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Abstract  
The hippocampus is identified as an important structure in the cerebral cortex of mammals for forming 

new memories, storing these memories independently and retrieving them. The ability to associate to and 

distinguish between similar experiences forms an important component of learning. This project will 

attempt to model the learning dynamics of the Dentate Gyrus (DG) and CA3 regions in the hippocampus 

which revolve around two major methods of Pattern Separation and Pattern Completion. Based on 

previous research, our computation model incorporates Hebbian learning rule. We attempt to implement 

the key concept of Pattern Separation and highlight the constraints involved in our model. 
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1 Introduction 

 

Electrophysiological experiments, lesion studies and immediate early-gene tests performed by 

Gold and Kesner [1] on mice have proven that the hippocampus is critical in pattern separation and 

pattern completion. Specifically, the DG and CA3 regions of the hippocampus are responsible in helping 

mammals identify different objects or patterns and recognize patterns when a partial or distorted input is 

given. This phenomenon is called associative memory. David Marr [2] suggested the presence of 

recurrent loops within the hippocampus that enable auto-association and hence, pattern completion. 

Since then, many research groups have attempted to model the hippocampus. 

 
1.1 Pattern separation and Pattern Completion  

  
Pattern  separation  [3]  is  the  process  of  distinguishing  between  two  similar  objects  and  

 
storing them in an orthogonalized fashion. Pattern completion deals with reconstruction of an experience 

based on previously stored memory given partial or distorted information. These are seen in Figure 1. In 

an experiment conducted by Kesner et al. [2], rats trained to spot food in one of a given set of four 

possible locations were let inside a black box. Even after the removal of all available cues amongst a 

control group, the rats exhibited excellent pattern completion. In a second test group, neurotoxic 

injections that affected the CA3 subregion of the hippocampus was administered. These CA3 lesioned 

rats showed progressive increase of errors as the number of given cues were reduced. This experiment 

proved to be a hallmark in hippocampal studies for a few significant reasons – CA3 was identified to be 

the specific region of Hippocampus responsible for spatial pattern completion; the importance of 

hippocampus in memory recall and its application under novel situations was reinforced. The setup is 

shown in Figure 2. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1.1 Conceptual representation of Pattern Separation and Completion. [3] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1.2: Experimental setup used by Gold A. et. al. [1] 

 
 

1.2 Basic Hippocampal Circuitry  

  
Hippocampus   implements   information   transmission   unidirectionally   in   three   distinct  

 
stages [5] as seen in Figure 3. Projections of the axon from layer 2 of the Entorhinal Cortex (EC) reach 

the Dentate Gyrus (DG) and also proceed to make synapses with the next stage, CA3. These happen via 

Perforant Path (PP), acting as the crucial interface between the cortex and the hippocampus. The 

unmyelinated axons of the DG project onto CA3 with the help of mossy fibres. An interesting aspect of 

region CA3 is that it receives three major excitatory inputs [1] – from (i) EC, (ii) DG and (iii) its own 

recurrent collateral (RC) input. The third stage, CA1 has inputs from the third layer of EC and CA3 by 

means of perforant path and Schaffer Collaterals (SC) respectively. A schematic of the network in the 

hippocampus is shown in Figure 1. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.2.1 Schematic representation of Hippocampal circuitry 

 
 

It is known from previous research [5] that there are about 107 DG granule cells in man which 

sparsely, yet strongly synapse with the CA3 pyramidal cells (~ 2.3 X 106 in man). It has been concluded 

that each CA3 cell receives not more than 50 mossy synapses and the maximum inputs for CA3 comes 

from RC. 

 
Earlier computational models have suggested that DG performs Pattern Separation; CA3 is 

involved in both spatial pattern separation and completion and CA1 takes part in pattern completion and 

temporal pattern separation. 

 
1.3 Goals   

In  this  project,  we  have  attempted  to  model  the  hippocampal  regions  involved  in   
 
spatial pattern separation. We analyzed two different computational approaches to demonstrate how 

pattern separation and completion might occur. Both the methods are a form of Hebbian learning. The 

first method uses logic for learning simple binary inputs by updating the CA3 memory bank. The second 

method applies principles of neural networks to implement modified Hebb learning rule. We are 

exploring the possibilities of extending the same to spiking neurons. 

 

2 Methods 

 

2.1 Feedforward associative network model: Binary-valued synapses 

 

The feedforward network model is a simple approach to trace how information is relayed from 

the entorhinal cortex to the hippocampal circuit. Figure 2.1.1.a shows three entorhinal neurons (red, 

blue, and green) synapsing onto eight dentate gyrus neurons (labeled purple). Before each synapse 

between the entorhinal and dentate gyrus neurons show learning by increasing their synaptic 

conductances, a weight matrix is constructed containing weights (Fig. 



2.1.1.b), or the strength of synpases, denoted by a randomly generated number between 0 and 1. For 

synapses containing a value of 0.8 or higher, it will denote a strong synaptic connection otherwise 

synapses are labeled as weak synaptic connections. Each weight is stored and accessed in a two 

dimensional matrix, representing the number of entorhinal and dentate gyrus neurons in a network 

model. Synaptic conductance values between the dentate gyrus and CA3, and between CA3 and CA1 

neurons, do not contain starting weights that are randomized. These weights are initalized by setting their 

conductance values to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A. B.  
Figure 2.1.1 (a) Generalized ciruit of binary network, and (b) illustrating a weight matrix to denote how the strengths 

of each synapse is stored and archived. 

 
The inputs of the model are given as binary inputs to entorhinal neurons. An input of one indicates 

that a particular neuron has been stimulated and an input of zero indicates the neuron did not receive a 

stimulus. Thereafter, for each trial, the network stores a history of its strengthened conductances to determine 

how much the network has learned over time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A.      B.         

Figure 2.1.2 (a) Example of a trial   with inputs 1, 1, 0, and (b) Binary information  
consolidation at the site of the CA3 neuron subregion. 

 



Figure 2.1.2.a presents how the synaptic connections are mapped and represented by the weigth 

matrix, specifically for input sequence 1, 1, and 0. Before the code 1, 1, 0 arrives to CA3 neurons via the 

mossy fiber pathway, the code is sent directly to CA3 neurons via the perforant path from the entorhinal 

neurons to determine if a similar input already exists in the CA3 memory bank. The network will 

perform a search and comparison computation on the CA3 memory bank. This computation will search 

for a match between each stored array and the input sequence code to determine if the pattern has been 

previously learned. In the case of an identified learned pattern, the network will relay the matched stored 

information from the memory bank to the CA3 neuron via the recurrent collaterals. This information will 

then be relayed forward to the CA1 neurons. However, before a pattern can be learned by the network 

and its information stored in the memory bank, a series of repeated trials must occur in order to reach a 

threshold where the correct code is stored in memory. Figure 2.1.2.b shows how the CA3 neuronal 

subnetwork consulates binary code from each subpopulation in the CA3 area. 

 
2.2 Artificial Neural Networks model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2.2.1 A snapshot of the network used 

 
 

We also realized this network using concepts from neural networks and implemented learning 

using a modified Hebb rule. All neurons in the EC were connected to every neuron in the DG as well as 

CA3. However, as studies by Kesner et al [5] suggested, the neurons in DG are grouped in such a way 

that no two neurons in CA3 receive an input from the same subset of neurons in DG. Also, the number of 

neurons in DG is about a hundred times greater than that of the number of neurons in CA3. This 

indicates that pattern separation in the DG is achieved by the physiological manner in which the neurons 

are connected. Learning, in the hippocampus, occurs in the perforant pathways between the EC and DG 

and the EC and CA3. There’s no associative learning between DG and CA3. Learning also occurs in the 



recurrent network between the neurons in the CA3. These help complete patterns by exhibiting 

associativity. Hebb rule was used to implement long term potentiation and depression by training the 

neurons with a set of patterns. 
 

Wij = αXi(Tj - Yj) 

When the input and output neurons of a synapse are both on, the synapse strengthens. Else, it 

weakens. This way, when a synapse is repeatedly strengthened, long term potentiation occurs. The neural 

network that was created was tested using similar and slightly different partial inputs. In addition, to test 

the variability in the input that the system can tolerate, gaussian noise was introduced. This was done to 

check if the network gave a reasonably meaningful match with the trained input. The results are shown in 

the section to follow. 

 

 

3 Results and Discussion 

 

3.1 Feedforward associative network model: Binary-valued synapses 

 

The network was trained to learn a pattern through multiple trials. Figure 3.1.1 shows an 

example of the network attempting to learn the pattern 1, 1, 0. This example underwent six trails in 

order to learn the specific input sequence. As explained previously, each consecutive trial archived 

information about its previous history until the network fully learned the sequence, in this case 1, 1, 

0. This particular behavior in the model illustrates how hippocampal neurons in-vivo might process 

information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1.1 Example of a training program to learn inputs 1, 1, 0. There are six trials that were performed in order 

for the program to learn the pattern. 



 
3.2 Application of artificial neural networks model 
 

The system was designed with 4 neurons at the Entorhinal cortex and 3 neurons at the CA3 

region. The number of neurons in the dentate gyrus was very high (1000). When we gave a lesser 

number of neurons in the DG, we noticed that either proper learning never occurs. The system either 

entered into an infinite loop, changing the weights according to the training inputs presented or it 

claimed to have trained the system but was unable to complete patterns or even recognize the correct 

pattern. 
 

The network was trained for a set of 3 inputs as shown in Table 1. When the inputs given 

were very similar with drastically different outputs, we observed that the system took long to train, 

sometimes even more than a thousand epochs, where an epoch is defined as the number of times the 

entire training set is presented to the system repeatedly so as to ensure that it has learned them. 

Hence, we needed to find inputs that were quite different before we could train the system to 

generate the desired outputs. With the training set given in Table 1, the system required no more than 

4 epochs to train. 

 
Table 1: Training Input and Output patterns used 

 
Input Pattern Output Pattern 
[1, 0, 0, 1] [-1, 1, 1] 
[0, 1, 1, 0] [1, -1, -1] 
[0, 1, 0, 1] [1, -1, 1] 

 
When a partial input was given, the system was able to identify it as a part of one or more of the training 

inputs. Screenshots of the system’s performance are given below, in Figure 3.2.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.1 Performance of the system when partial inputs were given. Pattern Completion is exhibited by the 

system. 
 



 

Noise analysis 

 

To test the performance of the system when noise was introduced into the input, we added 

Gaussian noise (using the random.gauss(mean, standard_deviation) function in Python) to the input 

at the EC. We noticed that the system took longer to train. With zero noise the system learned the 

patterns in no more than 5 epochs but when noise was introduced, a minimum of 5 epochs was 

required for it to learn them. However, as the amount of noise was increased, the number of epochs 

needed did not seem to increase significantly. 

 

 
Figure 4.2.1: Number of epochs to train the system at each trail for different amplitudes of Gaussian noise introduced 

 

 
       

 

Also, when noise was introduced, the system wasn’t able to detect all the closest patterns. 
 
 
 
 
 
 
 

 
Figure 4.2.2 Output when noise with mean 0.5 and standard deviation of 0.5 was given to the system. Pattern 

completion occurs, but not all closest patterns are recognized. 
 
 

 



4 Conclusion 
 

In this project, we were able to model a simplified version of the network in the hippocampus 

that is responsible for associative learning and accomplishes pattern completion. As mentioned 

previously, pattern separation occurs physiologically as the neurons in the dentate gyrus are clustered 

into groups, each of which activate or synapse onto a different set of CA3 neurons. Also, the CA3 

recurrent loop plays a key role in pattern completion. During training, if two or more output neurons 

are simultaneously activated by a certain input pattern, the recurrent collaterals between them 

strengthen over time. When presented with a partial input that activates only part of the output, the 

recurrent collaterals recognize the pattern from memory and help activating the rest of the output 

neurons. 

 

5 Future Directions 
 

The next step is to implement backpropagation rule from CA3 to EC and DG to EC layers 

will enhance the robustness of the network to partial inputs. Inclusion of inhibitory interneurons to 

the model will bring it closer to a biophysical system that doesn’t just operate on excitatory signals.  

To simulate brain activity more realistically, the artificial neurons can be replaced with spiking 

neurons. If the challenging task of training spiking neurons is overcome, a reasonably accurate 

hippocampal model can be obtained. In addition to the above mentioned possible improvements, 

modeling CA1 region will round up and complete the hippocampal model with pattern completion 

capabilities. 
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