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Abstract: We present a simple model of how binary decisions can be made at the
neuronal level using an oscillating circuit that encodes information about the choice
to be made and a decision-making circuit that influences the strength of coherence,
and thus robust information transfer, of upstream oscillating networks.
Additionally, three mechanisms leading to network coherence are investigated. The
first involves delayed excitations from a single oscillator (DE model), the second
includes propagating pulses in a excitable network (PP model), and the third
employs a small network of phase locked, weakly coupled oscillators (WCO model).
Our results show that the DE and PP models eventually achieve 100% accuracy in
performance on the decision making task while the WCO model never reaches
100%. Additionally, the DE model adapts most quickly to the task while the PP
model requires more learning trials than the DE model. Finally, the WCO model

does adapt to the task however its output decreases in amplitude over multiple
trials.
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Introduction

Four- to 12- Hz theta oscillations have been shown to be involved in complex
decision-making behaviors such as spatial navigation in rodents” and working
memory and learning in primates®. Additionally, Jones and Wilson (2005)3 revealed
that activity in the medial prefrontal cortex (mPFC) is more highly correlated with
activity in CA1 hippocampal cells when rodents are engaged in a decision-making
task. Furthermore, the cross-correlation between activity in these regions is
significantly reduced when an animal makes an incorrect decision indicating that
coherence between mPFC and CA1 activity is associated with correct choice
production. As a result of these findings we created a simple model of how binary
decisions can be made at the neuronal level using an oscillating circuit that encodes
information about the choice to be made and a decision-making circuit that
influences the strength of coherence, and thus robust information transfer, of
upstream oscillating networks.

Experimental

We propose a model for decision-making in which synchronization of cortical
waves affects a downstream circuit whose output represents a choice. Feedback
from the decision-making (DM) circuit to the lower-order oscillating (LOO) region
influences the strength of wave coherence such that a correct choice enhances
coherence and an incorrect choice decreases it. Thus, the model can adjust its
output behavior to maximize the probability of making a correct choice. We
investigate how alternate mechanisms for production of synchronized cortical
waves can affect both the accuracy and adaptability of down-stream DM circuits.

We inject a current into the LOO region, which oscillates at a baseline level,
and the downstream DM circuit must decide whether or not the current amplitude
is above a certain threshold. The DM circuit indicates an affirmative response
choice by firing and a negative response choice by remaining silent. Because the DM
circuit has no prior knowledge as to what the threshold current amplitude is, it
initially generates a random output function. However through feedback, correct
responses strengthen coherence of activity in the upstream LOO region, and
enhanced coherence produces a stronger signal that is more likely to induce a
correct choice from the DM circuit.

Three models of oscillation coherence, that were originally proposed by
Prechtl et al (1999)¢, are investigated to determine how upstream oscillatory
current sources influence a DM circuit. As show in figure 1A, a Delayed Excitations
(DE) model consists of a single oscillating cell that propagates its signal to down-
stream neurons through multiple delay lines. Figure 1B shows a Propagating Pulse
(PP) model in which transmission of pulses along a network produces wave motion.
Finally, as shown in figure 1C, a Weakly Coupled Oscillators (WCO) model consists
of a network of oscillators interacting through many weak connections.
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Figure 1. Proposed Mechanisms for Generation of Wave Coherence
A Delayed Excitations from a Single Oscillator
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Enhanced coherence in the first two models involves a strengthening of synaptic
connections. Conversely, in the WCO model, enhanced coherence depends on weak
interactions between local oscillators that can affect the timing of a second neuron,
but cannot distort the form of that neuron’s oscillating limit cycle®.

Consequently, we hypothesize that the maximum probability of making a
correct choice and the amount of time necessary to attain maximum probability will
be differentially affected by the mechanism of oscillation synchronization. We
predict that the probability of the DM circuit producing a correct response will be
greater when upstream coherence is achieved through a mechanism described by
the DE or PP model compared to the WCO model. However, the DM circuit will
require less time to achieve its maximum probability of generating a correct
response when upstream oscillations are governed by a mechanism described by
the WCO model compared to the DE or PP models.
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Methods
Modeling the Oscillator

The DE and PP model include propagation of an oscillatory signal to a
network of excitatory neurons either in parallel or in series respectively, while the
WCO model consists of several oscillators coupled together. Oscillating neurons

were generated using Jansen’s Model? as displayed in figure 2.

Figure 2. Jansen’s Model for Oscillating Networks
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In this model, an excitatory neuron or network of neurons (c.f. excitatory pyramidal
cells) oscillate(s) by receiving feedback input from excitatory and inhibitory local
interneurons (c.f. excitatory spiny stellate cells, c.f. inhibitory interneurons).
External stimulation is represented by a time-dependent pulse density, p(t). The
parameters He and H; control synaptic gain by limiting the amplitude of post-
synaptic potentials. T and t; are the sum of excitatory and inhibitory rate constants
of spatially distributed delays in the dendritic arbor. Sk represents a transformation
of the average membrane potential of the neuronal population into an average rate
of neuronal spikes. The instantaneous transformation is described by the sigmoid
fuction:

Sk(v) = (ckleo) / (1 + exp(r(vo - ck?v)))

for the kth subpopulation. The constants cx! and ck? represent the average number
of synaptic contacts in the excitatory and inhibitory feedback loops respectively, and
Vo, €0, and r resolve the shape of the nonlinear function.
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Modeling Excitatory Neurons

Excitatory neurons of the DE and PP models were programmed to generate
an output if input from the presynaptic oscillating neuron produced a voltage
change in the postsynaptic neuron greater than a given threshold value. Over time,
as the circuit outputs correct responses, the resulting feedback will increase the
synaptic connections within the circuit, thus decreasing noise and increasing the
success rate.

Modeling the Decision Making Neuron

The DM neuron was postsynaptic to excitatory neurons influenced by a
single oscillator in the DE and PP models and postsynaptic to several weekly
coupled oscillators in the WCO model. The DM neuron was modeled like an
excitatory neuron in the first two models except the output of this neuron
influenced the activity of the oscillating network (oscillating and excitatory
neurons) via a feedback loop onto each lower order neuron.

Results

When applying the different circuit models to the decision paradigm, the
results were generally as expected. The difference in signal between the go and no-
go trials was largely a matter of amplitude, however a slight phase disparity existed

as well. This can be seen in Figure 3.

Figure 3. Go and No-Go Oscillator Signals
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Both the DE and PP circuits consisted of one oscillator and four excitatory neurons.
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As shown in figure 4, the circuit corresponding to delayed excitations from a single
oscillator adapted to the task more quickly, while the propagating pulses were
somewhat slower. However, both circuits achieved a final success rate of 100%,
which is in contrast to the WCO circuit.
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Figure 4. DE and PP Circuit Results

Unlike the DE and PP models, which used a single excitatory network to
make decisions, the WCO model used an oscillating network in addition to the
upstream oscillating network, to make decisions. Figure 5 shows the resulting
difference between the synchronized and unsynchronized activity of three
oscillators on both a normalized and unnormalized scale. As the oscillator circuit
chooses correctly, the synchronization increases, as has been observed
experimentally3.

Figure 5. Normalized and Unnormalized WCO Activity
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Because the DE and PP models used amplitude coding for the decision making
process, we originally used the same type of coding for the WCO model. This coding
scheme did not supply an appropriate adaptability result that could be compared
between the three models because the amplitude of the oscillating circuit waxes and
wanes over time (unlike the excitatory circuit, which produces a steady output).
The adaptability of the WCO model using amplitude coding is shown in figure 6.
However, the WCO model was achieving synchronization over time, which lead us to
the conclusion that the oscillating circuit required a different coding scheme. Figure
7 reveals that the network activity before and after the decision task is quite
different, both in amplitude and phase.

Figure 6. WCO Circuit Results
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Figure 7. Unnormalized WCO Circuit Before and After Decision Making Trials
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Consequently, we tried a phase coding scheme for the oscillating decision-making
circuit. Indeed, when the difference in phase between oscillating units, instead of
the amplitude of the complete circuit, is used to code which decision the circuit will

make, the model adapts to the paradigm as shown in figure 8.

Figure 8. Adaptability of the WCO model using phase coding for decision
making Note the difference from amplitude coding as shown in figure 6.
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Discussion

The DE and PP circuits worked as expected using amplitude coding in
excitatory decision-making circuits. The WCO model failed to adapt to the decision-
making paradigm when amplitude coding of the summed circuit activity was used,
however, adapted very well when phase coding between oscillating units was used.

In future work, it would be interesting to increase the complexity of the
circuits by adding confounding activity between intrinsic units. This may more
accurately represent the error rate in experimentation. Additionally, a biological
decision making circuit likely receives competing input from multiple upstream
networks which should also be included in the three simple models presented here.
Investigating the performance of these improved models with respect to
competition could also gauge how well these models truly model the neural

dynamics of decision making.
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