
Introduction

• The goal of neuromorphic engineering is to design and implement micro-
electronic systems that emulate the structure and function of the brain.

• Address-event representation (AER) is a communication protocol origi-
nally proposed as a means to communicate sparse neural events between
neuromorphic chips.

• Previous work has shown that AER can also be used to construct large-
scale networks with arbitrary, configurable synaptic connectivity.

• Here, we further extend the functionality of AER to implement arbitrary,
configurable synaptic plasticity in the address domain.

1



Address-Event Representation (AER)

0

1

2

33

0

1
1

2
203

Sender Receiver

Data bus

time

REQ REQ

ACK ACK

D
ec

od
er

E
nc

od
er

(Mahowald, 1994; Lazzaro et al., 1993)

• The AER communication protocol emulates massive connectivity be-
tween cells by time-multiplexing many connections on the same data
bus.

• For a one-to-one connection topology, the required number of wires is
reduced from N to ∼ log2 N .

• Each spike is represented by:

◦ Its location: explicitly encoded as an address.

◦ The time at which it occurs: implicitly encoded.

2



Learning on Silicon

• Adaptive hardware systems commonly employ learning circuitry embed-
ded into the individual cells.

• Executing learning rules locally requires inputs and outputs of the algo-
rithm to be local in both space and time.

• Implementing learning circuits locally increases the size of repeating units.

• This approach can be effective for small systems, but it is not efficient
when the number of cells increases.

x1

x2

x3

x4

w11

w21

w31

w41

w12

w22

w32

w42

y1 y2

3



Address Domain Learning

• By performing learning in the address domain, we can:

◦ Move learning circuits to the periphery.

◦ Create scalable adaptive systems.

◦ Maintain the small size of our analog cells.

◦ Construct arbitrarily complex and reconfigurable learning rules.

• Because any measure of cellular activity can be made globally available us-
ing AER, many adaptive algorithms based on incremental outer-product
computations can be implemented in the address domain.

• By implementing learning circuits on the periphery, we reduce restrictions
of locality on constituents of the learning rule.

• Spike timing-based learning rules are particularly well-suited for imple-
mentation in the address domain.

4



Enhanced AER

• In its original formulation, AER implements a one-to-one connection
topology.

• To create more complex neural circuits, convergent and divergent con-
nections are required.

• The connectivity of AER systems can be enhanced by routing address-
events to multiple receiver locations via a look-up table (Andreou et al.,

1997; Diess et al., 1999; Boahen, 2000; Higgins & Koch, 1999).

• Continuous-valued synaptic weights can be obtained by manipulating
event transmission (Goldberg et al., 2001):

W = n × p × q

Weight Number of
spikes sent

Probability of
transmission

Amplitude of
postsynaptic

response

5



Enhanced AER: Example

0

2

1

‘‘Receiver’’‘‘Sender’’

3

8

-1

4

0

2

1

Sender address
Synapse index

Receiver address
Weight polarity
Weight magnitude

1

D
ec

od
er

E
nc

od
er

0

2

EG

- - -

0
1
2

- - -

0
1
2

0

1

2

0 1 3
- - -

0 0 10

- - -

0
1
2

2 1 8

2 1 4
- - -

0
1

REQ

POL

Look-up table

Integrate-and-fire array

• A two-layer neural network is mapped to the AER framework by means
of a look-up table (LUT).

• The event generator (EG) sends as many events as are specified in the
weight magnitude field of the LUT.

• The integrate-and-fire array transceiver (IFAT) spatially and temporally
integrates events.

6



Architecture

IFAT System

INACK

INREQ

AIN[2]

AIN[3]

A
O

U
T

[1]

A
O

U
T

[0]

POL
VDD/2

A
IN

[0]

A
IN

[1]

AOUT[2]

AOUT[3]

MATCH

SCAN

ACK

M
A

T
C

H

A
C

K

OUTREQ

OUTACK

RREQ
RACK

RSCAN

C
R

E
Q

C
A

C
K

RSEL

D Q

Input control

Event scanning

C
R

E
Q

C
A

C
K

C
R

E
Q

C
A

C
K

RREQ
RACK

RREQ
RACK

C
P

O
L

RSEL

RSEL

RSCAN

RSCAN

C
P

O
L

C
P

O
L

S
C

A
N

Receiver address

Weight polarity

RAM

D
A

T
A

A
D

D
R

E
S

S

IN

IFAT
OUT

POL

MCU magnitude

Sender
address

Weight

IN

index

OUT

Synapse

PC board

7



Implementation

IFAT System

R
ow

 d
ec

od
in

g

Column decoding

Column scanning
and encoding

R
ow

 s
ca

nn
in

g
an

d 
en

co
di

ng
Single IF cell

RAM
IFAT

MCU

8



Spike Timing-Dependent Plasticity

• In spike timing-dependent plastic-
ity (STDP), changes in synaptic
strength depend on the time be-
tween each pair of presynaptic and
postsynaptic events.

• The most recent inputs to a post-
synaptic cell make larger contri-
butions to its membrane potential
than past inputs due to passive
leakage currents.

• Postsynaptic events immediately
following incoming presynaptic
spikes are considered to be causal
and induce weight increments.

• Presynaptic inputs that arrive
shortly after a postsynaptic spike
are considered to be anti-causal
and induce weight decrements.

From (Bi & Poo, 1998)

9



Address Domain STDP: Event Queues

• To implement our STDP synaptic modification rule in the address do-
main, we augmented our AER architecture with two event queues, one
for presynaptic events and one for postsynaptic events.

• When an event occurs, its address is entered into the appropriate queue
along with an associated value ϕ initialized to τ+ or τ−. This value is
decremented over time.

Presynaptic queue Postsynaptic queue

x1

x2

Address
ϕpre

1 1 1 222
3.02.52.1

1
1.00.70.1

12
0.00.0

t

-3 -2 0-1-4

1.8

y2

y1

Address
ϕpost

1 2 1 21
6.05.64.84.13.5

12
2.42.1

t

-3 -2 0-1-4

22
5.34.5

ϕpre(t−tpre) =

{

τ+ − (t − tpre) if t − tpre ≥ τ+
0 if t − tpre < τ+

ϕpost(t−tpost) =

{

τ− − (t − tpost) if t − tpost ≥ τ−
0 if t − tpost < τ−

10



Address Domain STDP: Weight Updates

• Weight update procedure:

Presynaptic

Postsynaptic

x1 x1 x1 x1x2 x2 x2

x1

x2

y

∆w

τ+
Presynaptic queue

t

y2 y2 y2y2y1y1 y1 y1y1

y2

y1

y1y1

xPresynaptic

Postsynaptic

y1 y2

∆w

τ−

Postsynaptic queue

t

For each postsynaptic event, we
iterate backwards through the
presynaptic queue to find the
causal spikes and increment the
appropriate weights in the LUT.

For each presynaptic event, we it-
erate backwards through the post-
synaptic queue to find the anti-
causal spikes and decrement the
appropriate weights in the LUT.

• The magnitude of the weight updates are specified by the values stored
in the queue.

∆w =

{

−η · ϕpost(tpre − tpost) if 0 ≤ tpre − tpost ≤ τ−
+η · ϕpre(tpost − tpre) if − τ+ ≤ tpre − tpost ≤ 0

0 otherwise

11



Address Domain STDP: Details

−τ+ τ−

tpre − tpost

∆w(tpre − tpost)

presynaptic

postsynaptic

∆w

• For stable learning, the area under the synaptic modification curve in the
anti-causal regime must be greater than that in the causal regime. This
ensures convergence of the synaptic strengths (Song et al., 2000).

• In our implementation of STDP, this constraint is met by setting τ− > τ+.

12



Experiment: Grouping Correlated Inputs

x20

y

x18

x19

Uncorrelated

Correlated

x17

x16

x5

x4

x3

x2

x1

• Each of the 20 neurons in the input layer is driven by an externally
supplied, randomly generated list of events.

• Our randomly generated list of events simulates two groups of neurons,
one correlated and one uncorrelated. The uncorrelated group drives in-
put layer cells x1 . . . x17, and the correlated group drives input layer cells
x18 . . . x20.

• Although each neuron in the input layer has the same average firing rate,
neurons x18 . . . x20 fire synchronous spikes more often than any other
combination of neurons.

13



Experimental Results

Single Trial Average Over 20 Trials

• STDP has been shown to be effective at detecting correlations between
groups of inputs (Song et al., 2000). We demonstrate that this can be
accomplished in hardware in the address domain.

• Given a random starting distribution of synaptic weights for a set of
presynaptic inputs, a neuron using STDP should maximize the weights
of correlated inputs and minimize the weights of uncorrelated inputs.

• Our results illustrate this principle when all synaptic weights are initialized
to a uniform value and the network is allowed to process 200,000 input
events.

14



Conclusion

• The address domain provides an efficient representation to implement
synaptic plasticity based on the relative timing of events.

◦ Learning circuitry can be moved to the periphery.

◦ The constituents of learning rules need not be constrained in space
or time.

• We have implemented an address domain learning system using a hybrid
analog/digital architecture.

• Our experimental results illustrate an application of this approach using
a temporally-asymmetric Hebbian learning rule.

15



Extensions

• The mixed-signal approach provides the best of both worlds:

◦ Analog cells are capable of efficiently modelling sophisticated neural
dynamics in continuous-time.

◦ Nearest-neighbor connectivity can be incorporated into an address-
event framework to exploit the parallel processing capabilities of ana-
log circuits.

◦ Storing the connections in a digital LUT affords the opportunity to
implement learning rules that reconfigure the network topology on
the fly.

• In the future, we will combine all of the system elements on a single chip.
The local embedding of memory will enable high bandwidth distribution
of events.

16


