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BENG 186B Bode Plot Guide 

Winter 2012 

By: Jason Caffrey 

This guide serves as an introduction to finding magnitude and phase of transfer functions, as well 
as making Bode plots, which you may see throughout the class. Full length examples can be 
found at the end of the guide. 

I. Bode Plot Introduction 

Bode plots give engineers a way to visualize the effect of their circuit, in terms of voltage 
magnitude and phase angle (shift). A Bode plot consists of two separate plots, one for magnitude 
and one for phase angle. 

II. Magnitude 

The first part of making a Bode plot is finding the magnitude of the transfer function. Remember 
that the transfer function is the “black box” of your circuit which changes the voltage input into 
the voltage output: 

( ) out

in

VH j
V

ω =       (1) 

Often times, the transfer function ( )H jω has both real and imaginary components, due to 
frequency dependent impedances, such as the general form A jB+ . Just as it sounds, finding the 
magnitude follows the form: 

2 2( )H j A Bω = +      (2) 

One way of visualizing magnitude is by a polar coordinate sketch. 
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For the purposes of making a Bode plot, log-normalized amplitude is used on the y-axis of the 
magnitude plot. This makes amplitude in units of dB (decibels). 

( )10( ) 20log (A j H jω ω=      (3) 

A log scale is also used for radial frequency (ω ) on the x-axis. This yields the following plot 
format: 

 

 

 

 

 

 

 

For more complex transfer functions, follow these steps: 

1) Determine the transfer function of the system.  
 

1 2

1

( )( )( )
( )

s z s zH s
s s p
+ +

=
+

     (4) 

 
Where the poles are at 0s = and 1s p= − , and the zeros are at 1s z= − and 2s z= − in the s 
domain. In the frequency domain, these represent the break frequencies at which the plot 
is ±3dB. 
 
Note: In the s domain, roots of the numerator are called zeros and roots of the 
denominator are called poles. 
 

2) Convert your transfer function into the frequency domain by substituting jω for s . 
Rewrite both the numerator and denominator into standard form.  
 

1 2 1 2

1 1

( / 1)( / 1)( )
( / 1)

z z j z j zH j
p j j p

ω ωω
ω ω
+ +

=
+

    (5) 

 
 

3) Find magnitude of the transfer function using Eqn. (2) 
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( )( )
( )

2 2
1 21 2

2
1 1

( / ) 1 ( / ) 1
( ) ( )

( / ) 1

z zz z
A H j

p p

ω ω
ω ω

ω ω

+ +
= =

+
   (6) 

Hint: remember that the magnitude of the ratio (Vout/Vin) is the ratio of the magnitudes. 
This means that:  

( )
NumNumH j

Denom Denom
ω = =     (7) 

To convert this to units of dB for making your Bode plot: 

( ) ( ) ( )

( )

10

2 21 2
10 10 1 10 2 10

1

2
10 1

( ) 20log ( )

log log ( / ) 1 log ( / ) 1 log
20

log ( / ) 1

A in dB H j

z z
z z

p

p

ω ω

ω ω ω

ω

= =

  
+ + + + − −     

 
+ 

 

 (8) 

Be sure to remember your log rules:  

( ) ( ) ( )log log logAB A B= +      (9) 

( ) ( )log log logA A B
B

  = − 
 

     (10) 

Notice that when 0ω → , the 2nd, 3rd, and 5th terms of Eqn. (8) become zero. On a log-log 
magnitude plot, these terms becomes a flat line through zero. 

When ω →∞ , the 2nd, 3rd, and 5th terms of Eqn. (8) become 10
1

log
z
ω 
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log
z
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log
p
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 respectively. On a log-log magnitude plot, these terms becomes a line with a 

slope of 1. 

If you were to plot magnitude curve, each of the zeros contributes an upward “kink”, 
while each of the poles contributes a downward “kink” on the frequency (ω ) axis. Let’s 
take a look at contribution to the curve from each of the term in Eqn. 8 (Note: the break 
frequencies for the poles/zeros are randomly chosen for the purpose of the plot example): 
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Term (constant): 1 2
10

1

20log
z z

p
 
  
 

 

 

 

 

 

 

 

 

 

Term (zero): ( )2
10 120log ( / ) 1zω +  

 

 

 

 

 

 

 

 

Term (zero): ( )2
10 220log ( / ) 1zω +  
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Term (pole): ( )1020log ω−  

 

 

 

 

 

 

 

 

Term (pole): ( )2
10 120log ( / ) 1pω− +   

 

 

 

 

 

 

 

 

Now, using superposition, we can sum the contributions from each of the magnitude 
terms (previous 5 plots), yielding the overall magnitude plot. 
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To refine your plot, you may smooth the boundaries between poles/zeros for a more 
realistic plot. 

III. Phase Angle 

The second part of making a Bode plot is finding the phase angle of the transfer function. The 
phase angle can be thought of as the offset in time (degrees), as in the following sine wave 
example: 

 

Finding Phase Angle 

The phase angle is denoted by the symbol∠ . For simple functions, phase is simply: 

( ) out

in

VH j
V

ω∠ = ∠       (11) 

By the definition of phase, the following statement can be made: 

[ ]
[ ]

1 ( )
tan

( )
out

in

Imaginary H jV
V Real H j

ω
ω

−  
∠ =   

 
      (12) 

You can visualize phase from arctan by the polar coordinate sketch. 
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For more complex functions, you can use the definition of phase to calculate the phase of the 
numerator and denominator separately. 

out out
out in

in in

V V V V
V V

∠
∠ = = ∠ −∠

∠
    (13) 

To determine phase angle of each term, simply use the arctan, Eqn. (12).  

 

A log scale is also used for radial frequency (ω ) on the x-axis. The y-axis is phase angle in 
degrees (linear scale, not log). This yields the following plot format: 

 

 

 

 

 

 

 

 

For more complex transfer functions, use the following steps to plot phase. Let’s use the same 
transfer function as in the magnitude plot. 

1 2 1 2

1 1

( / 1)( / 1)( )
( / 1)

z z j z j zH j
p j j p

ω ωω
ω ω
+ +

=
+     (14) 

Use Eqn. (11) and (13) to find phase angle. 

1 2 1 2 1 2 1 2

1 1 1 1

( / 1)( / 1) ( / 1)( / 1)( )
( / 1) ( / 1)

z z j z j z z z j z j zH j
p j j p p j j p

ω ω ω ωω
ω ω ω ω
+ + ∠ + +

∠ = ∠ =
+ ∠ +   (15) 

Separate terms using multiplication and division rules 

1 2
1 2 1

1

( ) ( / 1) ( / 1) ( / 1)z zH j j z j z j j p
p

ω ω ω ω ω∠ = ∠ +∠ + +∠ + −∠ −∠ +
  (16)

 

Use Eqn. (12) to solve for the angle of each term 
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1 1 1 1 11 2 1

1 2 1

0 / / /( ) tan tan tan tan tan
/ 1 1 0 1

z z pH j
z z p

ω ω ω ωω − − − − −         ∠ = + + − −         
          (17) 

The 1st and 4th terms can then be simplified 

1 1 11 2 1/ / /( ) 0 tan tan 90 tan
1 1 1

z z pH j ω ω ωω − − −     ∠ = ° + + − ° −     
        (18) 

( ) ( ) ( )1 1 1
1 2 1( ) 90 tan / tan / tan /H j z z pω ω ω ω− − −∠ = − ° + + −

   (19) 

Notice that when 0ω → , the 2nd, 3rd, and 4th terms of Eqn. (19) become zero.  

When ω →∞ , the 2nd, 3rd, and 4th terms of Eqn. (19) become 90° , 90° , and 90− °  respectively.  

If you were to plot the phase curve, each of the zeros contributes a 90+ °offset, while each of the 
poles contributes a 90− °  offset. Let’s take a look at contribution to the curve from each of the 
terms in Eqn. 19 (Note: the break frequencies for the poles/zeros are randomly chosen for the 
purpose of the plot example): 

Term (constant): 90− °  
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Term (zero): ( )1
2tan / zω−  

 

 

 

 

 

 

 

 

Term (pole): ( )1
1tan / pω−−  

 

 

 

 

 

 

 

Now, using superposition, we can sum the contributions from each of the phase terms (previous 
4 plots), yielding the overall phase plot. 
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To refine your plot, you may smooth the boundaries between poles/zeros for a more realistic 
plot. 

The amplitude and phase plots are closely related: for every up (down) kink in log amplitude 
there is an up (down) step in phase angle. 

IV. Estimation Methods 

First, convert your transfer function to standard form, as in Eqn. (5). For each pole and zero, 
determine where the break frequency ω is, by solving for each respective term. For example: 

1 2 1 2

1 1

( / 1)( / 1)( )
/ ( / 1)

z z j z j zH j
j p j p
ω ωω
ω ω

+ +
=

+
    (20) 

Magnitude 

Then use these general rules for sketching your magnitude curve: 

1) Find the initial value of the transfer function as 0ω → and ω →∞ . These are the values 
of your lower and upper frequency bounds, respectively 
 

2) For every pole, the slope of the magnitude curve decreases by 1, where at the break 
frequency, the curve value is decreased -3dB.  
 
For every zero, the slope of the magnitude curve increases by 1, where at the break 
frequency, the curve value is increased +3dB . 
 
Note: A slope of 1 is equal to 20dB/decade (8dB/octave) 
 
Poles and zeros can also occur at 0s = . In the following case, a zero occurs at 0s = : 

( / 10 1)( )
10000( / 100 1)( / 1000 1)

s sH s
s s

+
=

+ +
   (21) 

 For this example: zeros occur at 0s = and 10s = , poles occur at 100s = and 1000s = . 

Zeros at 0s = increase the initial slope by 1, while poles at 0s = decrease the initial slope 
by 1. If there are no zeros/poles at 0s = , the initial slope of the magnitude curve is 0. 

Phase 

Then use these general rules for sketching your phase curve: 

1) For every pole, the angle of the phase plot decreases by 90°, where at the break 
frequency, the curve value is decreased 45°. 

For every zero, the angle of the phase plot increases by 90°, where at the break 
frequency, the curve value is increased 45°. 
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Zeros at 0s = increase the initial phase by 90°, while poles at 0s = decrease the initial 
slope by 90°. These "steps" are smooth and their transitions are centered around the pole 
and zero values on the frequency (ω ) axis. If there are no zeros/poles at 0s = , the initial 
value of the phase curve is 0°. 

 

Note: You may also use MATLAB or another graphing program to make your Bode plots for 
homework (but you can’t do this on tests, so know how to do them by hand). 

 

V. References 
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VI. Example 1: Passive Low Pass Filter 

R

C

Vin Vout

 

Starting with the transfer function of a passive low pass filter 

1( )
1

out

in

VH j
V j RC

ω
ω

= =
+

     (22) 

Magnitude 

1 1( )
1 1

H j
j RC j RC

ω
ω ω

= =
+ +

     (23) 

Using Eqn. (2): 

2 2 2

1( )
1

H j
R C

ω
ω

=
+

     (24) 

10 10 2 2 2

1( ) 20log ( ) 20log
1

A j H j
R C

ω ω
ω

 
= =  

+ 
 in units of dB  (25) 

Sample magnitude plot (cutoff frequency depends on components values R,C): 

 

 

 

 

 

 

 

 

Looking at the limits of frequency, as 0ω → , ( ) 0A jω → . As ω →∞ , ( )A jω → −∞ . 
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Phase 

1( )
1

H j
j RC

ω
ω

∠ = ∠
+

     (26) 

( )( ) 1 1H j j RCω ω∠ = ∠ −∠ +     (27) 

Since the phase angle of a real constant is 0°: 

( )( ) 1H j j RCω ω∠ = −∠ +      (28) 

1( ) tan
1
RCH j ωω −  ∠ = −  

 
     (29) 

Sample phase plot: 

 

 

 

 

 

 

 

 

 

Looking at the limits of frequency, as 0ω → , ( ) 0H jω∠ → . As ω →∞ , ( ) 90H jω∠ → − . 
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VII. Example 2: Bandpass (High Pass – Low Pass) Filter 

R1

R2

C1

C2

Vin Vout

 

 

Starting with the transfer function 

1 1

1 1 2 2

1( )
1 1

out

in

V j R CH j
V j R C j R C

ωω
ω ω

  
= =   + +       (30)

 

Multiplying the two filter transfer functions together 

1 1
2

1 1 2 2 1 1 2 2

( )
1

j R CH j
R C R C j R C j R C

ωω
ω ω ω

=
− + + +    (31)

 

Grouping real and imaginary terms 

( )
1 1

2
1 1 2 2 1 1 2 2

( )
1

j R CH j
R C R C j R C R C

ωω
ω ω

=
− + +     (32)

 

Magnitude 

( ) ( )
1 11 1

2 2
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

( )
1 1

j R Cj R CH j
R C R C j R C R C R C R C j R C R C

ωωω
ω ω ω ω

= =
− + + − + +

 (33)
 

( ) ( )( )
1 1

2 22
1 1 2 2 1 1 2 2

( )
1

R CH j
R C R C R C R C

ωω
ω ω

=
− + +

   (34)

 

( ) ( )( )
1 1

10 10 2 22
1 1 2 2 1 1 2 2

( ) 20log ( ) 20log
1

R CA j H j
R C R C R C R C

ωω ω
ω ω

 
 = =  
 − + +    (35)

 

 

 



15 

Sample magnitude plot (shape and cutoff frequencies depend on components values R,C): 

 

 

 

 

 

 

 

Looking at the limits of frequency, as 0ω → , ( ) 0A jω → . As ω →∞ , ( ) 0A jω → . 

Phase 

( )
1 1

2
1 1 2 2 1 1 2 2

( )
1

j R CH j
R C R C j R C R C

ωω
ω ω

∠ = ∠
− + +     (36)

 

( )( )2
1 1 1 1 2 2 1 1 2 2( ) 1H j j R C R C R C j R C R Cω ω ω ω∠ = ∠ −∠ − + +   (37)

 

From Eqn. (12): 

( )1 1 2 21 11 1
2

1 1 2

( ) tan tan
0 1

R C R CR CH j
R C R C

ωωω
ω

− −  + ∠ = −    −        (38)
 

( )1 1 2 21
2

1 1 2

( ) 90 tan
1

R C R C
H j

R C R C
ω

ω
ω

−  +
∠ = −  −       (39)

 

Sample phase plot: 

 

 

 

 

 

 

Looking at the limits of frequency, as 0ω → , ( ) 90H jω∠ → . As ω →∞ , ( ) 90H jω∠ → − . 
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