Learning on Silicon: Overview

Gert Cauwenberghs

Johns Hopkins University gert@jhu.edu

520.776 Learning on Silicon http://bach.ece.jhu.edu/gert/courses/776

G. Cauwenberghs

520.776 Learning on Silicon

Learning on Silicon: Overview

Adaptive Microsystems

- Mixed-signal parallel VLSI
- Kernel machines

Learning Architecture

- Adaptation, learning and generalization
- Outer-product incremental learning

• Technology

- Memory and adaptation
 - Dynamic analog memory
 - Floating gate memory
- Technology directions
 - Silicon on Sapphire
- System Examples

Massively Parallel Distributed VLSI Computation

Example: VLSI Analog-to-digital vector quantizer (Cauwenberghs and Pedroni, 1997)

Neuromorphic

- distributed representation
- local memory and adaptation
- sensory interface
- physical computation
- internally analog, externally digital
- Scalable

throughput scales linearly with silicon area

Ultra Low-Power

factor 100 to 10,000 less energy than CPU or DSP

Learning on Silicon

Adaptation:

- necessary for robust performance under variable and unpredictable conditions
- also compensates for imprecisions in the computation
- avoids ad-hoc programming, tuning, and manual parameter adjustment

Learning:

- generalization of output to previously unknown, although similar, stimuli
- system identification to extract relevant environmental parameters

Adaptive Elements

Adaptation:*

Autozeroing (high-pass filtering)outputsOffset Correctionoutputse.g. Image Non-Uniformity Correctioninputs, outputsEqualization / Deconvolutioninputs, outputse.g. Source Separation; Adaptive Beamforminginputs, outputs

Learning:

Unsupervised Learning e.g. Adaptive Resonance; LVQ; Kohonen Supervised Learning e.g. Least Mean Squares; Backprop Reinforcement Learning inputs, outputs

inputs, outputs, targets

reward/punishment

Example: Learning Vector Quantization (LVQ)

G. Cauwenberghs

Incremental Outer-Product Learning in Neural Nets

Multi-Layer Perceptron:

Outer-Product Learning Update:

- Hebbian (Hebb, 1949):
- LMS Rule (Widrow-Hoff, 1960):
- Backpropagation (*Werbos, Rumelhart, LeCun*):

 $x_i = f(\sum_j p_{ij} x_j)$

 $\Delta p_{ij} = \eta \ x_j \cdot e_i$

 $e_i = x_i$ $e_i = f'_i \cdot (x_i^{\text{target}} - x_i)$

 $e_i = f'_i \sum p_{ij} e_i$

G. Cauwenberghs

520.776 Learning on Silicon

Technology

Incremental Adaptation:

- Continuous-Time:

$$C \frac{\mathrm{d}}{\mathrm{d}t} V_{\mathrm{stored}} = I_{\mathrm{adapt}}$$

- Discrete-Time:

$$C \Delta V_{\text{stored}} = Q_{\text{adapt}}$$

Storage:

- Volatile capacitive storage (incremental refresh)
- Non-volatile storage (floating gate)

Precision:

- Only polarity of the increments is critical (not amplitude).
- Adaptation compensates for inaccuracies in the analog implementation of the system.

Floating-Gate Non-Volatile Memory and Adaptation

Paul Hasler, Chris Diorio, Carver Mead, ...

Hot electron injection

- 'Hot' electrons injected from drain onto floating gate of M1.
- Injection current is proportional to drain current and exponential in floating-gate to drain voltage (~5V).

Tunneling

- Electrons tunnel through thin gate oxide from floating gate onto high-voltage (~30V) n-well.
- Tunneling voltage decreases with decreasing gate oxide thickness.

Source degeneration

- Short-channel M2 improves stability of closed-loop adaptation (Vd open-circuit).
- M2 is not required if adaptation is regulated (Vd driven).
- Current scaling
 - In subthreshold, Iout is exponential both in the floating gate charge, and in control voltage Vg.

Dynamic Analog Memory Using Quantization and Refresh

Autonomous Active Refresh Using A/D/A Quantization:

- Allows for an excursion margin around discrete quantization levels, provided the rate of refresh is sufficiently fast.
- Supports digital format for external access
- Trades analog depth for storage stability

Binary Quantization and Partial Incremental Refresh

Problems with Standard Refresh Schemes:

- Systematic offsets in the A/D/A loop
- Switch charge injection (clock feedthrough) during refresh
- Random errors in the A/D/A quantization

Binary Quantization:

- Avoids errors due to analog refresh
- Uses a charge pump with precisely controlled *polarity* of increments

Partial Incremental Refresh:

- Partial increments avoid catastrophic loss of information in the presence of random errors and noise in the quantization
- Robustness to noise and errors increases with smaller increment amplitudes

Binary Quantization and Partial Incremental Refresh

- Resolution \varDelta
- Increment size δ

- Worst-case drift rate (|dp/dt|) r

- Period of refresh cycle *T*

 $rT < \delta << \Lambda$

Functional Diagram of Partial Incremental Refresh

- Similar in function and structure to the technique of delta-sigma modulation
- Supports efficient and robust analog VLSI implementation, using binary controlled charge pump

Analog VLSI Implementation Architectures

- An increment/decrement device I/D is provided for every memory cell, serving refresh increments locally.
- The binary quantizer Q is more elaborate to implement, and one instance can be time-multiplexed among several memory cells

Charge Pump Implementation of the I/D Device

Binary controlled polarity of increment/decrement

- INCR/DECR controls polarity of current

Accurate amplitude over wide dynamic range of increments

- EN controls duration of current
- $V_{b \text{ INCR}}$ and $V_{b \text{ DECR}}$ control amplitude of subthreshold current
- No clock feedthrough charge injection (gates at constant potentials)

Dynamic Memory and Incremental Adaptation

G. Cauwenberghs

520.776 Learning on Silicon

A/D/A Quantizer for Digital Write and Read Access

Integrated bit-serial (MSB-first) D/A and SA A/D converter:

- Partial Refresh:
- Digital Read Access:

Q(.) from LSB of (n+1)-bit A/D conv. *n*-bit A/D conv. - **Digital Write Access:** *n*-bit D/A ; WR ; Q(.) from COMP

Dynamic Analog Memory Retention

- 10⁹ cycles mean time between failure
- 8 bit effective resolution
- 20 μV increments/decrements
- 200 μm X 32 μm in 2 μm CMOS

Silicon on Sapphire Peregrine UTSi process

- Higher integration density
 - Drastically reduced bulk leakage
 - Improved analog memory retention
- Transparent substrate
 - Adaptive optics
 applications

The Credit Assignment Problem or How to Learn from Delayed Rewards

External, discontinuous reinforcement signal r(t). Adaptive Critics:

- Heuristic Dynamic Programming (Werbos, 1977)
- Reinforcement Learning (Sutton and Barto, 1983)
- TD(λ) (Sutton, 1988)
- Q-Learning (Watkins, 1989)

Reinforcement Learning Classifier for Binary Control

Adaptive Optical Wavefront Correction with Marc Cohen, Tim Edwards and Mikhail Vorontsov

G. Cauwenberghs

Gradient Flow Source Localization and Separation

with Milutin Stanacevic and George Zweig

3mm

The Kerneltron: Support Vector "Machine" in Silicon

Genov and Cauwenberghs, 2001

