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Abstract 
 

The hippocampal formation is necessary for spatial learning and memory in rats. One 
aspect of this cognitive function, the ability to remember path sequences, is thought to 
be achieved through phase precession. The two components of phase precession are a 
strong theta rhythm (8-12 Hz) in the local field potential and place-selective neurons, 
which fire selectively while the rat is in a particular area or “place field” of an enclosed 
arena. As a rat enters and leaves each place field, the respective neuron will fire most 
strongly in the center and less strongly in the periphery, but in addition to changing 
firing rate the cell will also fire at progressively earlier phases of the theta rhythm. This 
ultimately allows for the recent path of the rat to be represented by neuronal firing 
within one theta cycle, possibly reducing the time between place cell firing to allow for 
effective spike timing dependent plasticity.  We test whether phase precession is 
required for sequence learning in a small recurrent network of Izekevich neurons with 
place fields either around the circumference of a closed circular track or forming a grid 
across a closed square arena with synaptic weights updated according to a spike timing 
dependent plasticity rule.  In either environment, we find that phase precession  of place 
cell responses, as opposed to purely spatially tuned responses, is required for 
heteroassociative recall and spatial sequence learning. 
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1  Introduction 
 
The hippocampus has been shown to be integral for episodic memory formation. The mechanisms behind this have 

been studied in rats through the context of spatial learning, due to the presence of spatially-selective neurons 

throughout the hippocampal formation [1]. Specifically, certain neurons known as “place cells” respond strongly to 

one area of a track or arena and decrease firing rate as the rat’s distance from the center of this “place field” 

increases. These cells provide a possible substrate for spatial memory, where experience could cause selective 

strengthening and weakening of synaptic connections in order to preserve path or location information. It is unclear 

however whether place cells and plasticity rules alone can generate sequential learning, which seems to be inherent 

in episodic memory in that memories are temporally unidirectional [2].  

 

One of the defining characteristics of the rat hippocampus is the presence of a strong theta oscillation (7-10 Hz) in 

local field potential recordings [3]. This rhythm, which is thought to be generated by a pacemaker network in the 

medial septum, is propagated throughout the hippocampus by electrically-coupled interneurons. Each pyramidal 

neuron then receives the resulting theta inhibitory input in sync. The clock-like action of the theta rhythm possibly 

provides a temporal reference frame with which to coordinate sequential neuronal activity. 

 

The key to sequential learning may involve making simultaneously active neurons fire in the temporal order in 

which they were first recruited. This phenomenon, which is observed in vivo, is known as “phase precession,” where 

co-active place cells fire through one cycle of theta in the order the rat ran entered their place fields. The causes and 

function of phase precession are currently a matter of debate, yet it is a prime subject for modeling because there are 

currently no experimental methods to eliminate phase precession while sparing the theta rhythm. Here, a simplistic 

model of neurons and spike-timing dependent plasticity in the CA3 region of the hippocampus is used while 

emulating or excluding phase precession to access its contribution to sequential learning. 

 

2 Modeling methods 

 
2.1 Neurons 
 

100 neurons are modeled here using the Izhikevich spiking neural model [4]. This allows for computationally light 

simultaneous modeling of large numbers of neurons that show behavior similar to that observed in physiology. Each 

neuron is given dynamic variables V and u which respectively represent membrane voltage and recovery, in addition 

to four constant parameters a, b, c, and d. Following other similar models of CA3, we used initial values of 

 

       

      

        

       

       

     

 

where the dynamic variables were governed by the equations 

 
  

  
                   

 
  

  
         

 

and neurons which were driven past the threshold of 30 mv were considered to have spiked and pushed back to 

resting potential with a reset recovery variable such that 
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The total current I for each neuron was a sum of synaptic current Iext, a uniform random noise current  In, and 

inhibitory current from the theta rhythm ILFP.  

 

 

2.2 Spike-Timing Dependent Plasticity 
 

Each neuron in the model was synaptically connected to every other neuron excluding itself, and all synaptic 

weights were stored in a 100 by 100 connectivity matrix [5]. A basic spike-timing dependent plasticity model was 

used, where a postsynaptic neuron firing just after a presynaptic neuron strengthened the synapse, while the reverse 

order depressed the synapse. Five constants constrained this model, being A+, A-, τ+, τ-, and Δwmax, respectively 

representing the maximum change in synaptic weight Δw, the time constants of exponential decay for change in 

synaptic weight, and the maximum synaptic weight. In these variables, the subscript + applies to connectivity 

between presynaptic and postsynaptic neurons, and the subscript – applies to connectivity between postsynaptic and 

presynaptic neurons. These were applied to the equations for modifying synaptic weight 
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2.3 Phase precession 
 

Phase precession was modeled by delivering external input (from cells earlier in the pathway) to neurons at selective 

phases of theta, depending on whether the rat was entering or leaving the place field. As the rat entered a place field, 

synaptic current was given first at the peak of theta and progressed to later theta phases as the rat continued through 

the field. Separate place fields were assigned to each neuron and were spaced out evenly throughout the 

environment.  This resulted in clusters of spikes when the animal was near the center of the place field and single 

spikes as it was entering or leaving the place field. 

 

Lack of phase precession was modeled in the same way but excluding the theta phase-dependent excitatory input. In 

this way, neuronal excitation always occurred while the rat was in a given place field, with the center inducing the 

strongest input and the periphery inducing weaker input. 

 

In both cases with and without phase precession, place fields were divided into eight subsections to determine both 

phase of theta to fire on and amplitude of excitatory input [5]. 

 

2.4 Circular track  
 

For the circular track condition, a rat was simulated to run around 1000 cm circumference circle at 10 cm/s. Place 

fields from all 100 neurons were spaced out evenly in a linear fashion along the track with 80 cm diameters, and the 

rat was made to complete 1.5 runs through the track.  Results do not vary if the animal runs more than 1.5 laps, so 

this duration of simulation was used for efficiency. 
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2.5 2-dimensional arena 

 
For the 2-dimensional arena condition, a rat was simulated to run around a 1000 cm square area in a path determined 

by drawing a path through the arena. The rat would run at a constant predetermined speed through the given path, 

and once the path was complete the rat would run the same path again until the amount of total running time was 

equal to that as in the circular track. Place fields from all 100 neurons were spaced out evenly in a square grid 

arrangement throughout the arena. Place field diameter was set at 30 cm and the rat ran at 2 cm/s. 

 

3  Results 

 
3.1 Linear track 

 
A demonstration of the phase precession model is shown below (figure 1). As the rat moves through a place field, 

the respective place cell fires bursts of action potentials at the center and fewer spikes in the periphery. Additionally, 

all neurons fire within one cycle of theta and fire progressively later in the cycle as the rat moves forward, 

maintaining a consistent order of neuronal firing throughout the run. 

 

 
Figure 1: Raster plot of neuronal activity while the rat runs on a circular track. Neurons are 

connected in numerical order, such that successively higher number neurons respond to 

progressively farther areas on the track. Both rate changes with position in place field and phase 

precession are observed.  

 
This was then examined in the context of spike timing dependent plasticity. As the rat ran around the track and 

phase precession was included, synaptic connections were strengthened unidirectionally for the order that the rat ran 

through the corresponding place fields (figure 2a). Alternatively, when phase precession was removed and only rate 

encoding was taking place, synaptic connections were strengthened bidirectionally for both the forward and 

backward order in which the rat ran through each place field (figure 2b). The orderly synaptic strengthening 

observed with phase precession depended on the size of the place field, where larger place fields increased the 

number of connections being simultaneously altered in addition to overall synaptic weight change (figure 2c). If the 

place field diameter was lowered enough, no substantial or meaningful synaptic weight changes occurred (figure 

2d). 
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 a) b)  

c) d)  
Figure 2: Synaptic weight change with experience. All plots give independently scaled synaptic 

weights between neurons, where increasing neuron number represents neurons with place fields 

progressively farther along the circular track. Identity line shows no connectivity between neurons 

and themselves, below the identity line represents connections between neurons with place fields 

following each other, and above the identity line represents connections between neurons with 

place fields preceding each other. a) With phase precession, b) without phase precession, c) 200 

cm diameter place field with phase precession, d) 20 cm diameter place field with phase 

precession. 

 

 
3.2 2-dimensional arena 

 
The expanded model simulated a rat running in a pre-determined path through a 2-dimensional arena (figure 3). The 

phase precession model gave results qualitatively similar to those from the 1-dimensional track (figure 3a), and 

likewise omitting phase precession gave stronger and more symmetrical connections also seen in the 1-dimensional 

track (figure 3b).  
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a) b)  
Figure 3: Upper panels show pre-drawn path for rat, lower panels show synaptic weights after 

running for the same duration of time as in the 1-dimensional track. a) With phase precession, b) 

without phase precession, parameters for both cases are identical. 

 
Because the synaptic weight plots in the case of two dimensions are difficult to interpret alone, significant 

connections were first defined as a synaptic strength of two standard deviations of the mean (figure 4). Vector plots 

were then made where arrows pointed from the center place field of a presynaptic neuron to the center place field of 

its connected postsynaptic neuron (figure 5). The inferred strength and directionality differences from the phase 

precession and non-phase precession models are demonstrated spatially through the vector plots (figure 5a,b).  

a)  b)  
Figure 4: Synaptic weights at or above two standard deviations of the mean from the plots in 

figure 3. a) With phase precession, b) without phase precession. 
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a)

 
b)

 
Figure 5: Connections between place cells based on increased synaptic weights from figure 4. 

Arrows are from the center of the place field of the presynaptic neuron to the center of the place 

field of the postsynaptic neuron. a) With phase precession, b) without phase precession. 

 

 

 



8 
 

4 Discussion 
  
A computationally feasible but complexly behaving spiking model was used to simulate spatially-selective firing of 

neurons in the CA3 region of the hippocampus. Two conditions of 1-dimensional and 2-dimensional running areas 

were simulated while including or excluding phase precession of the place cells. As expected, phase precession in 

both conditions resulted in unidirectional and refined connections, while omitting phase precession resulted in 

bidirectional and broad connections. This provides a possible means for sequential coding, where phase precession 

restricts strong connections only to neurons which were activated in temporal order. Memories of spatial paths in 

this case are then more identical to the actual experience of the animal with phase precession than without. It is also 

possible that this mechanism allows for the temporal encoding of other hippocampus-mediated memories, such as 

sequential stimulus presentation.  
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