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Abstract. 
In this work we apply a reinforcement learning 
algorithm (Q-learning) to a simulated walking robot 
to “teach” it to step over hurdle-type obstacles. Two 
ways to achieve this are described in detail. The first 
method uses a gait model-based approach; the second 
explores the state-action space thoroughly by using a 
non-zero probability of a random transition. Finally 
we use a kernel (radial basis) function to speed up the 
learning process. 
 
1. Introduction 

In the standard reinforcement-learning 
model, an agent is connected to its environment via 
perception and action. On each interaction step  the 
agent receives an input, which encodes information 
regarding the current state, S, of the environment. The 
agent then chooses an action, a, to generate as output. 
The action changes the state, and the value of this state 
transition is communicated to the agent through a 
discrete delayed reinforcement signal, r. The agent 
should choose actions that maximize the long-run sum 
of values of the reinforcement signal. It learns this 
over time through trial and error, and can be guided by 
a wide variety of reinforcement algorithms [1].  
 
2. An overview of Q-learning 

In our case, the algorithm that was chosen 
was Q-learning. Q-learning [2], is a form of 
reinforcement that does not require a model of its 
environment and can be used on-line. It works by 
estimating a quality index of state-action pairs and 
provides robots with the capability of learning to act 
optimally in a Markovian environment [3].  

Assuming the robot can discriminate the set 
S of states and can take the set A of actions, the way 
the algorithm works is the following. 
i) A matrix Q of S  rows and a columns is initialized to 
0; 
ii) current state S is acknowledged; 
iii) an action a is chosen according to the policy: 
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The value function is the quality index that 
corresponds to the choice of such a policy:  
 

),(max)( aSQSV af =   (2) 

 
iv) action a is carried out in the environment and the 
next state becomes S’; 

v) update the value function and therefore the Q-
matrix through the learning rule: 
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where α is called the learning rate, and is typically a 
low positive number between close to 0, and γ is the 
discount factor, also fixed between 0 and 1, and 
finally r is the reinforcement signal and is set to –1 if 
the action taken resulted in a failure, whereas it is set 
to a +1 value if the result of the action was a success. 

Learning rule (3) shows how the update of 
the matrix occurs. Since α has a small value (0.1 in 
our simulation), one can see that the Q-matrix entry at 
time t+1 comes largely (90%) from the value of the 
previous state (t), and partially (10%) from the sum of 
the reinforcement signal and the value function. 
 
3. Gait model-based learning 
 
3a. Implementation 

We assume a finite number of actions and a 
finite number of states. In the future it will be 
desirable to work with an infinite number of states, 
thereby requiring a continuous function to describe the 
state. In this simulation we show a robot walking at a 
normal pace if no obstacle is in its field of view. When 
an obstacle appears, the robot will start changing its 
gait according to its policy. The obstacle is displayed 
as a rectangle into which the robot’s feet cannot step 
into or a punishment will be enforced (reinforcement 
signal equal to –1). In a real world environment this is 
equivalent to stepping over an obstacle: the rectangle’s 
longer sides represent the two limits for performing a 
correct jump. I it stepped within this rectangle the 
robot’s last step should either be increased (if 
possible) or decreased enough to become the next -to-
last step. 

Therefore the state-space encodes the 
distance from the obstacle, which in the real-world 
scenario will be given to us through a stereo-vision 
chip mounted on a camera on the robot’s legs. There 
are a total of 75 states, and 8 actions corresponding to 
the length of the steps that the robot can make, the 
longest being action 1. In simulation, after every 
obstacle, a new one appears after a random number of 
steps. The distance to it is also partially random. To 
ensure learning, we empirically choose to reach 30 
consecutive successes. As output, the simulation 
shows the relative distance covered, the number of 
iterations (obstacles) that were required to achieve the 
30 consecutive successes and a graphical 



representation that shows the complete set of trials 
required to accomplish the task. 
A part of these trials are shown in Figure 1. 
 
 

 
Figure 1. Zoom-in of a part of the robot’s “journey”. 
The blue circles represent the robot’s footsteps; the 
green rectangles are the obstacles. 

 
Note that in this representation, the top circles are the 
places where the left foot stepped and the bottom 
circles correspond to the right foot. Also, it should be 
noted that the probability of having 30 consecutive 
successes without gait adaptation, and therefore 
having a constant step size equal to its maximum 
possible size, is over 11 orders of magnitude greater 
than what we obtain.  

In the following figure we show a 3-D plot 
of what the Q-matrix obtained. The “canyon” shown 
in the figure corresponds to state-action pairs that 
prevent the robot from surmount ing the obstacle. This 
diagonal part of the matrix is essentially the part that 
the robot must avoid in order to obtain a success. In 
the figure, the actions are numbered from 1 to 8 the 
states from 1 to 75 and the z coordinate is the quality 
index for each position in the matrix. 

 
 
Figure 2. This 3-D plot of the Q-matrix shows the 
negative values on a diagonally shaped area of the 
matrix. 

This, however, was the original version of the 
program, which did NOT have any degree of 
randomness in the choice of the action. So we did not 
explore the state-action space but used a predefined 
model in which the step size is always initially chosen 
to be maximum (action 1). Also, since the Q-matrix 
was not entirely explored a small number of iterations 
is required for learning. 
 
3.b Results with predefined gait model. 

In order for the robot to have learned, we 
empirically said that this occurs once the simulation 
has reached 30 consecutive successes. A histogram 
that plots the results is shown in Figure 3. An average  
of 120 iterations are required to reach this goal. This 
value is highly influenced by the only outlier (the 
standard deviation is equal to approximately 35). It 
was therefore quite interesting to also see what the 
result for the median would give. This was seen to be 
110, significantly lower than the mean. 
In this case, experiments with noise were also 
conducted. In these experiments, it was assumed that 
every action would have some noise to it and therefore 
the robot would not always place its “foot ” where it 
was intended to be. Also, it was decided that the 
maximum step size coincided with the robot’s normal 
step and was therefore not subject to noise. Under 
these conditions, the addition of noise proportional to 
step size linearly increased the number of obstacles 
required for learning. 
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Figure 3. Plot of the number of learning successes 
versus the number of iterations required (in 20 total 
simulations). 

 
 
4. Exploration of the state space 
 
4a. Implementation 
The next  step was to add the degree of randomness 
(mentioned at the end of section 3a) to allow the 
exploration of the state-space. The probability 
distribution was chosen so as to favor longer steps to 
shorter ones, thereby inherently allowing for a faster 
stride. Its cumulative distribution function is shown in 
Figure 4. 



 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. The cdf is used to decide which action to 
take.  

 
Note, however, that there is no reinforcement signal 
that rewards a faster pace as opposed to a slower one. 
This might be added in future versions of the 
simulation. 

This exploration approach is implemented in 
the following way. 
 
Stage 1. As the robot starts learning, or every time it 
runs into an obstacle, two possibilities can occur in 
deciding how to take an action. Either it chooses the 
policy (the action that gives the maximum Q-value in 
a given state), or it chooses the action randomly. This 
second part occurs with a probability of 0.35. In 
essence, we take a randomly generated number in the 
interval [0, 1] and if the number is higher than 0.65 
then we generate another random number, which will 
decide which action to take, based on the probability 
distribution, shown in figure 4, that favors long steps 
to shorter ones.  
 
Stage 2. Once the robot reaches a certain number of 
consecutive successes, which we choose empirically 
to be 4, the probability of selecting a random action as 
opposed to the one dictated by the policy decreases 
linearly with the number of successes; we also weight 
the probability with the value function.  
 
Stage 3. Having reached the second threshold of 10 
consecutive successes (also chosen empirically), we 
argue that the matrix is converging and therefore we 
should exploit only the policy. If, in this last scenario, 
the robot bumps into the obstacle then the process 
goes back to stage 1.  
 

In this manner one can predict that the entire 
matrix, or almost all of it, will be constituted by non-
zero elements. 

As expected, the negative elements appear 
only on a particular “diagonal”, just as shown in 
section 3a, which corresponds to the set of state-action 
pairs from which the obstacle cannot be passed. This 
situation is shown in Figures 5a and 5b (3D and 2D 
plots). 

The number of iterations required for a 
complete exploration and to reach the goal of 30 
consecutive successes is about one to two orders of 

magnitude larger compared to the situation in which 
the gait model, not exploration, is used. This is mainly 
due to the randomness in the decision of the action: it 
takes more iterations to explore a greater part of the Q-
matrix.  

 
4.1. Results in exploration 

Since these experiments require larger 
amounts of time, only 8 simulations were run. The 
resulting number of iterations required had an average  
of 13,000, a standard deviation of 12,000 (one large 
outlier at 40,000) and a median of 10,000. 

 
 
 

a) 
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Figure 5.  a) 3-D plot of Q-matrix after exploration of 
the state-space. The exploration accounts for the 
smoothness.  
b) 2-D plot showing the position of the diagonal region 
into which the robot should not step. 

 
If the threshold points in stages 1 and 2 had 

been different, different results would have been 
obtained. Research in this part of the project will be 
dealt with in future improvements. 
 



5. The radial basis function 
The radial basis function is introduced to 

decrease the number of iterations required for learning 
in the exploration case (section 4a). Essentially, every 
time the robot passes an obstacle, whether correctly or 
incorrectly, the matrix updates not only the last entry , 
but also its nearest neighbors according to the radial 
basis function. This exploits the fact that the finer one 
quantizes the state-action space, the more probable it 
is that the elements surrounding a given state-action 
pair will have the same topological properties, thereby 
allowing for a quicker update of the entire matrix and, 
in the limit, learning in the continuous domain. 
The radial basis function decreases like the square of 
an exponential. The formula used to update the 
surrounding elements will be: 
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where, in our case,  the square norm represents the 
square of the distance  between any Q-value and the 
element updated by reinforcement alone (Q(S,a)). 
The problem with this implementation was the fact 
that it did not converge, therefore a modification of the 
update formula (probably with a normalization factor 
in front) will be required for future evolutions of the 
function. 
 
6. Conclusions 

To implement the reinforcement algorithm 
correctly it is necessary to add a certain probability 
that a random action in a given state can occur. It has 
been shown in this paper, however, that if the 
probability is not added, and instead a gait model is 
used, the number of iterations, and therefore obstacles, 
required for learning is sensibly smaller.  
The question arises as to whether or not it is necessary 
to explore the state-space, and therefore which of 
these two options will be chosen to be implemented on 
the real robot. Undoubtedly, the first option will be 
tested first, being easier to work with. If no real 
problems are encountered with this methodology it 
might not be worthwhile to test out the exploration. 
Noise or other factors could become important 
(although tests with noise have been conducted in the 
gait model scenario and the number of iterations 
required for learning did not increase significantly) 
issues that might force us to explore the rest of the 
state-space.  
The kernel approach so far has not been proved useful 
but through certain modifications (such as an update 
of only a close neighborhood of the reinforced 
element) and a closer study of the behavior of the 
matrix, more detailed conclusions might be made. 
Improvements that could be added to these basic 
functions include a reinforcement signal that awards 
higher speed of accomplishment of the task. Also, a 
quasi-continuous state-space could be implemented. 
This is an approach in which the input (distance to 

obstacle, i.e. current position) is continuous and 
therefore lies between two states of the Q-matrix. We 
would then use a radial basis function to update these 
two states according to their distance from the 
position. By extension, also other close states can be 
updated, albeit to a much smaller extent. 
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