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1.1

Overview

Course Objectives

1. Acquire methods for quantitative analysis and prediction of biophysical processes in-
volving spatial and temporal dynamics:

• Derive partial differential equations from physical principles;

• Formulate boundary conditions from physical and operational constraints;

• Use engineering mathematical tools of linear systems analysis to find a solution
or a class of solutions;

2. Learn to apply these methods to solve engineering problems in medicine and biology:

• Formulate a bioengineering problem in quantitative terms;

• Simplify (linearize) the problem where warranted;

• Solve the problem, interpret the results, and draw conclusions to guide further
design.

3. Enjoy!
1.2
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1 Ordinary Differential Equations

ODE Problem Formulation
Solve for the dynamics of n variables x1(t),x2(t), . . .xn(t) in time (or other ordinate) t

described by m differential equations:

ODE
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for i = 1, . . .m, where m ≤ n and k ≤ n. Solutions are generally not unique. A unique
solution, or a reduced set of solutions, is determined by specifying initial or boundary con-
ditions on the variables. 1.4

ODE Examples
Kinetics of mass m with potential V (x):
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+V (x) = 0 (2)

Two masses with coupled potential V (x):
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+V (x1,x2) = 0 (3)

Second order nonlinear ODE:
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d2x
dt2 =
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(4)

1.5

ODE in Canonical Form
In canonical form, a set of n ODEs specify the first order derivatives of each of n single

variables in the other variables, without coupling between derivatives or to higher order
derivatives:

Canonical ODE
dx1

dt
= f1(x1,x2, . . .xn)

dx2

dt
= f2(x1,x2, . . .xn) (5)

...
dxn

dt
= fn(x1,x2, . . .xn).

Not every system of ODEs can be formulated in canonical form. An important class of
ODEs that can be formulated in canonical form are linear ODEs. 1.6
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Canonical ODE Examples
Amplitude stabilized quadrature oscillator:{ dx

dt = −y− (x2 + y2−1) x
dy
dt = x− (x2 + y2−1) y

(6)

Any first-order canonical ODE without explicit time dependence can be solved by sepa-
ration of variables, e.g.,

dx
dt

= (1+ x2)/x (7)

1.7

Initial and Boundary Conditions
Initial conditions are values for the variables, and some of their derivatives of various

order, specified at one initial point in time t0, e.g., t = 0:

IC
dix j

dt i (0) = ci j, i = 0, . . .m, j = 1, . . .n. (8)

Boundary conditions are more general conditions linking the variables, and/or their first
and higher derivatives, at one or several points in time tk:

BC

gl(. . . ,
dix j

dt i (tk), . . .) = 0. (9)

1.8

ICs in Canonical Form
For ODEs in canonical form, initial conditions for each of the variables are specified at

initial time t0, e.g., t = 0:

Canonical IC

x1(0) = c1

x2(0) = c2 (10)
...

xn(0) = cn

ICs for first or higher order derivatives are not required for canonical ODEs. 1.9

2 Linear Time-Invariant Systems

Linear time-invariant (LTI) systems can be described by linear canonical ODEs with con-
stant coefficients:

LTI ODE
dx
dt

= A x+b (11)

with x = (x1, . . .xn)
T , and with linear initial conditions:
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LTI IC
x(0) = e (12)

or linear boundary conditions at two, or more generally several, time points:

LTI BC
C x(0)+D x(T ) = e (13)

1.10

LTI Systems ODE Examples
Examples abound in biomechanical and electromechanical systems (including cardio-

vascular system, and MEMS biosensors), and more recently bioinformatics and systems
biology.

A classic example is the harmonic oscillator (k = 0), and more generally the damped
oscillator or resonator: { du

dt = v
m dv

dt = −k u− γ v+ fext
(14)

where u represents some physical form of deflection, and v its velocity. Typical parameters
include mass/inertia m, stiffness k, and friction γ . The inhomogeneous term fext represents
an external force acting on the resonator. 1.11

LTI Homogeneous ODEs
In general, LTI ODEs are inhomogeneous. Homogeneous LTI ODEs are those for which

x ≡ 0 is a valid solution. This is the case for LTI ODEs with zero driving force b = 0 and
zero IC/BC:

LTI Homogeneous ODE
dx
dt

= A x (15)

LTI Homogeneous IC
C x(0) = 0 (16)

LTI Homogeneous BC
C x(0)+D x(T ) = 0. (17)

Eigenmodes, arbitrarily scaled non-trivial solutions x 6= 0, exist for under-determined
IC/BC (rank-deficient C and D). 1.12

3 Eigenmodes

Eigenmode Analysis
Eigenvalue-eigenvector decomposition of the matrix A yields the eigenmodes of LTI

homogeneous ODEs. Let:
A xi = λi xi (18)

with eigenvectors xi and corresponding eigenvalues λi. Then

Eigenmodes
x(t) = ci xi eλit (19)

are eigenmode solutions to the LTI homogeneous ODEs (15) for any scalars ci. There
are n such eigenmodes, where n is the rank of A (typically, the number of LTI homogeneous
ODEs). 1.13
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Orthonormality and Inhomogeneous IC/BCs
The general solution is expressed as a linear combination of eigenmodes:

x(t) =
n

∑
i=1

ci xi eλit (20)

For symmetric matrix A (Ai j = A ji) the set of eigenvectors xi is orthonormal:

xT
i x j = δi j (21)

so that the solution to the homogeneous ODEs (15) with inhomogeneous ICs (12) reduces
to ci = xT

i x(0), or:

LTI inhomogenous IC solution (symmetric A)

x(t) =
n

∑
i=1

xT
i x(0) xi eλit (22)

1.14

4 Convolution and Response Functions

Superposition and Time-Invariance
Linear time-invariant (LTI) homogeneous ODE systems satisfy the following useful

properties:

LTI ODE

1. Superposition: If x(t) and y(t) are solutions, then A x(t)+B y(t) must also be solu-
tions for any constant A and B.

2. Time Invariance: If x(t) is a solution, then so is x(t +∆t) for any time displacement
∆t.

An important consequence is that solutions to LTI inhomogeneous ODEs are readily
obtained from solutions to the homogeneous problem through convolution. This observation
is the basis for extensive use of the Laplace and Fourier transforms to study and solve LTI
problems in engineering. 1.15

Impulse Response and Convolution
Let h(t) the impulse response of a LTI system to a delta Dirac function at time zero:

dh
dt

= L (h)+δ (t) (23)

then, owing to the principle of superposition and time invariance, the response u(t) to an
arbitrary stimulus over time f (t)

du
dt

= L (u)+ f (t) (24)

is given by:

Convolution
u(t) =

∫ +∞

−∞

f (θ) h(t−θ) dθ . (25)

1.16
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Fourier Transfer Function
Linear convolution in the time domain (25)

u(t) =
∫ +∞

−∞

f (θ) h(t−θ) dθ

transforms to a linear product in the Fourier domain:

U( jω) = F( jω) H( jω) (26)

where
U( jω) = F (u(t)) =

∫ +∞

−∞

u(θ) e− jωθ dθ (27)

is the Fourier transform of u.
The transfer function H( jω) is the Fourier transform of the impulse response h(t). 1.17

Laplace Transfer Function
For causal systems

h(t)≡ 0 for t < 0 (28)

the identical product form (26)
U(s) = F(s) H(s) (29)

holds also for the Laplace transform

U(s) = L (u(t)) =
∫ +∞

0
u(θ) e−sθ dθ (30)

where s = jω . 1.18
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