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Abstract 

An auditory nerve model based on Meddis model is test in this project. In 
this model, the input sound was decomposed into different constituent 
single frequencies, and was therefore responded by individual hair cells. 
Mechanical amplification during the transduction process was taken into 
account. The deflection was translated into the change in membrane 
potential, which was subsequently used as the input to the Meddis model. 
The spiking patterns were observed under pure tone and human voice 
stimulations. Phase-lock phenomenon, adaptation, and spiking rate pattern 
indicate that this model reflects some of the distinct properties of the hair 
cell. 

 

1 Introduction  
 

1 .1  Hea r ing  M echa nis m o f  Hu ma n Ea rs  

A human auditory system is one of the many examples of finely engineered functional 
systems that are fabricated by the nature. The sound wave is collected by an elegantly shaped 
auricle and introduces the vibration of the tympanum. Such vibration transmits through the 
three cartilaginous structures, malleus, incus and stapes, to the sound processing center of 
cochlea (Figure 1). The cochlea is the critical organism where mechanoelectrical 
transduction takes place [1]. 

 

1 .2   S t ruc ture  a nd  fu nct io ns  o f  the  hu ma n co ch l ea  

The cochlea forms a spiral structure, and if we unfold it, we obtain a strip-like structure. The 
detailed structure of cochlea is very complicated, so in this project we only focus on the hair 
cell behavior in the cochlea (Figure 2). There are thousands of hair cells in the cochlea, 
between the tectorial membrane and the basilar membrane. They are specialized sensory 
epithelial cells. Two types of hair cells are present: inner hair cells (IHCs) and outer hair 
cells (OHCs). OHCs are believed to play a role in the active amplification process, and also 
the decomposition of complex sound [6]. In this project, we focus on the mechanoelectrical 
transduction that is realized by IHCs. The sound decomposition function of OHC is 
mimicked by a Fourier transform and threshold filtering process. 

 



1 .3   Inne r H a ir ce l l s  

The hair cells in different positions on the cochlea respond to different frequencies of sound. 
It is found that the hair cells in the deeper position of the cochlea are stiffer and respond to 
lower frequencies of sound. The heights of the stereocilia also increase from the base to the 
apex of the cochlea. This together with graduate change in the thickness of the basilar 
membrane gives rise to the sensitivity to a broad range of frequencies. The sound wave 
triggers the movement the vibration of the basilar membrane, and subsequently causes the 
hair cells to move again the stationary tectorial membrane. The deflection of hair bundle or 
the bundle of the stereocilia and kinocilia leads to the opening of the potassium channel by a 
tip link connecting the top of every stereocilium. This unique mechanical gating mechanism 
ensures the sensitivity of the system to the rapid change in the frequency of the sound.  

 
Figure 1: The structure of a human ear. The hair cells sit in the middle of tectorial and basilar    

membranes. The structure of the hair cell is shown on the right. When hair cell bundles are 
deflected, the tip links trigger the potassium gates to open up. 

 

2 Model  Description  

2 .1   Frequency  a na ly s i s  

In order to know how many hair cells join the encoding of the sound. The original sound is 
firstly transformed through Fourier transform into the frequency domain. Then a threshold 
was set based on the Gaussian white noise assumption to filter out the noise and pick out the 
major frequency components which indicates the number of active hair cells. An assumption 
was made here that one hair cell only responded to one specific frequency. 

 



 

Figure 2: Fourier transform of the original signal and threshold setting.  

(The red line in the lower graph is a demonstration of a threshold and it equals to  

the mean of the amplitude of the signal plus the three times standard deviation).  

 
2 .2   So und p res sure  co nv er s io n  to  me mbra ne  po tent ia l  

The following equations were used for calculating the deflection and the resulting membrane 
potential changes. The mechanical vibration is sent to cochlea and the force of sound 
pressure is converted to deflection by equation 1. The denominator of the equation is a 
combination of the tip link stiffness (Nγ2κ) and a position-dependent hair bundle stiffness 
(Ksp). The deflection is then used to calculate the membrane voltage change by equation 2. 
This equation was subtracted from experimental results [1]. 

 ΔX = (
1

Nγ2κ+Ksp
) ΔFHB  (1) 

 Vm =
20.2734 

5.7578 ∗e
(
ΔX
24.73

)
+1

− 60  (2) 

 

 

2 .3   M eddis  mo de l  f o r ha i r  ce l l  sy na pse   

In 1986, Meddis published his hair cell ribbon synapse model [2]. The model consists of four 
parts: factory, free transmitter pool, reprocessing store, cleft. The factory is the source of the 
transmitters and these transmitters will flow to the free transmitter pool with a speed 
proportional to the amount of the remaining transmitters. When the membrane potential of 
the presynaptic neuron changes, the neurotransmitters will leak from the free transmitter pool 
into the Cleft to incite the spiking of postsynaptic neuron and the speed is controlled by the 
presynaptic neuron’s membrane potential and concentration of transmitters in the pool. 
During this process, some of transmitters will be lost because of the random motion and 
some will be reuptake by reprocessing store which then replenishes the free transmitter pool 
after being fixed. In the end, the remaining transmitters will exert influences on the 
postsynaptic neuron. For the purpose of simplifying the problem, we assume that one 



transmitter causes a spike. Then the releasing rate is the spike rate at each moment.  

The differential equations describing this    
model are shown below:  

𝑑𝑞

𝑑𝑡
= 𝑥𝑤(𝑡) + 𝑦(𝑀 − 𝑞(𝑡)) − 𝑘(𝑡)𝑞(𝑡) 

𝑑𝑐

𝑑𝑡
= 𝑘(𝑡)𝑞(𝑡) − 𝑙𝑐(𝑡) − 𝑟𝑐(𝑡) 

𝑑𝑤

𝑑𝑡
= 𝑟𝑐(𝑡) −  𝑥𝑤(𝑡) 

𝑘(𝑡) = 𝑔 ∗ 𝑑𝑡[𝑠(𝑡) + 𝐴]/[𝑠(𝑡) + 𝐴 + 𝐵]    

when [𝑠(𝑡) + 𝐴] > 0 

𝑘(𝑡) = 0 when [𝑠(𝑡) + 𝐴] < 0 
 

Figure 3: Schematic description of the Meddis model [3] 

 

Figure 4: Meddis Model with a step function input signal 

We demonstrated the adaptability of the Meddis model by using a step function as the input 
signal. When the first step in the signal occurs at 2.5ms, the model responds with a spike rate 
that eventually declines due to adaptation to the constant stimulus. When the stimulus is 
removed, the model responds with an offset adaptation (the signal dips below the initial zero 
stimulus point before rising back to the steady state point for the stimulus intensity). At 15ms, 
the stimulus is increased from a non-zero value and the model responds by showing a short  
increase in spiking rate before settling into the new steady state. A similar phenomenon is 
shown again when the stimulus increases at 17.5ms. Thus, this model shows the ability to 
adapt to louder or softer sounds. 

 

3 Results  and discussion  

 
3 .1  Pure  to nes  a na ly s i s   

Pure tone was firstly used to test the validity of our model and the phenomenon our model can 

reflect. In the test we used a 50dB, 1 kHz pure tone with a 30dB Gaussian white noise. The 

waveform and the frequency domain are shown in Figure 5. After processing by our model, the 

final spiking pattern is shown in Figure 6. 
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Figure 5: Pure tone waveform and its frequency components 

       

  

 
Figure 6: Spiking pattern of the hair responding to the pure tone. 

 

Firstly the figure shows that the model successfully picks up the pure tone signal without being 

influenced by noise and it also displays two important phenomena – phase locking and adaptation.  

As the red lines indicate, the auditory neuron’s spike rate reaches its maximum value at the same 

portion of each pure tone cycle. In another words, the response (spike pattern) is aligned with the 

stimulus periods. This is the phase locking which has been tested by the experiment in auditory 

neurons [4]. 

The figure also shows that in each stimulus cycle, the auditory neuron reaches the local maximum 

spiking rate first and then decreases its spiking rate, even though the strength of the stimulus is 

still increasing. The local maximum value of each cycle also decreases as the stimulus continues 

until it finally reaches a steady state. The former phenomenon is called short-term adaptation 

(shown earlier in figure 4) and the second one is long-term adaptation. They are both the basic 

phenomenon in the auditory experiments which further prove the validity of the model. 

Comparing with the adaptation, why the model can reflect the phase-locking is easier to 

understand. As the transforms we used for the sound, pressure and deflection are linear transform, 

the phase-locking seems to be natural result.  

The occurrence of adaptation is a little strange at first, but it can be explained by the Meddis 

model. For each period, the hair cell rapidly consumes transmitters when its membrane potential 

deviates from the resting value. When the reprocessing store can’t replenish the free pool in time, 

the short-term adaptation occurs and the spiking rate has to decrease. And for the lasting loss of 

transmitter by the cleft, the neuron’s maximum spike rate in each cycle decreases. Moreover, it can 

be better shown by the solution of the Meddis model’s differential equations.  

In fact, the k in the equation should be a function of the hair cell’s membrane potential and the 

equations are nonlinear. But when the frequency of the sound is very high, k can be treated as a 

constant [3]. Then assuming the initial conditions for the variables are all zero and applying the 

Laplace transform to the equation, the results are: 
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Q(𝑠) =  
(𝑠 + 𝑦 + 𝑘)(𝑠 + 𝑥)(𝑠 + 𝑙 + 𝑟)𝑦𝑀

𝑠((𝑠 + 𝑦 + 𝑘)(𝑠 + 𝑘)(𝑠 + 𝑙 + 𝑟) − 𝑥𝑟𝑘)
 

Because the dominator of Q(𝑠)is a forth order polynomial. The inverse Laplace transform of it 

should be of the form: 

q(t) = Const + 𝐶1𝑒
  
  + 𝐶2𝑒

  
 2 + 𝐶3𝑒

  
 3       t ≥ 0 

In the solution, the relatively smaller 𝑡  accounts for the short term adaptation while the larger 𝑡  
causes the long-term adaptation. Moreover, when time goes to infinity, q(t) reaches the steady 

value. 

3 .2  Tw o -frequency  to ne  a na ly s i s  

In this section, two-frequency tones are used to test the robustness of the model.  Here we use 
two 50dB tones with frequencies: 1 kHz and 5 kHz. The analysis result are shown in Figure 7 

 
Figure 7: Two-frequency tone analysis result. (The first and second graph are spiking patterns 

of two auditory neurons. The third one is the original sound)  

 
The figure shows that the model successfully picks out the two major frequency components 
and the spiking patterns basically reflect the phase-locking and adaptation.  
Plotting the first local maximum value of two neurons with the frequency spectrum of the 
original sound together and normalize them results in figure 8. 

  

 
Figure 8: The normalized frequency spectrum. (The two red dots represent first local maximum 

spiking rates of two neurons) 

 
As figure 8 shows, the normalized firing rate of neurons can reflect the frequency spectrum of the 
original sound in certain degree. Actually, this is an important characteristic of auditory neuron 
encoding and the details will be discussed in the next section  
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3 .2  Co mplex  S ig na l  

We simulated the model with a complex signal in order to test its ability to respond to the 
type of sounds commonly detected by human inner hair cells. The complex signal was a 
short .wav file recording of a group member speaking the phrase “Good Morning”. Although 
simple, this phrase still contained many different frequencies along with background noise.  

 

 

Figure 9: Spiking rates for the highest and lowest frequencies detected by our model  

The spiking rate analysis of the complex signal showed similar results as both the single pure tone 

and the two pure tones signals. As the signal continues the spiking rates decrease, which 

demonstrates the adaptation showed earlier. The complex signal contained significantly more 

frequencies, but they all displayed similar adaptation results. We were unable to determine phase 

locking due to the difficultly associated with the mass frequencies and background noise of the 

original signal. 

 
Figure 10: The Normalized Spiking Rates for the frequency spectrum isolated at the first local minimum of 

the spiking rates (shown in figure 9 above) 

  
As shown in figure 8, the normalized firing rate of neurons can reflect the frequency spectrum. 
The complex frequency displays similar results. Each point signifies the spiking rate of an 
individual frequency isolated at the point where the first local maximum occurs. We chose to 
isolate the rates at the time the first local maximum occurred instead of at 0ms (start of the signal) 
because the beginning spiking rate was affected by the initial conditions and did not accurately 
display the dynamics of the hair cell. The first local maximum offered an easy point to determine 
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that each spiking rate vs frequency plot had in common. In figure 10, it can be seen that the pattern 
created by the spiking rates has a similar wave form to the first portion of the normalized 
frequency spectrum. There are no points after 2 kHz because those frequencies were filtered out as 
noise by the model. The amplitude of the spiking rates is lower than that of the actual frequency 
spectrum but this may due to only one hair cell responding to each signal and a lack of 
amplification of the original signal. This reflection replicates a similar physiological phenomenon, 
where the spiking rates of different hair cells have a similar pattern to the frequency spectrum of 
the original signal [5].  
 

4 Conclusions  and future steps  

4 .1  Co nc lus io n s  

The spiking patterns were observed under pure tone and human voice stimulations. 
Phase-lock phenomenon, adaptation, and spiking rate pattern indicate that this model reflects 
some of the distinct properties of the hair cell.  The pure tone analysis shows that our model 
can successfully pick up the responding hair cell and transform the original sound to the final 
spiking patter of the hair cell. More importantly, it can reflect two key physiological 
phenomena – phase locking and adaptation. The complex signal displayed similar adaptation 
characteristics to both of the pure tone analyses. By using the complex signal, we were also 
able to demonstrate the strength of the model in replicating the physiological phenomenon of 
the spiking rates following the frequency spectrum. Overall, this model approximates several 
distinct properties of hair cells in decoding sound signals and encoding action potentials to 
reflect these signals. This model may be used to further explore the auditory system and 
assist in the development of a fully functional ear.  

4 .2  Future  s t ep s  

 
Figure 11: Range of frequency responses of 3 different hair cells for varying stimulus intensity 

As shown in figure 11, each hair cell may respond to multiple frequencies. At the threshold 
intensity the hair cells may only respond to a single frequency, but as the intensity of the 
signal is increased (volume), the hair cells respond to a broader range. This phenomenon 
suggests that multiple hair cells are responsible detecting a certain frequency. As a result, the 
spike train for that specific frequency may be the spatial summation of several hair cells.  In 
future works, we would like to include this phenomenon in our model.  This should result in 
more spikes per second in the post stimulus time histogram, since more action potentials will 
be created by the multiple hair cells responding to each frequency. A spatial summation of 
the action potentials created from the different hair cells would allow for a more 
physiologically relevant model and offer better insights into how the signals ultimately 
encoded for interpretation by the auditory cortex.   
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Appen dix: Va lues  u sed  fo r the  v a r ia b le s  in  the  mo de l  

Variable Value Variable Value 

A 5 Basic_Pressure 2*10^(-5) N/m2 

B 300 Oval window amplification 22.4 

g 2000 Nγ2κ 6000 uN/m 

y 5.05 Ksp 1000 uN/m 

l 2500 H 50000 

x 66.3   

r 6580   

m 1.0   

 


