BENG 221 Lecture 1

Introduction

Overview

Ordinary Equations

Time-Invariant Systems

Eigenmodes

Convolution and Response

Further Reading

BENG 221 Mathematical Methods in Bioengineering

Lecture 1 Introduction **ODEs and Linear Systems**

Gert Cauwenberghs Department of Bioengineering UC San Diego

Course Objectives

Overviev

Ordinary Differentia Equations

Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

- Acquire methods for quantitative analysis and prediction of biophysical processes involving spatial and temporal dynamics:
 - Derive partial differential equations from physical principles;
 - Formulate boundary conditions from physical and operational constraints;
 - Use engineering mathematical tools of linear systems analysis to find a solution or a class of solutions;
- 2. Learn to apply these methods to solve engineering problems in medicine and biology:
 - Formulate a bioengineering problem in quantitative terms;
 - Simplify (linearize) the problem where warranted;
 - Solve the problem, interpret the results, and draw conclusions to guide further design.
- 3. Enjoy!

Today's Coverage:

Overvie

Ordinary Differential Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Ordinary Differential Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

ODE Problem Formulation

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response

Further Reading

Solve for the dynamics of n variables $x_1(t), x_2(t), \dots x_n(t)$ in time (or other ordinate) t described by m differential equations:

ODE

$$\mathcal{F}_{i}\left(x_{1}, \frac{dx_{1}}{dt}, \dots \frac{d^{k}x_{1}}{dt^{k}}, \dots \right.$$

$$x_{2}, \frac{dx_{2}}{dt}, \dots \frac{d^{k}x_{2}}{dt^{k}}, \dots$$

$$x_{n}, \frac{dx_{n}}{dt}, \dots \frac{d^{k}x_{n}}{dt^{k}}\right) = 0$$

$$(1)$$

for i = 1, ..., m, where $m \le n$ and $k \le n$. Solutions are generally not unique. A unique solution, or a reduced set of solutions, is determined by specifying initial or boundary conditions on the variables.

ODE Examples

Overview

Ordinary Differentia Equations

Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Kinetics of mass m with potential V(x):

$$\frac{1}{2}m\left(\frac{dx}{dt}\right)^2+V(x)=0\tag{2}$$

Two masses with coupled potential V(x):

$$\frac{1}{2}m_1\left(\frac{dx_1}{dt}\right)^2 + \frac{1}{2}m_2\left(\frac{dx_2}{dt}\right)^2 + V(x_1, x_2) = 0$$
 (3)

Second order nonlinear ODE:

$$x\frac{d^2x}{dt^2} = \frac{1}{2} \left(\frac{dx}{dt}\right)^2 \tag{4}$$

ODE in Canonical Form

Overview

Ordinary Differential Equations

Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

In *canonical form*, a set of *n* ODEs specify the first order derivatives of each of *n* single variables in the other variables, without coupling between derivatives or to higher order derivatives:

Canonical ODE

$$\frac{dx_1}{dt} = f_1(x_1, x_2, \dots x_n)$$

$$\frac{dx_2}{dt} = f_2(x_1, x_2, \dots x_n)$$

$$\vdots$$

$$\frac{dx_n}{dt} = f_n(x_1, x_2, \dots x_n).$$
(5)

Not every system of ODEs can be formulated in canonical form. An important class of ODEs that can be formulated in canonical form are *linear ODEs*.

Canonical ODE Examples

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response

Further Reading

Amplitude stabilized quadrature oscillator:

$$\begin{cases}
\frac{dx}{dt} = -y - (x^2 + y^2 - 1) x \\
\frac{dy}{dt} = x - (x^2 + y^2 - 1) y
\end{cases} (6)$$

Any first-order canonical ODE without explicit time dependence can be solved by separation of variables, *e.g.*,

$$\frac{dx}{dt} = (1 + x^2)/x \tag{7}$$

Initial and Boundary Conditions

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Initial conditions are values for the variables, and some of their derivatives of various order, specified at one initial point in time t_0 , e.g., t=0:

IC

$$\frac{d^{i}x_{j}}{dt^{i}}(0)=c_{ij}, \qquad i=0,\ldots m, \quad j=1,\ldots n.$$
 (8)

Boundary conditions are more general conditions linking the variables, and/or their first and higher derivatives, at one or several points in time t_k :

BC

$$g_l(\ldots,\frac{d^lx_j}{dt^l}(t_k),\ldots)=0.$$
 (9)

ICs in Canonical Form

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response

Further Reading

For ODEs in canonical form, initial conditions for each of the variables are specified at initial time t_0 , e.g., t=0:

Canonical IC

$$x_1(0) = c_1$$

 $x_2(0) = c_2$ (10)
 \vdots
 $x_n(0) = c_n$

ICs for first or higher order derivatives are not required for canonical ODEs.

Linear Canonical ODEs

Linear time-invariant (LTI) systems can be described by linear canonical ODEs with constant coefficients:

LTI ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{A} \, \mathbf{x} + \mathbf{b} \tag{11}$$

with $\mathbf{x} = (x_1, \dots x_n)^T$, and with linear initial conditions:

LTI IC

$$\mathbf{x}(0) = \mathbf{e} \tag{12}$$

or linear boundary conditions at two, or more generally several, time points:

LTI BC

$$\mathbf{C} \ \mathbf{x}(0) + \mathbf{D} \ \mathbf{x}(T) = \mathbf{e} \tag{13}$$

Overview

Linear Time-Invaria

Eigenmodes

Convolution and Response

Functions

Further Reading

LTI Systems ODE Examples

Overview

Ordinary Differentia Equations

Linear Time-Invari Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Examples abound in biomechanical and electromechanical systems (including cardiovascular system, and MEMS biosensors), and more recently bioinformatics and systems biology.

A classic example is the *harmonic oscillator* (k = 0), and more generally the *damped oscillator* or *resonator*.

$$\begin{cases}
\frac{du}{dt} = v \\
m\frac{dv}{dt} = -k u - \gamma v + f_{ext}
\end{cases}$$
(14)

where u represents some physical form of deflection, and v its velocity. Typical parameters include mass/inertia m, stiffness k, and friction γ . The inhomogeneous term f_{ext} represents an external force acting on the resonator.

Further Reading

RFNG 221

Lecture 1 Introduction

Overview

LTI Homogeneous ODEs In general, LTI ODEs are inhomogeneous. Homogeneous LTI

ODEs are those for which $\mathbf{x} \equiv 0$ is a valid solution. This is the case for LTI ODEs with zero driving force $\mathbf{b} = 0$ and zero IC/BC:

LTI Homogeneous ODE

$$rac{d\mathbf{x}}{dt} = \mathbf{A} \ \mathbf{x}$$

LTI Homogeneous IC

$$\mathbf{C} \mathbf{x}(0) = 0$$

Eigenmodes, arbitrarily scaled non-trivial solutions $\mathbf{x} \neq 0$, exist

for under-determined IC/BC (rank-deficient **C** and **D**).

(15)

(16)

$$\mathbf{C} \mathbf{x}(0) + \mathbf{D} \mathbf{x}(T) = 0.$$

(17)

Eigenmode Analysis

Overview

Ordinary

Time-Invariant

Convolution and

Further Reading

Eigenvalue-eigenvector decomposition of the matrix **A** yields the eigenmodes of LTI homogeneous ODEs. Let:

$$\mathbf{A} \mathbf{x}_i = \lambda_i \mathbf{x}_i \tag{18}$$

with eigenvectors \mathbf{x}_i and corresponding eigenvalues λ_i . Then

Eigenmodes

$$\mathbf{x}(t) = c_i \; \mathbf{x}_i \; e^{\lambda_i t} \tag{19}$$

are eigenmode solutions to the LTI homogeneous ODEs (15) for any scalars c_i . There are n such eigenmodes, where n is the rank of **A** (typically, the number of LTI homogeneous ODEs).

Orthonormality and Inhomogeneous IC/BCs

Overview

Ordinary Differentia Equations

Time-Invariant Systems

Eigenmode

Convolution and Response Functions

Further Reading

The general solution is expressed as a linear combination of eigenmodes:

$$\mathbf{x}(t) = \sum_{i=1}^{n} c_i \, \mathbf{x}_i \, e^{\lambda_i t} \tag{20}$$

For *symmetric* matrix $A(A_{ij} = A_{ji})$ the set of eigenvectors \mathbf{x}_i is *orthonormal*:

$$\mathbf{x}_i^T \mathbf{x}_j = \delta_{ij} \tag{21}$$

so that the solution to the homogeneous ODEs (15) with inhomogeneous ICs (12) reduces to $c_i = \mathbf{x}_i^T \mathbf{x}(0)$, or:

LTI inhomogenous IC solution (symmetric A)

$$\mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{x}(0) \mathbf{x}_{i} e^{\lambda_{i} t}$$
 (22)

Superposition and Time-Invariance

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Linear time-invariant (LTI) *homogeneous* ODE systems satisfy the following useful properties:

LTI ODE

- 1. **Superposition:** If $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are solutions, then $\mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{y}(t)$ must also be solutions for any constant \mathbf{A} and \mathbf{B} .
- 2. **Time Invariance:** If $\mathbf{x}(t)$ is a solution, then so is $\mathbf{x}(t + \Delta t)$ for any time displacement Δt .

An important consequence is that solutions to LTI inhomogeneous ODEs are readily obtained from solutions to the homogeneous problem through *convolution*. This observation is the basis for extensive use of the *Laplace and Fourier transforms* to study and solve LTI problems in engineering.

Impulse Response and Convolution

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Let h(t) the *impulse response* of a LTI system to a delta Dirac function at time zero:

$$\frac{dh}{dt} = \mathcal{L}(h) + \delta(t) \tag{23}$$

then, owing to the principle of superposition and time invariance, the response u(t) to an arbitrary stimulus over time f(t)

$$\frac{du}{dt} = \mathcal{L}(u) + f(t) \tag{24}$$

is given by:

Convolution

$$u(t) = \int_{-\infty}^{+\infty} f(\theta) \ h(t - \theta) \ d\theta. \tag{25}$$

Fourier Transfer Function

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response Functions

Further Reading

Linear convolution in the time domain (25)

$$u(t) = \int_{-\infty}^{+\infty} f(\theta) \ h(t - \theta) \ d\theta$$

transforms to a linear product in the Fourier domain:

$$U(j\omega) = F(j\omega) H(j\omega)$$
 (26)

where

$$U(j\omega) = \mathcal{F}(u(t)) = \int_{-\infty}^{+\infty} u(\theta) \ e^{-j\omega\theta} \ d\theta \tag{27}$$

is the Fourier transform of u.

The *transfer function* $H(j\omega)$ is the Fourier transform of the *impulse response* h(t).

Laplace Transfer Function

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution an Response Functions

Further Reading

For causal systems

$$h(t) \equiv 0 \quad \text{for} \quad t < 0 \tag{28}$$

the identical product form (26)

$$U(s) = F(s) H(s) \tag{29}$$

holds also for the Laplace transform

$$U(s) = \mathcal{L}(u(t)) = \int_0^{+\infty} u(\theta) e^{-s\theta} d\theta$$
 (30)

where $s = i\omega$.

BENG 221 Lecture 1 Introduction

Bibliography

Overview

Ordinary Differentia Equations

Linear Time-Invariant Systems

Eigenmodes

Convolution and Response

Further Readin

- Wikipedia, Ordinary Differential Equation, http://en.wikipedia.org/wiki/Ordinary differential equation.
- Wikipedia, LTI System Theory, http://en.wikipedia.org/wiki/LTI system theory.
- Wikipedia, Convolution, https://en.wikipedia.org/wiki/Convolution.