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Abstract 

 Recurrence is one of the fundamental functions attributed to neocortex.  

 Classically, studies of recurrence in cortex have focused on higher-order  

 association areas, such as prefrontal cortex, involved in working memory tasks  

 and showing neural correlates of representation maintenance. However, the role  

 of recurrence in primary sensory cortices is debated. Recurrence is thought to  

 orchestrate, on a moment-by-moment basis, the balance of excitation and  

 inhibition within a local network. What is controversial is the degree to which  

 recurrence in primary sensory areas also enables the maintenance of a  

 representation over time. We may begin to tackle this question using optogenetic  

 methods. Genetic manipulations in the mouse allow the expression of  
 channelrhodopsin (ChR) in parvalbumin-positive (PV+) interneurons, which  

 comprise 95% of the cortical interneurons. By synchronous activation of many  

 inhibitory cells, we can transiently interrupt recurrent activity in primary visual  

 cortex (V1) after a stimulus and determine the effect of this manipulation on  

 maintenance of the cortical representation. Furthermore, many of these effects  

 can be recapitulated in a rate model of two simple, coupled cortical areas, to  

 allow insights into the subtleties of the studied system and to suggest theories  

 for the observed phenomena. The model explains the preferentially sustained  

 network response in the gamma frequency range (30-80 Hz) and the ability of  

 the representation to return to V1after transient silencing. This model suggests  

 that, in vivo, a different cortical area may store the representation of the visual  
 stimulus, while V1 is silenced, and then feed that representation back into V1.  

 

1 Introduction 

Local cortical circuitry is highly recurrent. One often-proposed function of this recurrence is 

representation maintenance by recurrent excitation. Such a mechanism is believed to underlie, for 
instance, stimulus-specific neural activity observed in the prefrontal cortex after the removal of a 

stimulus during working memory [1]. However, it is true that highly recurrent connectivity is a 

feature of both prefrontal cortex and primary sensory cortices, such as primary visual cortex (V1) 

of the mouse [2]. Primary sensory cortical areas are not classically believed to play a role in 

working memory; however, the neural substrate for recurrence, and thus, perhaps, for 

representation maintenance, also exists in V1. The function of excitatory and inhibitory local 

circuits in V1 is not understood, but several roles may be proposed by theory [3]. First, it is 

possible these recurrent circuits exist simply to maintain an appropriate balance of excitation and 

inhibition in the network, or to regulate ratios of activity across cortical layers. Second, local 

recurrence may serve to temporally pattern neural activity (e.g., to organize spiking into 

widespread, oscillatory neural activity at a given frequency) but may have no hand in maintaining 

a specific representation after the stimulus has been removed, or in such attractor-like dynamics. 
Finally, it is possible that even V1, the lowest-level visual processing stage in neocortex, shows a 



sort of working memory, or hysteresis, that is specific to past stimuli. This would imply that 

previously presented visual stimuli might influence the neural encoding of present stimuli, beyond 

simply determining instantaneous change in  the visual world. It also implies certain stimuli may 

be temporally overrepresented in cortical encoding relative to less salient stimuli. There is some 

evidence that this is the case in V1 [4]. To test the role of local recurrence in such a function, we 

might examine the effects of transiently interrupting recurrence (transient silencing) on subsequent 
neural encoding. If recurrence (uninterrupted local activity) affects encoding, a change in encoding 

should be seen after the interruption of recurrence.  

 This "loss of recurrent function" approach is enabled by current optogenetic methods. Transiently 

silencing excitatory neuronal activity in an area of cortex will interrupt the locally recurrent 

excitation "ringing" in that area. The tool for this manipulation is channelrhodopsin (ChR), a blue 

light-gated ion channel that, when open, leads to neuronal depolarization and action potential 

generation, and which allows fine temporal and spatial control of neural spiking in cortex. 

Temporal control results from the rapid activation and deactivation kinetics of the channel, and 

spatial control results from the ability to express this genetically encoded channel in specific 

subpopulations of cells. For example, we can selectively express ChR in parvalbumin-positive 
(PV+) interneurons, which make up 95% of all cortical interneurons, by injecting a virus 

containing the ChR gene flanked by loxP sites into a transgenic mouse expressing Cre 

recombinase under the control of the parvalbumin promoter. In the described experiment, the virus 

infects all nearby neurons, but ChR is only expressed in cells that also express Cre (the PV+ cells), 

because Cre is necessary to reorient the open reading frame of ChR to permit its transcription. In 

this way, the cortical inhibitory cell population can be specifically controlled and caused to spike 

synchronously. Reason suggests, and experiments confirm, that such strong, synchronous 

activation of inhibition robustly silences the spiking of pyramidal neurons.  

We use such a silencing approach to explore the role of cortical recurrence in sustaining the neural 
response to a brief, high contrast visual stimulus. In the anesthetized mouse, presentation of a 

visual full-field transition from dark to light produces a strong "ringing" response in V1, where 

"ringing" refers to the sustained network response specifically at gamma frequencies (30 to 80 Hz) 

for a second or more after the stimulus transition. This is a particularly long-lived response to an 

instantaneous stimulus, and we hypothesized that the later part of the response might be partially 

sustained by local excitatory recurrence. Interestingly, we find that interrupting local recurrence in 

vivo, or transient silencing of V1, a few hundred milliseconds after the visual transition does not 

eliminate the later part of the response or prevent the return of stimulus-specific activity in V1 

following silencing. In fact, contradicting our hypothesis, it appears that interrupting local 

recurrent activity has little effect on V1 maintenance of the representation. Using a model, we 

explore in this paper the possibility that inter-areal cortical interactions may underlie this 

"representation return" phenomenon. Another cortical structure (e.g., V2) may maintain the 
representation of the stimulus while V1 is silenced before reactivating V1 once V1 is released 

from inhibition. We use a simple, four-dimensional linear rate model with two internally identical 

but differentially connected cortical areas to explore the dynamics of coupling and necessary 

parameter regimes to fit the experimental data.  We go on to add non-linearities to the model to 

prevent negative firing rates and add N-methyl D-aspartate receptor (NMDAR) currents to 

reproduce the "representation return" result. The simple model reproduces many but not all of the 

in vivo effects and provides insights into possible mechanisms of cortico-cortical interaction and 

representation maintenance. 

 

2  Methods 
 

2.1  In vivo experiments 

 

2.1.1  Expressing channelrhodopsin in parvalbumin-positive cortical interneurons 

To express channelrhodopsin (ChR) specifically in parvalbumin-positive (PV+) cortical 

interneurons, we use a transgenic mouse line expressing Cre recombinase under the control of the 

PV promoter in a C57 Black 6 background. On post-natal day 0 or 1, each mouse pup receives  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

viral injection (AAV, serotype 2/1) of a vector containing, crucially, a fluorescent reporter protein 

(TdTomato)  and a floxed (flanked by loxP sites) ChR gene under the control of the strong and 

ubiquitous neuronal promoter EF1alpha. At P0 or P1, the skull is thin enough that a glass pipette 

containing virus may be advanced through it, into primary visual cortex. Virus is then pressure 

injected into the brain. 

 

 2.1.2  Electrophysiology 

The pups recover, and, at one month of age, when the critical period for vision has ended, the 

mouse is taken for acute surgery and electrophysiology. The mice are anesthetized with isoflurane 

inhalant anesthesia and put into a stereotax for checking expression and surgery. The fluorescent 

protein reporter of viral expression may be visualized through the skull. Expression of ChR in V1 

is thus verified, a craniotomy is made at this location, and a glass pipette is advanced about 100 

microns into the brain for recording of the local field potential (Fig. 1a).  

Visual stimuli are presented on a computer monitor situated in front of the contralateral eye (Fig. 

1a). A screen transition from black to white is presented at a frame rate of 60 Hz, while data is 

recorded in V1. In some trials, a blue light-emitting diode (LED) situated over the craniotomy 

illuminates the brain and activates the ChR-expressing PV+ cells at some time after the screen 
transition. Data is collected and analyzed in Matlab. 

 

2.2  Model 

 

2.2.1  Linear model 

a) 

c) 

b) 

Figure 1:  Methods. a) A mouse anesthetized with 

isoflurane and expressing ChR in PV+ cells of V1 is 

situated in front of a computer monitor presenting  

visual stimuli. A blinder has been placed on the  

animal's head to prevent the light from the blue LED 

from entering the eye and constituting a visual stimulus 

in its own right. The local field potential is recorded in 

V1, and the blue light can be turned on to activate the 

PV+ cortical cells. b) The basic organization of early 

cortical stages for visual processing. V1 and V2 each 
contain excitatory and inhibitory cell populations, and 

recurrent, feedforward, and feedback connections within 

and across areas. c) The author's model as analogous to 

the visual system in (b). Rate variables are assigned to 

each cell population, and all connections are given a 

weight. Inputs are denoted by    and   , the inputs to V1 

excitatory and inhibitory populations, respectively. 

These inputs are not scaled by a weight. 



To explain the observed experimental data, a simple rate model of two coupled "cortical" areas 

was designed (Fig. 1b). Each area contained an excitatory and an inhibitory population. Within an 

area, self-recurrence existed from excitatory cells onto the same excitatory cells and from 

inhibitory cells onto themselves. Furthermore, local excitatory and inhibitory populations were 

reciprocally connected. Between the two areas, the only existing projections were from excitatory 

cells onto both excitatory and inhibitory populations in the other area, in keeping with cortical 
anatomy.  

A linear rate model was derived from this structure. The model here has some similarities to the 

model described in Kang et al.. For the derivation of the rate model from a spiking model, see 

Kang et al.. Each distinct cell population is assigned a rate function variable (i.e., m(t), n(t), p(t), 

and q(t)), which represents the low-pass filtered (smoothed and continuous) firing rate of cells in 

that population. Each rate variable is influenced by the firing rate of presynaptic populations, 

which project with some weight (i.e., S, U or V) to the postsynaptic population, and the rate 

variables thus evolve in time according to the following differential equations: 
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where    and    are the synaptic time constants of excitation and inhibition, respectively. We 

choose 3 ms for    based on the kinetics of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate (AMPA) receptor, a major receptor for glutamate, the main excitatory neurotransmitter 

in the mouse central nervous system, and we choose    equals 6 ms, based on the longer kinetics 

of the gamma-amino-butyric acid A (GABA-A) receptor, which is the major receptor for 

inhibition in the mouse brain. m(t) and n(t) are the rate variables for the excitatory and inhibitory 

populations in V1, respectively; similarly, p(t) and q(t) are the rate variables for the excitatory and 

inhibitory populations in V2. V1 and V2 are assumed to be internally identical (this assumption 
may be supported, to some degree, by a similar anatomy of V1 and V2 in mice) but differentially 

connected. Within either V1 or V2,      and     are the weights of local synapses onto excitatory 

and inhibitory populations, respectively, from the excitatory population, while      and     are the 

local synaptic weights onto the excitatory and inhibitory populations from the inhibitory cells. The 

coupling between the two areas is determined by the weights of feeedforward and feedback 

connections.     and     are the feedforward synaptic weights from V1 onto excitatory and 

inhibitory cells in V2.     and     are the feedback synaptic weights from V2 onto excitatory and 

inhibitory cells in V1. Finally,    and    represent the feedforward inputs from the lateral 
geniculate nucleus (LGN) to V1 and are the sole sources of input to the network. 

 

2.2.1  Model with rectifying non-linearity 

The linear model does not constrain firing rates to be positive, but of course there are no negative 

firing rates in the brain. For this reason, we decided to add a rectifying non-linearity to the model, 

to test the findings in a more realistic model. Rectification was applied to the presynaptic firing 

rate of a population when calculating the effects on a postsynaptic population’s rate, that is, in 

each differential equation, the presynaptic firing rate is rectified (multiplied by 1 if it is positive 

and by 0 if it is not) before multiplying it by the weight of the connection. Note that the sum of all 
effects on the postsynaptic firing is not explicitly rectified. Simulation allows the examination of 

the behavior of the model under these conditions. 

 

2.2.3     Model with rectifying non-linearity and NMDA receptor currents 

In this section, we add a second excitatory current to the model, one with a greater synaptic time 

constant (slower channel kinetics), based on the N-methyl-D-aspartate (NMDA) receptor. This 

new current has a synaptic time constant of 60 ms and turns on only when the postsynaptic 



 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  In vivo data. a) A high contrast visual stimulus (screen transition from black to white) 

produces a long-lasting LFP response in V1. The gamma frequency of the "ringing" LFP 

decreases as the response decays. This response pattern can be seen both for single trials (top) and 

in an average (bottom). b) A brief LED pulse (red line below) transiently silences the "ringing" 

response following a stimulus. The black trace is the LFP response to a transition in screen color; 

the red trace shows the same response interrupted by silencing with the LED. Because in this 

layer, an LFP response is downward, the upward deflection in the red trace indicates silencing. c) 

Spectrograms for the responses in (b). Effects at right and left edges of the graphs can be ignored. 

population is sufficiently active (depolarized), both conditions for the activation of the real NMDA 

receptor. An NMDA receptor-like current, a, is added to the excitatory cell populations in V1 and 

V2. The magnitude of this current is itself determined by a differential equation depending on the 

postsynaptic firing rate: 
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where          is the 60 ms synaptic time constant of the NMDA current and r(V) is activation as 

a function of voltage. Here, we use the terms “voltage” and “population activity” interchangeably, 

because the rate model is a low-pass filtered version of the spiking network model. Again, we 

examine the behavior of the model with respect to the experimental data. 

 

3     Results 

 

3.1  In vivo experiments 
 

3.1.1  Expressing channelrhodopsin in parvalbumin-positive cortical interneurons 

We are reliably able to express ChR at high levels in the PV+ interneurons in V1.  

 

3.1.2    Electrophysiology 

The local field potential (LFP) in V1 shows strong stimulus-evoked responses. For example, a 

simple, high contrast visual stimulus, the transition of the computer screen from black to white, 

elicits an early, strong, and sharp response in the LFP followed by a “ringing” of the LFP (Fig. 

2a). This “ringing” is in the gamma frequency band (30-80 Hz), greatly outlasts the stimulus itself 

(can be seen for 1-2 seconds after the screen transition), and gradually decays in amplitude. This is 

interesting, because it has been classically proposed (and many studies support) that the visual 

system encodes the derivative of a visual stimulus rather than the absolute stimulus. The 

persistence of the representation is therefore a puzzle. Either continual feedforward drive from the 

lateral geniculate nucleus (the thalamic relay that receives information from the retina and sends it 

to cortex) or recurrence may explain the persistence. By interrupting recurrence, we ask: what is 

the contribution of cortical recurrence to the maintenance of the representation?   

In an attempt to interrupt recurrence, we transiently silence V1. This is accomplished by activating 

the ChR-expressing PV+ cells, a manipulation we show to robustly silence cortical activity. A 

flash of blue light over the craniotomy causes synchronous action potentials in many PV+ cells, 

which inhibit cortical pyramidal neurons. Because pyramidal cells contribute most to the LFP (due 

to their asymmetric morphologies and aligned orientations with respect to the pial surface), strong 

activation of the inhibitory neurons and thus strong silencing of the excitatory pyramidal cells 

results in a silencing of the LFP signal.  

When this silencing is preceded by a strong visual stimulus, does interrupting excitatory cortical 
recurrence in V1 eliminate the representation of the stimulus? In vivo experiments suggest that, 

surprisingly, the representation returns after silencing (Fig. 2b and 2c). This raises a question. 

Where is the representation stored while V1 pyramidal cell activity is missing? It may be that 

feedforward drive from the lateral geniculate nucleus (LGN) continues even into this post-

silencing period and this is the source of the activity return. Alternatively, another structure may 

share recurrence with V1, and this structure may store the representation while V1 is silenced.  

 

2.2    Model 
 

2.2.1  Linear model 

A model was built to test whether two recurrent, coupled cortical areas could recapitulate the 

experimental data. Specifically, would it be possible for one cortical area to store the 

representation by recurrent excitation while the other was silenced? Would it be possible for the 

continuously active cortical area to then feed that representation back into the silenced area once 

inhibition was removed? 

The exact ratios of synaptic weights determine the system’s behavior, and it is not straightforward 

to assign a specific function to each connection. However, certain connections can be seen to play 

a larger role in certain aspects of the response. I will describe features of the model’s behavior and 

mention parameters that strongly modulate these features. Computer simulation with parameter  



 

 

 

Figure 3:  Linear model. a) The response of the linear model to an input pulse with matched 

excitation and inhibition. b) Under-, critically and over-damped regimes for model operation 

determined, largely by the strength of inhibitory self-recurrence. c) Increasing the strength of the 

inhibitory feedback loop to V1 increases the frequency of the network oscillation. d) Even a very 

large input to the inhibitory cells of V1 cannot silence the linear model, because positive and 

negative firing rates are symmetric in this model.  

 

Figure 4:  Model with rectifying non-linearity. a) No oscillations and no activity return after 

silencing. b) Unmatched excitatory and inhibitory inputs into the system rescue oscillations, but 

this may not be physiologically relevant. 
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Figure 5:  Model with NMDAR currents. a) A pulse to the system with matched excitation and 
inhibition produces a ringing in the gamma frequency range. A subsequent silencing pulse to the 

inhibitory cell population in V1 (akin to the LED flash in experiments) transiently silences V1 but 

does not completely silence V2. Following this silencing, activity returns to V1, driven by the 

continued resonance in V2. b) Closeup of the silencing pulse in (a).  

 

sweeps provides a number of insights in the system’s behavior, as will be described below.  

A first major result: the linear model easily reproduces the “ringing” response of the LFP (Fig. 

3a). A brief step pulse to the linear model matched in excitatory (  ) and inhibitory (  ) drive kicks 

off an oscillation in the network that decays away to baseline after some period of time. The 

persistence of this ringing, or the damping time constant of the system, depends largely on the 

ratio of     to    . As     increases, the behavior of the system transitions from under-damped to 

over-damped (Fig. 3b). The natural frequency of the system, or the frequency of the undriven 

response as it decays, is determined in large part by the strength of the inhibitory feedback 

connection relative to the other synaptic connections (Fig. 3c).  

Connection strengths must be rather balanced in the model to prevent unbounded activity. For 

instance, if     or     becomes too strong, the model enters a regime of unbounded oscillatory 

growth. This is also true for excitatory and inhibitory feedforward and feedback loops. Excitation 

and inhibition must be rather balanced to prevent runaway oscillatory activity.  

One feature of the linear model that makes it non-ideal for comparison with the experimental data 

is an inability to silence the system by perturbing n, the firing rate of inhibitory cells in V1 (Fig. 

3d). This perturbation matches, conceptually, the in vivo manipulation of PV+ cell activation. 

Because inhibition and excitation are symmetric in the model (negative firing rates are valid), 

perturbation of either population acts as an input to the network and elicits oscillatory activity. 

 

2.2.2    Model with rectifying non-linearity 

Adding a rectification non-linearity to prevent negative firing rates eliminates the symmetry of 

excitation and inhibition. Thus, in the rectified, non-linear model, silencing is possible by 

perturbation of n (Fig. 4a). Strong, simultaneous activation of many interneurons in cortex can 

also be thought of, conceptually, as a strong pulse input to inhibitory cells exclusively. This is the 

formulation used in the model to perturb n with respect to m, p, and q. The inhibitory pulse 

increases n and decreases m, as would be expected based on the analogous experimental data.  

Interestingly, however, a tendency for oscillation is also somewhat disrupted in the non-linear 
model. While the linear model can ring for some time without continual drive to the network, the 

non-linear model damps faster without input, because entry into what would be a negative firing 

rate regime shuts down all spiking and returns the network to its baseline, inactive state (Fig. 4a). 

With zero drive, the non-linear, rectified network tends to oscillate around zero; thus, the response 

to a pulse input damps rapidly. Increasing excitatory recurrence can lengthen the duration of the 
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response to a pulse input, but if excitatory recurrence is increased beyond a certain point, the 

system becomes unstable.  

Based on these results, it follows that non-matched excitatory and inhibitory inputs, or rather 

excitatory drive that sufficiently exceeds the inhibitory drive, is able to drive oscillations in the 
network. These oscillations as a result of unmatched excitation and inhibition decay away as the 

difference between excitatory and inhibitory inputs decreases (Fig. 4b).  

When parameters are tuned such that the response outlasts the stimulus (i.e., response lasts about 1 

second, in keeping with the experimental data), a pulse to the V1 inhibitory cell population is able 

to silence V1 activity. (The pulse also decreases but does not silence V2 activity.) Notably, the 

response does not return in V1 after silencing, and parameter sweeps suggest that no reasonable 

configuration of synaptic weight parameters in this set-up, with these synaptic time constants (  = 

3 ms and   = 6 ms), will give “representation return” after silencing. The logic behind these results 
is: because the longer synaptic time constant for inhibition ensures inhibition always lags 

excitation, and because the fairly balanced excitatory and inhibitory synaptic weights (as dictated 

by the electrophysiology) ensure that excitation and inhibition in the network are closely coupled, 

the shutting down of excitation will always be followed at a short delay by the shutting down of 

inhibition. Furthermore, feedback excitation will be lagged by feedback inhibition. In this system, 

the lagging inhibition will prevent the regeneration of excitation after silencing, unless the system 

is itself unstable, showing oscillations that grow without bound.  

 

2.2.3   Model with rectifying non-linearity and NMDA receptor currents 

NMDA currents are much slower than AMPA currents; thus, they may provide the necessary 
stored excitation in the network to explain the “representation return” phenomenon in the 

experimental data. In fact, adding these NMDA receptor currents has a number of interesting 

effects on the network (Fig. 5a and 5b). First, matched excitation and inhibition can now drive 

gamma-frequency oscillations in V1 and V2. Second, a pulse to the V1 inhibitory neurons 

accomplishes robust silencing, but V2 is able to feed a stimulus representation back into V1 after 

silencing. In the essence of these details, the model exactly matches experimental data.  

 

2.2.4     Differences between the best model and experimental data 

Some differences exist between the simple model and the experimental data. Of course, the model 
captures only a tiny fraction of the complexity of the real brain. The model does not show activity 

in multiple frequency bands simultaneously, as does the real cortex, nor does the model’s 

“ringing” response to an instantaneous stimulus decrease in frequency as it decays, as in the real 

cortex. 

 

4             Discussion 

The final model, with a rectifying non-linearity preventing negative firing rates and the addition of 

NMDA receptor currents, is able to demonstrate many of the features of the in vivo physiology. 

The model is able to reproduce gamma frequency band “ringing,” the persistence of a response 

that far outlasts the duration of the stimulus, silencing by the activation of many inhibitory 

neurons, and representation return following silencing (once V1 has been relieved from 

inhibition). Interestingly, the longer synaptic time constant of the NMDA receptor is necessary to 

observe many of these effects. In the final model, the activation of NMDA receptor currents 

transitions the network from an over-damped or critically damped state to a state that can show 

prolonged ringing based on excitatory and inhibitory recurrence, and the NMDA receptor currents 

allow V2 to feed a representation back into V1 after V1 silencing.  

Interestingly, recurrence in this model depends on the presence of inhibition. In a purely excitatory 

model, the system is unstable or does not oscillate. The important role of inhibition for recurrence 

is also seen in the fact that the inhibitory feedback loop to V1 is what largely decides the 

frequency of the persistent response to a transient stimulus. Increasing local excitation or feedback 

excitation tends to decrease this “resonant” frequency, because the strength of inhibitory feedback 

is lessened relative to these excitatory connections. If either the excitatory or inhibitory loops 



become too strong, the system becomes unstable, and in fact this stability requirement constrains 

the excitatory and inhibitory synaptic weights to a relatively balanced regime. This matches the 

physiological reality – in the cortex, and particularly in feedforward projections to the cortex, 

excitation and inhibition are generally relatively balanced.  

In conclusion, this very simple model can explain some phenomena of the physiological data. 

Whether or not this model has anything to do with the real mechanisms in the brain is a question 

that I shall not attempt to answer. However, it is interesting that even a simple model of two 

recurrent, coupled cortical areas can recapitulate the experimental data, suggesting the 

mechanisms at work in the brain may have something akin to the fundamental behaviors of 

coupled oscillators with balanced excitation and inhibition. 
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