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Learning on Silicon: Overview

• Adaptive Microsystems
– Mixed-signal parallel VLSI
– Kernel machines

• Learning Architecture
– Adaptation, learning and generalization
– Outer-product incremental learning

• Technology
– Memory and adaptation

• Dynamic analog memory
• Floating gate memory

– Technology directions
• Silicon on Sapphire

• System Examples
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Massively Parallel Distributed VLSI Computation

• Neuromorphic
– distributed representation
– local memory and 

adaptation
– sensory interface
– physical computation
– internally analog, externally 

digital
• Scalable

throughput scales linearly 
with silicon area

• Ultra Low-Power
factor 100 to 10,000 less 

energy than CPU or DSP

Example: VLSI Analog-to-digital vector quantizer
(Cauwenberghs and Pedroni, 1997)
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Learning on Silicon
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Adaptation:
– necessary for robust performance 

under variable and unpredictable 
conditions

– also compensates for 
imprecisions in the computation

– avoids ad-hoc programming, 
tuning, and manual parameter 
adjustment

Learning:
– generalization of output to 

previously unknown, although 
similar, stimuli

– system identification to extract 
relevant environmental 
parameters 
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Adaptive Elements

Adaptation:*
Autozeroing (high-pass filtering) outputs
Offset Correction outputs

e.g. Image Non-Uniformity Correction
Equalization /Deconvolution inputs, outputs

e.g. Source Separation; Adaptive Beamforming

Learning:
Unsupervised Learning inputs, outputs

e.g. Adaptive Resonance; LVQ; Kohonen
Supervised Learning inputs, outputs, targets

e.g. Least Mean Squares; Backprop
Reinforcement Learning reward/punishment
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Example: Learning Vector Quantization (LVQ)

Distance Calculation:

Winner-Take-All Selection:

Training:
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Incremental Outer-Product Learning in Neural Nets
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)Multi-Layer Perceptron:

Outer-Product Learning Update:

– Hebbian (Hebb, 1949):

– LMS Rule (Widrow-Hoff, 1960):

– Backpropagation (Werbos, Rumelhart, LeCun):

∆p ij = η  xj⋅ e i

e i = xi
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Technology

Incremental Adaptation:
– Continuous-Time:

– Discrete-Time:

Storage:
– Volatile capacitive storage (incremental refresh)
– Non-volatile storage (floating gate)

Precision:
– Only polarity of the increments is critical (not amplitude).
– Adaptation compensates for inaccuracies in the analog 

implementation of the system.
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Floating-Gate Non-Volatile Memory and Adaptation
Paul Hasler, Chris Diorio, Carver Mead, …

• Hot electron injection
– ‘Hot’ electrons injected from drain onto 

floating gate of M1.
– Injection current is proportional to drain 

current and exponential in floating-gate to 
drain voltage (~5V).

• Tunneling
– Electrons tunnel through thin gate oxide 

from floating gate onto high-voltage 
(~30V) n-well.

– Tunneling voltage decreases with 
decreasing gate oxide thickness.

• Source degeneration
– Short-channel M2 improves stability of 

closed-loop adaptation (Vd open-circuit).
– M2 is not required if adaptation is 

regulated (Vd driven).
• Current scaling

– In subthreshold, Iout is exponential both 
in the floating gate charge, and in control 
voltage Vg.

Iout
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Dynamic Analog Memory Using
Quantization and Refresh

Autonomous Active Refresh Using A/D/A Quantization:

– Allows for an excursion margin around discrete quantization 
levels, provided the rate of refresh is sufficiently fast. 

– Supports digital format for external access
– Trades analog depth for storage stability
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D

pi



G. Cauwenberghs 520.776 Learning on Silicon

Binary Quantization and Partial Incremental Refresh

Problems with Standard Refresh Schemes:
– Systematic offsets in the A/D/A loop
– Switch charge injection (clock feedthrough) during refresh
– Random errors in the A/D/A quantization

Binary Quantization:
– Avoids errors due to analog refresh
– Uses a charge pump with precisely controlled polarity of increments

Partial Incremental Refresh:
– Partial increments avoid catastrophic loss of information in the

presence of random errors and noise in the quantization
– Robustness to noise and errors increases with smaller increment 

amplitudes
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Binary Quantization and Partial Incremental Refresh
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– Resolution ∆
– Increment size δ
– Worst-case drift rate (|dp/dt|)  r
– Period of refresh cycle T

r T < δ << ∆
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Functional Diagram of Partial Incremental Refresh
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• Similar in function and structure to the technique of delta-sigma 
modulation

• Supports efficient and robust analog VLSI implementation, using 
binary controlled charge pump
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Analog VLSI Implementation Architectures
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• An increment/decrement device I/D is provided for every memory 
cell, serving refresh increments locally.

• The binary quantizer Q is more elaborate to implement, and one 
instance can be time-multiplexed among several memory cells
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Charge Pump Implementation of the I/D Device
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Binary controlled polarity of increment/decrement
– INCR/DECR controls polarity of current

Accurate amplitude over wide dynamic range of increments 
– EN controls duration of current
– Vb INCR and Vb DECR control amplitude of subthreshold current
– No clock feedthrough charge injection (gates at constant potentials)
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Dynamic Memory and Incremental Adaptation
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A/D/A Quantizer for Digital Write and Read Access
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Integrated bit-serial (MSB-first) D/A and SA A/D converter:
– Partial Refresh: Q(.) from LSB of (n+1)-bit A/D conv.
– Digital Read Access: n-bit A/D conv.
– Digital Write Access: n-bit D/A ; WR ; Q(.) from COMP
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Dynamic Analog Memory Retention
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– 109 cycles mean time 
between failure

– 8 bit effective resolution
– 20 µV 

increments/decrements
– 200 µm X 32 µm in 2 µm 

CMOS
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Silicon on Sapphire
Peregrine UTSi process

– Higher integration 
density

– Drastically 
reduced bulk 
leakage

• Improved 
analog memory 
retention

– Transparent 
substrate

• Adaptive optics 
applications
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The Credit Assignment Problem
or How to Learn from Delayed Rewards

ADAPTIVE 
CRITIC

SYSTEM
{ }pi

INPUTS OUTPUTS

r(t)

r*(t)

External, discontinuous reinforcement signal r(t).
Adaptive Critics:

– Heuristic Dynamic Programming (Werbos, 1977)
– Reinforcement Learning (Sutton and Barto, 1983)
– TD(λ)  (Sutton, 1988)
– Q-Learning (Watkins, 1989)
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Reinforcement Learning Classifier for Binary Control
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Adaptive Optical Wavefront Correction
with Marc Cohen, Tim Edwards and Mikhail Vorontsov
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Gradient Flow Source Localization and Separation
with Milutin Stanacevic and George Zweig
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The Kerneltron: Support Vector “Machine” in Silicon
Genov and Cauwenberghs, 2001

• 512 inputs, 128 support vectors
• 3mm X 3mm in 0.5um CMOS
• “Computational memories” in hybrid 

DRAM/CCD technology 
• Internally analog, externally digital
• Low bit-rate, serial I/O interface
• 6GMACS throughput @ 6mW power

512 X 128
CID/DRAM array

128 ADCs


