
 

Applying Transcranial Alternat ing Current 
Stimulation to the Study of Spike Timing 
Dependent Plasticity in Neural Networks  

 

 Brian Carvalho      Eric Morgan                Taylor Ruggiero 
 UCSD Bioengineering   UCSD Computer Science   UCSD Bioengineering  
 bcarvalh@ucsd.com       e1morgan@ucsd.edu          truggier@ucsd.edu 
    

Abstract 

In recent years transcranial alternating current stimulation 
(tACS) has emerged as a popular tool for the study of 
rhythmic brain activity. A great deal of focus has been 
directed toward applying tACS to modulate the spike timing 
dependent plasticity (STDP) of occipital neural networks for 
potential therapeutic purposes. While little clinical evidence 
has emerged supporting the efficacy of tACS as a treatment 
for cognitive and psychological disorders arising from the 
occipital lobe the ability of tACS to entrain and modulate 
the frequency, and consequent strength, of occipital network 
firing has been well documented in several EEG studies. 
However, little work has been done to develop robust 
models that can be used to study this effect in silico. In the 
present study we develop a micro-network of modified 
FitzHugh-Nagumo neurons to model of the effect of tACS 
on naturally oscillating neural networks. We conclude that 
while tACS modulates the resonant frequency of the 
network via the STDP of its constituent neurons, its effects 
are transient and that more work is necessary to accurately 
model the physiological dynamics of large scale neural 
network firing. 

 

1  Introduction  

The firing oscillations of occipital neural networks have been correlated to 
normal cognition and working memory [1]-[2]. A majority of these 
oscillations fall within the canonical alpha band frequencies. The 8-12Hz 
spectrum detected by occipital EEGs, and have become a hallmark of a 
healthy mental state. Deviations from the alpha rhythm have been implicated 
in a number of cognitive and psychological conditions ranging from reading-
impairment to late stage Alzheimer’s disease [3]-[4]. Yet despite these 



implications little clinical attention has been given to treatment options that 
directly modulate the occipital alpha rhythm as their point of effect.  

Transcranial electrical stimulation has emerged as one such treatment option. 
Specifically transcranial alternating current stimulation (tACS) has been 
shown to alter rhythmic brain activity and thus has the potential to alter 
cognition and perception [5]. tACS is thought to act by affecting the spike 
timing dependent plasticity (STDP) of neural networks. STDP explains the 
strengthening or weakening of a synapse in terms of the timing between 
presynaptic and postsynaptic action potentials. When the firing of a 
presynaptic neuron precedes that of a postsynaptic neuron a causal link is 
generated between the pair which is embodied by the strengthening of their 
shared synapse. Similarly, when the firing of a presynaptic neuron follows 
that of its postsynaptic partner an acausal relationship is created and the 
synapse is weakened. By entraining and modulating the resonant frequency at 
which neural networks fire tACS is able to alter the timing between pre and 
postsynaptic potentials and consequently alter network firing strength.  

Despite growing interest in the use of tACS to manipulate neural networks 
there has been little effort to generate in silico models of its effects. The 
authors believe that an accurate digital simulation of tACS on a neural 
network with synaptic plasticity would be an invaluable tool for predicting 
outcomes of time consuming and costly clinical tests. The present study 
demonstrates the implementation of such a model using a micro-network of 
FitzHugh-Nagumo neurons. 

 

2 Methods  

2.1 Modif ied FitzHugh-Nagumo  

To balance physiological realism with computational tractability we drew 
inspiration from the FitzHugh-Nagumo (FN) model. Although inherently less 
physiologically accurate than the similar, but more complex, Hodgkin Huxley 
model, the FN model’s simplicity to implement and accurate mimicking of 
general neural spiking behavior make it an ideal first choice for the purposes 
of generating a neural micro-network. The specific FN model used here was 
originally developed by Kato [4] and is governed by the following: 
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Where v is the neuron voltage, w is the recovery variable, and Iion is the ionic 
current impinging on the neuron. The Iext term is the globally applied external 
current acting on the network and is meant to recreate the background stimulation 
a neural network receives as a part of conductive living tissue. Similarly, to 
simulate the indiscriminate effect of alternating current stimulation a tACS term is 
implemented affecting each neuron in the network.  



 

The alterations to the canonically FN equations made by Kato allow for the 
addition of synaptic connections which are represented via synaptic currents 
(Isyn) between neurons and exponential synaptic conductances: 
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Where is the gij is the conductance of the synapse between neuron i and neuron j, 

V is the reversal potential, and τsyn is the decay time for the synaptic conductance. 

 

To incorporate synaptic plasticity while maintaining the simplicity of the network 

the canonical additive model of STDP was applied solely to excitatory synapses 

while inhibitory synapses were left static. The plasticity of the excitatory synapses 

is given by:  
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Kato was also referenced for initial parameter values: ε =0.005, a = 0.5, b =0.12, 

Iext = 0.2, Vrev excite = 0.7, Vrev inhib = 0, τsyn = 0.2, τ+ = 2.0, τ- = 1.0, A+ = 0.01, A- = 

0.006. 

 

 

2 .2  Neural  Network Design  

To efficiently study the effects of tACS on an oscillating neural network, we 
designed a simple three-neuron closed network connected by three excitatory 
and three inhibitory synapses. Excitatory and inhibitory connections 
connected the neurons in a clockwise and counterclockwise ring respectively 
(Figure 1). The excitatory synapses were made plastic and followed equations 
(6-8) while the inhibitory synapses were made static. This asymmetry in the 
plasticity of the synapses was designed to ensure the relative stability 
afforded by the ring of inhibitory synapses would not be affected by tACS and 
confound its effect on the excitatory synaptic weights. 



 

Figure 1: Neural Network Design. 
Three neurons connected clockwise by excitatory STDP synapses (arrows) 
and counterclockwise by static synapses (T’s) are stimulated by an 
oscillating tACS. 

 

2.3 Simulations  

To gauge the fidelity of the model to the physiological effects of tACS 
observed by Zaelhe a suite of tACS frequencies was applied to the neural 
micro-network [3]. This suite consisted of frequencies both above and below 
the resting firing frequency(𝑓𝑜): 0, 0.3𝑓𝑜, 𝑓𝑜, and 1.1𝑓𝑜. At each applied 
frequency the network was analyzed from time 0 to 200. This time window 
was divided into 3 regions: from time 0 to 45 during which the network was 
allowed to settle at 𝑓𝑜, time 45 to 180 during which tACS was applied, and 
time 180 to 200 during which no tACS was present.  

 

The spike trains and excitatory synaptic weights of each neuron in the 
network under all conditions were recorded. Under no applied tACS the 
network will oscillate at 𝑓𝑜 and the synaptic weights should remain stable. 
When the applied tACS is not equal to 𝑓𝑜 the excitatory synaptic weights 
should decrease in agreement with the observation of Zaelhe [3]. When the 
applied tACS is equal to 𝑓𝑜 the synaptic weights should increase. These 
effects should be seen both during and after tACS application if the system is 
physiologically sound. 

  

 

 

 

 

 

 

 



 

3 Results  

3 .1  STDP  

 
Figure 2: STDP Windows 

Asymmetric STDP windows as seen at (a) tACS = 0, (b) tACS = 0.3fo, 

(c) tACS = fo, (d) tACS = 1.1fo 

 

To ensure that the applied tACS did not interfere with the plasticity of the 

excitatory synapses the STDP windows for each synapse was recorded under 

each tACS frequency (Figure 2). Excitatory synapses exhibited the behavior 

predicted by the canonical asymmetric STDP window under all conditions [5]. 

It is interesting to note that although the profile of each STDP window 

matches that found in the literature there are significant data gaps in the range 

t𝑝𝑟𝑒   t𝑝𝑜𝑠𝑡   ±(10  50). This is likely an artifact of the parameter values 

establishing an inherent reaction time to pre and postsynaptic neurons. 

 

 

 

 

 

 

 

 

 

Synaptic Weights vs. tpre – tpost, tACS = 0 Synaptic Weights vs. tpre – tpost, tACS = 0.3𝒇𝒐 

Synaptic Weights vs. tpre – tpost, tACS = 𝒇𝒐 Synaptic Weights vs. tpre – tpost, tACS = 𝟏. 𝟏𝒇𝒐 



 

3.2 No tACS   

 

 

Figure 3 Neural Network at tACS = 0  

 

Without tACS the network settled at a regular firing rate 𝑓𝑜 (Figure 3). The 
synaptic weight of the first synapse increases until reaching the imposed limit 
while the second and third synaptic weights become zero. This is a result of 
the structure of the excitatory ring which causes neuron 1 to fire first, 
followed by neuron 3, followed lastly by neuron3. With the synapses 
constructed such that neuron 1 leads to 2, 2 leads to 3 and 3 leads to 1 this 
firing order causes the postsynaptic neurons for both synapses 2 and 3 to fire 
first thus lowering the synaptic weights of neurons 2 and 3.  

 

3 .2  tACS = 0.3𝐟𝐨   

 
Figure 4: Neural Network at tACS = 0.3𝐟𝐨.  

 

After establishing the steady state behavior of the network a tACS of 

0.3𝑓𝑜was applied (Figure 3). Under these conditions the network did not react 

as predicted[1]-[2]. Rather than each synaptic weight decreasing over time, 

the network behavior closely resembled that of steady state. An upward spike 

in the synaptic updates of the synapse between neuron 2 and 3 can be seen at 

time 50; this is likely an artifact resulting from the onset of the tACS. 

However after every 35 time units following time 50 a decrease in the 

synaptic weights can be seen. This corresponds to the frequency with which 

Network Firing, tACS = 0 Synaptic Weights over Time, tACS = 0 

Network Firing, tACS = 0.3𝐟𝐨 Synaptic Weights over Time, tACS = 0.3𝐟𝐨 



tACS pulses and influences the network. This indicates that in order for the 

effects of tACS to be prominent stimulation must be more frequent. 

 

3.3 tACS = 𝐟𝐨   

 

 

F i g ure  5 :  Neural Network at tACS = 𝐟𝐨.  

 

When the network is driven with a tACS at 𝑓𝑜, it’s spike train and synaptic 
weights resemble the steady state. Again there is a small upward spike in the 
synaptic weights of neuron 3, but this is likely an artifact of the tACS 
initiation. Contrary to our predictions and clinical results our network does 
not experience any increase in synaptic weights due to a tACS applied at the  
network resting frequency. 

 

3 .3  tACS = 1.1𝐟𝐨   

 

 

F i g ure  6 :  N e ur a l  N e t w o r k  a t  t A C S  =  1 . 1 𝐟𝐨  .   

 

At a tACS frequency of 1.1𝑓𝑜, just above the resting frequency of the 
network, the synaptic weights of neuron 2 increase linearly once tACS 
application begins. However when tACS is turned off at time 180, the 
synaptic weights do not begin to trend toward their steady state values but 
rather continues to increase. This behavior aligns with what we have seen 

Network Firing, tACS = 𝐟𝐨 Synaptic Weights over Time, tACS = 𝐟𝐨 

Network Firing, tACS = 1.1𝐟𝐨 Synaptic Weights over Time, tACS = 1.1𝐟𝐨 



physiologically from entire neural networks [1]. However the synaptic 
weights of neurons 1 and 3 do not exhibit the same linear behavior, instead 
they oscillate until tACS is turned off at which time they trend back to their 
steady state values.  

 

4  Discussion 

It has been seen clinically that tACS applied at the resting frequency of a 
neural system causes an increase in synaptic weights and synchrony between 
the neurons: an effect that remains for approximately an hour after tACS 
ceases [1]. If the effects of tACS could be made to be semi-permanent it has 
the potential to become a novel and effective therapy for a variety of 
cognitive disorders stemming from pathologically active or inactive neural 
networks. Developing in silico neural networks with which to test the efficacy 
of tACS stands to reduce the cost and time associated with the research 
needed to translate this therapy from the lab to the clinic. The present study 
created such a micro-network composed of modified FitzHugh-Nagumo 
neurons implementing additive STDP and attempted to recapitulate results 
found from in vivo studies. Although the plasticity of the neurons behaved as 
expected the simulation output did not match what has been clinically 
observed: synaptic weights did not diminish as the frequency of tACS 
deviated from the resting frequency of the network and the effects of tACS 
did not persist following its removal. This could be due to network size, the 
FitzHugh-Nagumo implementation, or the connectivity of the network. It is 
possible that more than three neurons are required for the effects of tACS to 
propagate. It could also be that the FitzHugh-Nagumo neuron is not a suitable 
physiological representation of a neuron for the purposes of studying the 
effects of tACS. A model in which hundreds of Hodgkin-Huxley neurons are 
connected via a random assortment of synapses may better reflect the effects 
of tACS in vivo and warrants further study.  
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