance such as Candyland 

to algorithmic music composition.  In 1966, Katz used a set of simple Markovian equations to 

describe currents at the neuromuscular junction (Destexe et al., 1994).   The state diagram (figure 

3) and equations (equation 8 and 9) given below were generated by Vandenberg and Bezanilla 

(1991) to describe the squid giant axon while accounting for both open and closed channels and 

activation and deactivation of channels.  In equation 8 for the model ionic current per channel, V 

is membrane potential in mV, Naγ  is the limiting single channel conductance, VNa is the sodium 

reversal potential, and O is the number of open channels.  Equation 9 is the Vandenberg-

Bezanilla model gating current per channel where a, b, c, d, f, g, i, j, u, y, and z are rates (see 

Vandenberg and Bezanilla, 1991 for equations), O is the number of open channels, and C1 – C5, 

I, I4, and I5 are the probabilities of being in corresponding states 

http://en.wikipedia.org/wiki/Discrete-time
http://en.wikipedia.org/wiki/Stochastic_process
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Figure 3.  Markovian kinetics state diagram of the Vandenberg-Bezanilla expanded/detail 
sodium channel model. 
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Destexhe, et. al. (1994) compared the Vandenberg-Bezanilla detailed sodium channel 

model to a very simple Markovian sodium channel model and the Hodgkin-Huxley model and 

confirmed the following:  a Markov model of neuron behavior can accurately convey both single 

channel events and cellular events, kinetic Markov models can describe enzymes and molecular 

interactions within a signaling nerve cell in addition to ion channel activity, and the state 

diagrams of Markov models are inherently adjustable so the models can be rapidly adapted as 

scientists better understand the molecules involved in a firing neuron (Destexhe, et al., 1994).  

More specifically they found the simple Markovian model to better represent single channel 

behavior due to its long predicted lag time to first channel openings.  When modeling neuron 

behavior at the macroscopic level all three models evaluated performed acceptably (see figure 4).   

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Outputs from the three kinetic models of a giant squid axon.  O is the fraction of 
channels in the open state, C is the fraction of channels closed, and I is the fraction of 
channels in the inactivated state.  A) A Markov scheme for the Hodgkin-Huxley model, B) the 
detailed Markov model from Vandenberg and Bezanilla, C) a simple three-state Markov 
model of the Vandenberg and Bezanilla version 

 

 

 

 



VLSI 
 The same year the Hodgkin-Huxley model of the squid giant axon was published, the 

concept of the integrated circuit (IC) was published.  Not long after, in 1959, the first IC circuits 

were successfully implemented, and by the 1980’s, very large scale integrated (VLSI) circuits 

were the backbone of the modern computer.  The similar conductivity across membranes and 

conductivity across silicon devices made the VLSI circuit a good candidate for replicating 

biological membrane conductance (Mahowald and Douglas, 1991).  Research has shown VLSI 

neurons efficiently represent their biological counterparts (Mahowald and Douglas, 1991; 

Harrison and Koch, 1999, Le Masson et al., 1999) for three main reasons: they operate in real-

time, they consume relatively little power, and they occupy a small area.  To date networks of 

silicon neurons have been used to reproduce a variety of biological functions such as vision, 

hearing, and locomotion (Harrison and Koch, 1999; Horiuchi et al., 1992; Kameda and Yagi, 

2003; Koch et al., 1991; Lewis and Simo, 1999; Lewis and Bekey, 2002; Tenore et al., 2004; 

Van Schaik and Shamma, 2004, Vogelstein et al., 2007). 

 Researchers have used VLSI to simulate invertebrate (fly) and vertebrate (primate) vision 

(Harrison and Koch, 1999; Kameda and Yagi, 2003).  Both designs are targeted for use in 

robotics.  Vision (or motion sensing) is an inherently more complex task than hearing due to the 

multiple, time-varying input signals (basic hearing has two time-varying signals).  The fly-vision 

based sensor (FBS) processes information from multiple pixels in parallel rather than one pixel at 

a time; in order to navigate, the circuit computes directional information on the time scale of 

seconds (Harrison and Koch, 1999).  Resolution remains the FBS’s primary drawback.  A typical 

CCD imager has a resolution of 640 x 480 pixels, while the FBS has a resolution up to 90 x 90 

pixels; however, 90 x 90 pixels resolution is equivalent to some species of flies.  

 The vertebrate retina contains neurons that respond in various ways to light stimulation.  

Kameda and Yagi (2003) aimed to generate a silicon neuromorphic retina capable of mimicking 

both the sustained-type response during illumination and the transient-type response when light 

is switched on or off seen in vertebrate retinal neurons.  Their silicon retina could detect 

movement on the time scale of milliseconds and with much lower resolution (40 x 46 pixels vs 

640 x 480 pixels for a CCD) was able to produce a recognizable image (see figure 5) (Kameda 

and Yagi, 2003). 

 



 Figure 5. Comparison between output images of a CCD camera and the silicon retina. a) 
CCD camera, b) silicon retina.  (Kameda and Yagi, 2003)  

 

 Researchers have been working for nearly two decades to implement cochlear functions 

in VLSI (Lyon and Mead, 1988) and the ‘fly on the wall’ has come a long way in 20 years.  

Today voice recognition and speech processing technology are commonplace.  The primate 

cochlear basilar membrane can be modeled as a bank of frequency selective filters (Kumar et al., 

1998); in figure 6, taken from Schaik, et al. 1998, each ‘Cochlear Section’ represents a frequency 

filter.  Sounds that pass through the basilar membrane or signals that pass through the silicon 

filters result in either unique nerve firing patterns or set of zero-crossing events that, if processed 

correctly, can convey the same information contained in the nerve firing patterns (Fragniere et 

al., 1997).  ‘Silicon cochlea’ can also be used to identify the position of the sound source (Van 

Shaik and Shamma, 2004).  Based on the fact that humans utilize ‘Interaural Time Difference’ to 

locate a sound in a horizontal plane, Van Shaik and Shamma designed a sound localizer utilizing 

silicon cochlea that can detect sounds up to 300Hz within 3o of their position.  

 



 
Figure 6.  A silicon cochlea (Schaik et al., 1998) 

 

 A set of neural circuits found in the spinal column, known as the central pattern generator 

(CPG), is responsible for producing the oscillatory, periodic waveforms that stimulate muscles 

and in turn results in locomotion.  Tenore et al. (2004) developed a VLSI chip for use in robots 

that generates oscillatory signals of different frequencies and phases and then synchronizes the 

signals by coupling integrate and fire (IF) neurons.  A given phase difference between oscillatory 

signals, governed by the neurons, results in gait-like movement of the robot’s limbs.  The neuron 

model employed on the VLSI CPG emulator chip was less detailed than the HH or Morris-Lecar 

models; however, the numerous neurons on the chip were highly versatile, i.e. they could be used 

as continuous or spiking neurons.  Also, the main synapses were dynamic in that they could be 

programmed as excitatory or inhibitory and sensory in that they could receive external signals; 

meanwhile, 10 feedback synapses were included on the chip that interconnected the neurons 

(Tenore et al., 2004).   

In 1997 a patent for the ‘silicon neuron’ was issued to Douglas and Muhowald; since 

then, analogue circuitry designed to mimic one or many neurons firing has improved greatly.  A 

key issue that often factors into a neuromorphic design is neuron coupling; beyond incorporating 

all the parameters needed to model an individual neuron spike, for an accurate representation of a 

neural network, the neurons must be coupled.  Thus, for our BGGN260 term project we elected 

to research, design, and simulate a coupled pair of neurons.  In lieu of building on the ground 

work laid by Larson, Matthews, and Aimone for the implementation of a Hodgkin-Huxley 

neuron in VLSI, due to concerns over understanding and modifying their detailed work in a short 



time frame, our goal was the successful design and simulation of a coupled neuron pair using a 

simpler integrate and fire neuron model and a synapse modeled as a synaptic current.     

 

Implementation 
Integrate and fire neuron 

 
 

Figure 7. Neuron Schematic implemented as a re-settable comparator 

 

The neuron is implemented using an integrate-and-fire model with a differential amplifier 

and reset circuitry.  Cm, the membrane capacitor at the input to the differential amplifier, 

performs the integration.  The value of Cm affects how easily the neuron integrates charge and 

the output spike amplitude; for instance, a larger Cm value would result in slower charging of the 

capacitor for each input pulse (due to the larger time constant) and a decrease in the output spike 

amplitude.  A transistor from the input node to ground, fixed at a constant current with a bias 

voltage, generates the leak current.   



 
Figure 8. Differential Amplifier.  

 

 

The differential amplifier consists of two gain stages: a PMOS first stage that increases 

dynamic input range for lower input voltage values and a second stage with a single-ended 

output.  The W/L ratios in the PMOS and NMOS transistors are sized to 2:1 to compensate for 

the transistors’ mobility values and maintain equal drain current values.   

Id = [μ*(Cox/2)*(W/L)*((Vgs-Vth)^2)] (active region).   

 
 

Figure 9.  Widlar current source. 
  



 A bias current of ~ 1 mA was used in the differential amplifier.  This is implemented with 

a simple Widlar current source.  In the future, this can be replaced by more sophisticated bias 

circuits that are source voltage, process, or temperature independent.   

 
 

 
Figure 10.  Buffer delay chain. 

 

 

 Figure 11.  Low W/L ratio Inverters used in the Buffer delay chain. 
  

 

A buffer stage (upper figure), consisting of cascaded inverters (lower figure) with small 

W/L ratios, follows the differential amplifier.  The buffer stage has an additional current control 

(Vrefr) that connects the NMOS of the previous inverter stage to ground, in the form of a 

transistor.  Varying the input voltage to this transistor controls the maximum current flow at the 



output.  Capacitive feedback is employed by inserting a capacitor from the output of the 

differential amplifier to the input of the differential amplifier.   

The on/off reset path consists of a single transistor connected from the input node to 

ground and controlled by the output node.  Similar to the current control design in the buffer 

stage, a transistor was added in between the reset transistor and the input node to control the 

maximum current flow at the input. 

The properties of the neuron spiking behavior that we are most interested in are: spike 

rise time, spike fall time, spiking amplitude, spiking frequency, and spike width.  The spike rise 

time consists of two regimes: integration of charges upon the membrane capacitance Cm and the 

spike waveform once the threshold voltage is reached.  The change in voltage at the membrane is 

governed by: dVm/dt = I/Cm.  It can easily be seen that the charge integration time at the 

membrane is directly proportional to the amplitude and frequency of incoming current and 

inversely proportional to the magnitude of Cm.  The spike waveform rise time is governed by the 

slew rate of the amplifier which is similarly expressed as: dVout/dt = I/Cout.  Since Id is 

proportional to transistor sizes, large W/L ratios in the output stage of the differential amplifier 

were chosen for adequate slew rate. 

 
 

 
Figure 12.  Neuron Spike detail: the initial decay is due to the leakage current, the slope of the 
secondary portion is controlled by Vrefr, and the slope of the final portion is controlled by Vpw. 

 



Similarly, the limit of the spike fall time is also governed by the slew rate equations with 

the current limiting transistors letting us dictate the shape.  The top declining portion is due to the 

leakage current.  The reset circuitry activates after the buffer delay as indicated in the figure 

above where the yellow waveform rises high.  The current limiting transistor (Vrefr) in the buffer 

stage governs the initial downward slope of the pulse while the current limiting transistor (Vpw) 

in the reset path governs the bottom portion of the pulse.  Decreasing Vref and Vpw will decrease 

the slope of the falling spike at each of these respective portions. 

The spiking amplitude is primarily controlled by the ratio of the membrane capacitance 

Cm and the feedback capacitance Cf.  These capacitors form a capacitive voltage divider where 

Vmem =  Cf/(Cm+Cf)*Vout. 

 
 Figure 13.  Neuron spike pulse train with the Vreset waveforms showing how the neuron 

spikes are suppressed while Vreset is higher than Vth0,n.  

 

The spike frequency is primarily controlled by the decay time of the reset voltage Vreset, 

which is controlled by the current limiters Vrefr and Vpw.  The spike width also enforces a 

mandatory delay between spikes through the inherent delay in the Vreset pulse.  The spike width is 

simply controlled by varying the delay of the buffer circuitry.   

 

 

 



Conductance-Based Synapse 

The model of synaptic transmission that we implemented is a standard conductance-

based model that is discussed in detail in Destexhe, et. al. (1994). In particular, the model 

synapse used a Markov Model description to describe opening and closing dynamics with a 

closing rate that was dependent on the presynaptic neurotransmitter concentration, which was in 

turn dependent on the presynaptic voltage. Thus, the full synapse model is 

 )( synmsynsyn EVrgI −=  (10) 

where r is a state variable describing the proportion of channels that are open, gsyn is the maximal 

conductance of the synapse, Esyn is the synaptic reversal potential, and Vm is the postsynaptic 

differential equation 

 

membrane voltage. Note that r evolves in time according to the 

(11) 

 

Here, α[T](V) and β are transition rates of the channels from closed to open and open to clos

respectively. [T](V) is the neurotransmitter concentration, which has the following presynaptic 

(12) 

 

Design 

The design of the synapse in analog VLSI circuitry will be described from the “output” 

aptic side) to the “input” (presynaptic side). To model the difference between the 
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 Figure 14.  OTA with wide output range. 

  

 

fact that the OTA's output current is almost mathematically identical to that of the empirical 

synapse model. When the OTA is operated below threshold, its output current is given by 
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We then bias the V2 input to Esyn, and simply require the bias current Ib to represent gsynr. If the 

OTA is connected as a follower-integrator (see figure 15),  

 

 

Figure 15. OTA connected as a Follower-Integrator.  

 

then the postsynaptic voltage can be measured off the capacitor (i.e. at Vout) in the follower-

integrator: 
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The dynamics of the gating variable, r, were implemented using two OTA follower-integrators 

with a common integration capacitor (see figure 16).  

 

 

Figure 16. Two OTAs connected as Integrator-Followers with shared integration capacitor. 



 

Each OTA represents one of the terms from the above equation. Because r is by definition 

restricted to the range of values from 0 to 1, voltage rails need to be added to the circuit. This is 

done by simply applying minimum and maxixmum bias voltages to the positive inputs to the 

OTAs. Again, leveraging the fact that the output of the OTA uses the bias voltage Ib as a gain, 

we can require one of the bias voltages to be α[T](V) and the other to be β. Setting β is 

straightforward since a current source can be fabricated out of a transistor connected to the OTA 

through a current mirror. To establish the presynaptic voltage dependence of the bias voltage for 

the other OTA in the gating variable computation requires additional circuitry, which will be 

described next. 

The relationship between the presynaptic membrane voltage and the neurotransmitter 

concentration at the synaptic terminal very closely matches the output of a differential amplifier, 

as described in Liu, et. al. (2002). The differential amplifier is a circuit that, at its simplest, 

consists of just three transistors connected as in figure 17.  

 

Figure 17. Simple differential amplifier 

 

The output terminals I1 and I2 produce currents that are sigmoidal in shape and together sum to 

the bias current Ib. Specifically, the output of terminal I1 is 
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There are two shortcomings in this circuit for implementing the dynamics of the transmitter 

concentration. The first is that there is no analogue to the kp term, which sets the steepness of the 



response curve independently of Ib (which changes the maximum value of I1 and I2. It turns out 

that the width of the linear regime for this device is set by properties of silicon devices that are 

difficult to control (e.g. the temperature). Thus, we accepted a rough approximation of the 

neurotransmitter voltage dependency for this model. The second shortcoming is that there is no 

intrinsic concept of [T]max in this circuit. However, this can easily be resolved by combining the 

[T]max with α in the bias current to the differential pair. It should be noted that the output from 

the differential pair is actually inverted from what would be expected. The output of the entire 

synapse corrects for this with an inverting amplifier that was added downstream. 

One point that should be considered very carefully is that all of the circuits described 

above have narrow voltage ranges for which their behavior is as described. Thus, voltage signals 

need to be scaled to fit into the appropriate ranges for proper circuit operation. This is no trivial 

task, and many hours were spent adjusting parameters to get signals at each stage to be within 

reasonable bounds. 

The final circuit for the entire synapse was assembled from the differential amplifier and 

OTA circuits as described above. The schematic for this circuit appears in figure 18. Several 

additional components have been added so that the main parts fit together. First, the input to the 

synapse required a buffer to reduce the voltage swing from the output of the neuron to fit with 

the required voltage ranges for the sbynapse. Second, the output of the neurotransmitter 

concentration circuitry (the differential pair) required a pair of current mirrors to maintain a high 

impedence input to the next stage of the synapse. Third, the output of the synapse required an 

amplifier to boost the output level to a range that was appropriate for activating the neuron. All 

three of these adjustments can be seen in figure 18. 



 

Figure 18.  Schematic of the entire synapse. The output of this synapse is connected to the input 
of the integrate-and-fire neuron. Note the addition of voltage buffers, current mirrors, and 
amplifiers to the components already described. 

 

Performance 

In general, the circuitry performed quite well, and emulated the dynamics of a synapse 

closely. The performance of the two main components of the synapse (the circuit implementing 

the neurotransmitter concentration, and the circuit implementing the activation variable 

dynamics) as well as the performance of the entire circuit will be presented here. 

Figure 19 compares the theoretical voltage dependence of the neurotransmitter 

concentration with that of our implementation. The primary difference is that we were unable to 

adjust the slope independently of the saturation voltages, and thus the shape isn’t quite exact.  

Figure 20 compares the theoretical activation variable dynamics to that of our 

implementation. Specifically, this figure compares the activation variable (r) response to a square 

wave input. Although the time constants do not match exactly, the fit is pretty close.  

Figure 21 shows the output of the entire synapse, observed as a membrane voltage on a 

postsynaptic membrane. The wide duration of the post-synaptic potential is due to the addition of 

buffers to the neuron circuitry. This kept the firing frequency of the neuron at a reasonable rate, 

and contributed to the refractory period of the neuron. Aside from the shape of the postsynaptic 

action potentials, the output of the neuron performs reasonably well. 



Figure 22 shows the schematic for our synapse connected to the IF neuron.  A step 

voltage is applied to the synapse at the presynaptic node as the input. 

Figure 23 shows the output of the cascaded synapse, observed as the membrane voltage 

on the first and second neurons.  Notice that the pulse width of the spike decreased as the signal 

propagated from the first neuron to the second neuron. 

Figure 24 shows the schematic for our cascaded synapse.  This consists of a synapse 

connected to an IF neuron followed by a second synapse connected to a second IF neuron.  A 

step voltage is applied to the first synapse at the presynaptic node as the input. 

 
Figure 19. Comparison of the theoretical voltage dependence of the neurotransmitter 

concentration with that of the implementation. Note that the voltages have been remapped to fit 

appropriate ranges for the VLSI devices. 

 
Figure 20. Comparison of the theoretical activation variable dynamics and that of the silicon 

implementation. Although the time constants do not match exactly, the fit is pretty close 



 

Figure 21. Response of synapse to a step input, observed as the membrane potential of the 
postsynaptic neuron. The output is shown in green and the input shown in blue. 

 

  
 

 
Figure 22. Schematic view of our IF neuron. 

 



 
Figure 23.  Response of a cascaded synapse to a step input, observed as the membrane 
potential of the postsynaptic neuron. The output of the first synapse is shown in green, the 
output of the second synapse is shown in yellow, and and the input shown in blue. 

 

 

 

Figure 24.  Schematic view of our cascaded synapse: synapse -> neuron -> synapse -> 
neuron 
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