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Abstract

Identifying and classifying personal, geographic, institutional
or other names in a text is an important task for numer-
ous Natural Language Processing applications. This paper
describes the implementation of Support Vector Machines
into a language-independent bootstrapping algorithm which
is based on iterative learning and re-estimation of contex-
tual and morphological patterns captured in hierarchically
smoothed trie models.

1 Introduction

The ability to determine the named entities in a text
has been established as an important task for several
natural language processing areas, including infor-
mation retrieval, machine translation, information
extraction and language understanding. A separate
named entity recognition task was developed for the
1995 Message Understanding Conference (MUC-6)
and the best systems achieved impressive accuracy,
F-measure approaching 95%, which is close to the
human performance on this task: 96% (Sundheim
1995). What should be underlined here is that these
systems were trained for a specific domain and a
particular language (English), typically making use
of hand-coded rules, taggers, parsers and semantic
lexicons. Even the systems that do not make use
of extensive knowledge about a particular language,
such as Nominator (Choi et al., 1997), still use large
lists of names, exceptions, personal and organiza-
tional identifiers.

Our aim has been to build a maximally language-
independent system for both named-entity identi-
fication and classification, using minimal informa-
tion about the source language. The applicability of
Al-style algorithms and supervised methods is lim-
ited in the multilingual case because of the cost of
knowledge databases and manually annotated cor-
pora. Therefore, a much more suitable approach is
to consider a bootstrapping algorithm. In terms of
world knowledge, the simplest and most relevant re-
source for this task is a database of known names.
For each entity class to be recognized and tagged, it
is assumed that the user can provide a short list (on
the order of a few hundreds) of relatively unambigu-
ous examples (seeds).

2 The Model

We present in this paper the implementation of Sup-
port Vector Machines into a language-independent
bootstrapping algorithm that starts form lists of
entity examples and a large unannotated corpus.
The core algorithm used is the one presented in
(Cucerzan and Yarowsky 1999) with a few modifica-
tions. Therefore, most of this presentation will focus
on these modifications rather than on the main algo-
rithm. The proposed modifications comprise: a new
smoothing formula for computing the distributions
along the paths in the tries, a new ’soft’ discourse
segmentation method and an SVM-based algorithm
for entity classification.

2.1 Word-Internal and Contextual
Information

The proposed method relies on both word internal
and contertual clues as relatively independent ev-
idence sources that drive the bootstrapping algo-
rithm. The first category refers to the morphological
structure of the word and makes use of the paradigm
that for certain classes of entities some prefixes and
suffixes are good indicators. Such morphological in-
formation is automatically learned during bootstrap-
ping.

Contextual patterns (e.g. “Mr.”, “in” and “mayor
of” in left context) are also clearly crucial to named
entity identification and classification, especially for
names that do not follow a typical morphological
pattern for their word class, are of foreign origin, or
polysemous (for example “ Washington”).

2.2 Discourse Segmentation. One Sense
per Discourse

Clearly, in many cases, the context for only one oc-
currence of a new word and its morphological in-
formation is not enough to make a decision. But,
as noted in Katz (1996), a newly introduced entity
will be repeated, “if not for breaking the monotonous
effect of pronoun use, then for emphasis and clar-
ity”. Moreover, the number of instances of a new
entity is not necessarily associated with the docu-
ment length but with the importance of the entity
with regard to the subject/discourse. We would
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Figure 1: Using contextual clues from all instances of a
word in a corpus (each instance is pictured as a ball with the
diameter representing the confidence of the classification of
that instance using only local contextual information)

like to use this property in conjunction with the
one sense per discourse tendency noted by Gale,
Church and Yarowsky (1992), who showed that
words strongly tend to exhibit only one sense in a
document /discourse, i.e. by gathering contextual in-
formation about the entity from each of its occur-
rences in the text and using morphological clues as
well, we expect to classify entities more effectively
than if they are considered in isolation, especially
those that are very important with regard to the
subject. Unfortunately, the latter paradigm can not
be applied when analyzing large corpora that do not
have document boundaries, like the Hansards (for
example, word “ Emerson” appears as surname, city,
and company name in this corpus) and a segmenta-
tion algorithm should be considered, so that all the
instances of a name in a segment have a high proba-
bility of belonging to the same class. Our approach
is to consider a ’soft’ segmentation, which is word-
dependent and does not compute topic/document
boundaries but regions for which the contextual in-
formation for all instances of a word can be used
jointly when making a decision. This is viewed as
an alternative to the classical topic/document seg-
mentation approach and can be used in conjunction
with a language-independent segmentation system
(see Fig. 1) like the one presented by Amithay et al.
(1997).

The probability of an entity class c for a candidate
word w at position pos; is computed considering all
instances of that word (positions posi, ..., pos,) in
the corpus using the classification confidence of each
instance (Z is a normalization factor):

1
P(C|1.U,p0$z') = E Z Hocal(c|waposj)'

j=l..n
sim(pos;, pos;) - con fidence(pos;)

where the positional similarity sim encodes physical
distance and topic.

2.3 Tokenized Text vs. Plain Text

There are two basic alternatives for handling a text.
The first one is to tokenize it and classify the in-

dividual tokens or group of tokens. This alterna-
tive works for languages that use word separators
(such as spaces or punctuation), where a relatively
simple set of separator patterns can adequately tok-
enize the text. The second alternative, used in this
research, is to classify entities simply with respect to
a given starting and ending character position, with-
out knowing precisely the word boundaries, but just
the probability (that can be learned automatically)
of a boundary given the neighboring contexts. This
second alternative works for all languages including
Chinese, where no separators between the words are
typically used. Another advantage of this method is
that single and multi-word entities can be handled
in the same way. Although we do not consider an
explicit tokenization, we will refer to a start and end
point bounded portion of text being analyzed (in or-
der to determine if it represents a named entity or
not) as a token, for the simplicity of the presenta-
tion.

2.4 'Trie Structures for Both Morphological
and Contextual Information

Character-based tries provide an effective, efficient
and flexible data structure for storing both contex-
tual and morphological patterns and statistics. They
are very compact representations and support a nat-
ural hierarchical smoothing procedure for distribu-
tional class statistics. In our implementation, each
ramification or terminal node contains a probabil-
ity distribution which encodes the probability of en-
tity classes given the sistring corresponding to the
path from the root to that node. Each distribu-
tion also has two standard classes, named “question-
able” (unassigned probability mass in terms of en-
tity classes, to be motivated below) and “non-entity”
(common words). More details about this repre-
sentation can be found in (Cucerzan and Yarowsky
1999).

Two tries are used for internal morphological rep-
resentation of tokens, in prefix and suffix form.
Other two are used for the left and right context of
tokens. For right context, the letters are introduced
in the trie in normal order (from left to right in the
case of Indo-European languages), for left context
they are considered in the reversed order (see the
example in fig. 2).

The tries are linked together into two bipar-
tite structures, morphological prefix with left con-
text and morphological suffix with right context,
by attaching to each node a list of links to the
tokens/contexts with/in which the sistring corre-
sponding to that node has been seen in the text.

For reasons that will be explained later, raw
counts are kept for the distributions.
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Figure 2: The way tokens and contexts are introduced in the
four tries (arrows indicate the direction letters are considered)

2.5 The Bootstrapping Algorithm

The basic concept of the bootstrapping procedure is
to iteratively leverage relatively independent sources
of information. Beginning with some seed names for
each class, the algorithm learns contextual patterns
that are indicative for those classes and then itera-
tively learns new class members and word-internal
morphological clues. Through this cycle, probabil-
ity distributions for class given token, prefix/suffix
or context are incrementally refined. More details
are given in (Cucerzan and Yarowsky 1999).

2.6 Unassigned Probability Mass as
Opposed to the Classical Maximum
Entropy Principle

When faced with a highly skewed observed class dis-
tribution for which there is little confidence due to
small sample size, a typical response to this uncer-
tainty in statistical machine learning systems is to
back-off or smooth to the more general class distri-
bution, which is more uniform. Unfortunately, this
representation is difficult to distinguish from a condi-
tional distribution based on a very large sample (and
hence estimated with confidence) that just happens
to have a similar fairly uniform true distribution.
One would like a representation that does not ob-
scure this distinction, and represents the uncertainty
of the distribution separately.

We resolve this problem while retaining a sin-
gle probability distribution over classes by adding
a separate “questionable” (or unassigned) cell that
reflects the uncertainty of the distribution. Proba-
bility mass continues to be distributed among the
remaining class cells proportional to the observed
distribution in the data, but with a total sum (< 1)
that reflects the confidence in the distribution and
is equal to 1 — Pypq4c(questionable).

By explicitly representing the uncertainty in a
given class distribution, incremental learning essen-
tially becomes the process of gradually shifting prob-
ability mass from questionable to one of the primary
categories. As an important consequence, the whole
bootstrapping procedure can be done in only one
iteration over the known seeds.

2.7 Smoothing

The probability of a token/context as being in or in-
dicating a class is computed along the path from the
root to the terminal node corresponding to that to-

ken/context. In this way, effective smoothing can be
realized for rare tokens or contexts. A new smooth-
ing formula taking advantage of the distributional
representation of uncertainty is presented below.

Considering a token/context formed from charac-
ters l1ls...l,,, (i-e. the path in the trie is root — I; —
lo —...—1,) the general smoothing model is given by
the recursive formula:

F(ClaSSjllll2...li) = f(classj|lll2...lz-)+

BProde(questionable|lrls...l;)* F(class;|lila...l;_1),

where 8 € [0,1]and @ > 1 are language-
dependent parameters.

The symbol F is used instead of P since we have
raw distributions (frequencies) and a normalization
step is needed to compute the final probability dis-
tribution.

2.8 The Main Algorithm

Briefly, the main algorithm can be divided into five
stages, which are summarized below.

Stage 0: build the initial training list of class
representatives (performed only once for each lan-
guage/task)

Stage 1: extract the morphological and context
tries from a large unannotated corpus

Stage 2: introduce the training information in
the tries and re-estimate the distributions by boot-
strapping

Stage 3: identify and classify the named entities
in the text using competing classifiers

Stage 4: update the entity and context training
space, using the new extracted information

3 Support Vector Machines

As presented in the preceding paragraph, the text is
re-analyzed sequentially in stage 3 of the algorithm,
for each candidate token a classification decision be-
ing made. The information used for this decision is
represented by the two morphological distributions
corresponding to the token and the contextual distri-
butions of all instances of the respective token in the
corpus. Using the interpolation formula presented
in paragraph 2.2, we obtain two contextual distribu-
tions. Also, we keep the best (in terms of question-
able mass) distributions in the ’soft bounded’ win-
dow (see Fig. 1) corresponding to the given token
for left and right context.

Therefore, a vector composed of 6 distributions
over entity classes is available for the classification
purpose for each candidate token. The decision with
regard to the presence of an entity and its classifi-
cation is made based on this distributional informa-
tion.

We have replaced the voting scheme presented in
(Cucerzan and Yarowsky 1999) with an SVM ap-
proach, by training a number of classifiers equal to
the number of entity classes, each of them making
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Figure 3: Combining the binary SV classifiers

a binary decision about a word being (41) or not
being (0) in a particular class. These classifiers are
then combined into one ’largest distance’ classifier as
described in (Burges 1998), with the following twist:
if only one of the binary classifiers outputs a positive
result then the token is considered to be an entity in
the class corresponding to that classifier (see Fig. 3).
This modification is motivated by the fact that pos-
itive means an entity class, while null represents all
other entity classes and common words; therefore,
comparing the distances to the separating surfaces
for a positive and a null output is not really mean-
ingful.

There is a major problem that has to be solved
in order to embed SVMs in the presented algo-
rithm: the initial training data is represented by
seed-word lists, i.e. lists of exemplars for each entity,
rather then labeled vectorial distributions necessary
to train the SVMs. This implies that the initial in-
put data has to be transformed into usable vectorial
representations. Our approach for this transforma-
tion is presented bellow:

Consider T the set of seed words available, S the
set unambiguous seeds and S’ C S a small subset (of
size about 10-20% of S). Perform stages 0 through
2 of the main algorithm using as seeds only T' — S'.
Output in stage 3 the distributions obtained for each
instance of tokens from S’ in the corpus and label
these distributions with 1/0 according to the initial
label for each of the binary classifiers.

Perform again stages 0 through 2 of the main algo-
rithm using now the whole set of seeds T'. Output in
stage 3 the distributions obtained for each instance
of tokens from S’ in the corpus and label these dis-
tributions with 1/0 according to the initial label for
each of the binary classifiers.

Use together the labeled distributions obtained in
the two runs of the algorithm as training data for
each binary classifier.

One of the problems we encounter with this ap-
proach is that for each classifier the number of train-
ing examples in the positive class (one particular en-
tity class) is much smaller than the number of ex-
amples in the null class (all other classes and the
common words). A way of overcoming this problem

is to randomly select only as many null examples as
positive examples.

4 Results and Future Work

The basic measures for evaluation of this work are
precision and recall. Precision (P) represents the
percentage of the entities that the system recognized
which are actually correct. Recall (R) represents the
percentage of the correct named entities in the text
that the system identified. Both measures are incor-
porated in the F-measure, F = 2PR/(P + R). It is
important to observe that the accuracy of the SVM
classifier is not identical to the standard F-measure,
because classifying common words as non-entities is
not actually rewarded, only misclassification of these
words are punished.

We are not able to present the F-measure results
for the new system at this moment, but only the
accuracy results obtained by the SVMs on training
and test sets.

We considered English as language and three en-
tity classes: first name, last name, and place. The
English side of the Hansards (14 million words) was
used as unannotated corpus and 750 entities and
common words constituted the seed list.

We chose polynomial kernel functions K (z;, z;) =
(z; - zj + b)? for their robusness and simplicity. The
results presented in the following tables were ob-
tained for the following choice of parameters: d =5
(degree), b = 0.1 (offset), C' = 10 (C-value).

We used the SvmFu software package developed
by Rifkin (2001) because the of the availability of
the code and training/testing and parameter setting
options.

To obtain the training set of vectors, S’ was con-
sidered to be composed of all seed words starting
with letter A, B, or C. There were 9329 instances
of these words in the unannotated corpus, as shown
bellow:

| L Name | F Name | Place | Non-entity | Total |
[ 952 | 722 [3562] 4093 | 9329 |

The test data was composed of all unambiguous
seed words starting with letter D, E, F, or G. There
were ... instances of these words in the corpus, dis-
tributed as shown below:

| L Name | F Name | Place | Non-entity | Total |
[ 939 | 1107 [ 1513 [ 3138 | 6697 |

Three classifiers were trained using the labeled
distributions that were output for the A-C words
(one for each of the entity classes considered). The
characteristics and performance of these classifiers
on the training set are shown in the following table:



Classifier | L Name | F Name | Place |

Number of support vectors 602 404 947
Correctly classified vectors 9113 9206 9141
Accuracy (%) 97.6 98.6 97.9

The performace of the classifiers on the held-out
data set D-G is shown bellow:

| Classifier | L Name | F Name | Place |
Correctly classified vectors 6383 6310 6424
Accuracy (%) 95.3 94.2 95.9

These empirical results prove that SVMs can be
succesfully used for the task of Named Entity clas-
sification. Work is in progress to modify the code
of SvmFu (Rifkin), so that the SVMs trained as de-
scribed in the previous paragraphs can be integrated
in the fully-featured Named Entity software devel-
oped in 1999-2001 by Cucerzan and Yarowsky.

5 Conclusion

This paper has presented a minimally supervised
learning method for named entity recognition, which
uses an on-line bootstrapping procedure as the main
algorithm and integrates Support Vector Machines
as classifiers. The method makes use of hierarchi-
cally smoothed trie structures for modeling mor-
phological and contextual probabilities effectively in
a language independent framework, overcoming the
need for fixed token boundaries or history lengths.
The SVM approach proved successful in the early
stages of this research and we are encouraged to
integrate SVMs to the full extent in the proposed
Named Entity Recognition system.
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