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The one dimensional wave equation.  The vibrating string as a boundary value 
problem 
 
Given a string stretched along the x axis, the vibrating string is a problem where forces 
are exerted in the x and y directions, resulting in motion in the x-y plane, when the string 
is displaced from its equilibrium position within the x-y plane, and then released. 
 
The free body diagram of an element of string of length s∆  subjected to a tension T is 
shown.  The string material has density ρ .  The equation of motion is obtained by 
applying Newton’s second law of motion to the element of length s∆  in both directions.  
For the x direction (and ignoring the torsional effects due to the applied torque): 
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and in the y direction: 
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Where the bar over the partial derivative signifies the average acceleration over the 
element s∆ .  A is the cross section of the string, assumed constant and equal to 1. 
 
Dividing through by s∆  and taking the limit s∆  →  0 we obtain: 
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 the above equations can be reduced to the form (for 

constant T) 
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Since there is no motion in the x direction 
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for small θ  therefore in (15a): 
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and the system of equations reduces to: 
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The first equation has a trivial solution.  The second equation can be solved by the 
method of separation of variables by assuming that ( , ) ( ) ( )y x t X x F t= which leads to: 
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 we obtain: 
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according to previous reasoning indicating that an equality between functions of different 
variables implies that the functions are equal to a constant.  Therefore we can write: 
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as previously, the solutions of these equations correspond to the case where the constant 
is positive and therefore the characteristic equation of the second order differential 
equation has imaginary coefficients, leading to the following solutions in terms of 
trigonometric functions: 
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Therefore the system of equations given in (16) has product solutions of the form: 
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Boundary conditions.  Vibrating string clamped at both ends 
 
If we impose the B.C.s that the string is clamped at the ends, namely y = 0 at x = 0, L then 
there is no motion in the y direction and: 
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These B.C.s are satisfied by 2 0 0 0A C D= = =  and the eigenvalues 
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leading to eigenfunctions: 
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where the constant 1A  is now include in nA  and nB .  Note that for any time 0t  the string 
has a configuration that depend son on n: 
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which describes a family of modes of the string for the specific B.C.s of clamped ends.  
These are called the normal modes of vibration.  The intensity of sound depends on the 
amplitude 2 2

n n nC A B= +  which is derived from: 
 

2 2 1cos sin sin( ) tan AA B A B
B

θ θ θ λ λ −+ = + + =  

 
The number of oscillations per unit time or frequency in cycles per second is: 
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Sound is produced by the superposition of natural frequencies n = 1,2,3,….  The normal 
mode is the first harmonic or fundamental n = 1.  The larger the natural frequency, the 
higher the pitch.  Tuning is accomplished by varying either ,L ρ  or T.  For vibrating 
strings the frequencies of the higher harmonics are all integral multiples of the 
fundamental.  Note that sound is produced by strings vibrating in a lateral direction, 
however it is transmitted by waves of compression and rarefaction in the longitudinal 
direction (the direction of propagation). 
 
Standing waves and summation of traveling waves 
 
Each standing wave is composed by the summation of two waves traveling in opposite 
directions.  
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Subtracting we obtain: 
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Where the wave velocity V is TV
ρ

= . 

 

 
Figure 2  
 
Figure 2 shows how the equation in time is set up for advancing pulse.  The upper 
diagram shows the pulse at t = 0 given by the equation  y = f(x).  The lower diagram 
shows the same pulse at time t = t having advanced a distance Vt without changing shape.  
A new axis Y’ is constructed, displaced a distance x = Vt to the right, x’ being the new 
coordinate of any point referred to the new origin.  The equation  f(x) at time t in terms of 
x’ is the same as the equation at t = 0 in terms of x, or y = f(x’) for t = t.  However: 
 

' ( )x x Vt therefore y f x Vt= − = −  
 
Initial conditions   
 
Suppose the I.C.s are given by a function y(x) such that for t = 0: 
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Applying the velocity boundary conditions for t = 0 to (17) we obtain: 
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Which satisfies the I.C.s by setting 0nB = .  Solution of the problem requires determining 
the constants nA  so that that the initial conditions are satisfied: 
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multiplying both sides of (18) bysin m x
L
π  and integrating between 0 and L we obtain: 
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Integrating (19) term by term: 
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These integrals can be evaluated by considering that: 
 

2 2

1 1sin sin cos sin sin sinx xdx x x x and x axdx ax axdax d
a a

θ θ θ= − = =∫ ∫ ∫ ∫        (21) 

 
where ax θ= .  In (20), upon integration and evaluation at the limits the only non-zero 
terms exist at L/2, of which there are two, with same sign.  Therefore, in (21) we can set 

/a m Lπ= , then  
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which vanishes when m is even and when it is odd the sine term oscillates between the 
values 1± . 
 
The product solution therefore is: 
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Transmission of waves in gases.  Sound. 
 
 Strings present the transmission of transverse waves.  In gases waves are 
transmitted longitudinally.  We will analyze the transmission of waves in tube where gas 
displacements are made by a piston.  Moving the piston creates a compression that travels 
forward.  If the piston is quickly retracted then there is a wave of rarefaction that also 
travels along the tube. 
 
 Consider an element of gas in the tube located between x and x x+ ∆  where the 
gas has an equilibrium pressure .  As the wave advances the element of gas oscillates 
about its equilibrium position.  The coordinate y is used to describe displacements of gas 
from its equilibrium position.  The displacement of the left side of the element of gas has 
coordinate y and that on the right side 

0p

y y+ ∆ .  Pressure on the left side is p and on the 
right side is p p+ ∆ .  For a very thin slice pressure in the displaced gas is , which 
is also the pressure on the left side face, and the pressure on the right side face is 

.  The forces acting on the element of gas are obtained by multiplying by the 
area of the tube A.  The net restoring force acting on the displaced gas is 

0p p+

0p p p+ + ∆
pA−∆ .  If 0ρ  is 

the density of the gas at the equilibrium pressure  then the mass of element is 0p 0 A xρ ∆  
leading to the equation of motion: 
 

 
Note that x gives the position of the gas molecules at rest (therefore while is uniform in 0p

x∆ ) while y gives the position of displaced molecules and p is not uniform in .  In the 
case illustrated since > 

y∆
y∆ x∆  we are dealing with a rarefaction wave.  
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and at the limit for very small x∆ : 
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 The volume in its equilibrium position is A x∆ .  In the displaced position the 
coordinate of the right face is x x y y+ ∆ + + ∆  while the coordinate of the left face is x + 
y.  Therefore the length of the displaced element is given by the difference of these two 
coordinates or x y∆ +∆  and the change in length, and therefore the change in volume is 
A y∆ . 
 
 Consider the general definition of compressibility k: 
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Note that the compressibility of a gas can be derived from the perfect gas equation 
pV RT=  where  
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 Referring this definition to our development: 
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and in view of (23) 
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 Therefore substituting in (23) we are led to the one dimensional wave equation for 
the transmission of longitudinal perturbations: 
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 The velocity of propagation, by analogy to the wave equation for strings (lateral 
displacements) is given by: 
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 The bulk modulus B is the reciprocal of the compressibility, in other words, the 
pressure required to induce a volume change relative to the total volume.  This quantity is 
the equivalent to the Young’s modulus Y for linear changes (stress required o induce a 
change in strain).  Therefore a general expression for the velocity at which waves travel 
in a materials is: 
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Pressure variation in a sound wave 
 
 From the development of the propagation velocity of lateral displacement (waves) 
in a string we found that a disturbance is propagated with a velocity ν , where in this case 
L = wave length, and A = displacement amplitude 
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in view of (24) which leads to: 
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The term within brackets represents the maximal pressure amplitude P while A is the 
maximal displacement. 
 
Wave velocity & thermodynamics of perfect gases 
 
 The previous equation (25) shows that: 
 

(2

0

2 2sinp A )x t
L L
π πν ν

ρ
∂

=
∂

−                                                                                           

(26) 
 
therefore using the thermodynamic relation: 
 

where thenM nM RTpV nRT n RT p
M V M

ρρ= = = =  

 
therefore in terms of maximum values (26) is also equal to: 
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a result derived by Newton, which underestimates the actual speed by about 15%.  The 
more correct formulation was give by Laplace, who realized that the compression and 
relaxation in the sound wave is too rapid for allowing constant temperature (isothermal 
conditions), and that the actual conditions were adiabatic, i.e., no heat transfer due to the 
high speed at which compression and rarefaction occur, leading to the expression: 
 

   RT
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v

C
C
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which is the ratio of specific heat at constant pressure vs. constant volume, usually about 
1.4. 
 
Pressure dispersion  
 
 The analytical derivation does not include a mechanism for the attenuation of the 
pressure amplitude, which occurs due to refraction and absorption of the pressure wave.  
This can be accounted for the expression: 
 

x
oA A e α−=  

 
where α  is a parameter that characterizes the viscous effects in the medium, or the 
conversion of mechanical energy in the wave into thermal energy.  
 
 Pressure waves that originate from a point source decay naturally at the rate of  
-60 log R db, where R is the ratio of radial distances, and for cylindrical sources at the 
rate of -40 log R.  
 
 The dispersion of pressure can also be described by the diffusion equation: 
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Intensity of sound waves 
 
 Waves propagate energy. The intensity I of a traveling wave is defined as the 
average rate energy is transported by the wave per unit area across a surface 
perpendicular to the direction of propagation.  Also intensity is the average power 
transported per unit area.  The energy associated with a travelling wave is in part 
potential, associated with the compression of the medium, and kinetic relate to particle 
velocity.  By analogy to the dynamics and energy distribution of the spring mass system, 
the total energy is constant in time (no dissipation) ad we can calculate intensity by 
considering only pressure effects. 
 
 Work done in the compression process is: 
 
W p= −∫ dv  
 
and introducing the definition for compressibility: 
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 0 0     therefore     dv kv dp W kv pdp= − ∂ = − ∫  
Integrating between 0 and the maximum pressure change P defines the pressure energy 
per unit volume, which is the same as the total energy per unit volume: 
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The sound energy in the volume traveling with a wave, or energy crossing per unit area 
per unity time equals the energy in the volume element A tν∆ divided by A: 
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