BENG 221: Mathematical Methods in Bioengineering
Lecture 19

Wave Equation in One Dimension: Vibrating Strings
and Pressure Waves
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The one dimensional wave equation. The vibrating string as a boundary value
problem

Given a string stretched along the x axis, the vibrating string is a problem where forces
are exerted in the x and y directions, resulting in motion in the x-y plane, when the string
is displaced from its equilibrium position within the x-y plane, and then released.

The free body diagram of an element of string of length As subjected to a tension T is
shown. The string material has density p. The equation of motion is obtained by

applying Newton’s second law of motion to the element of length As in both directions.
For the x direction (and ignoring the torsional effects due to the applied torque):

2
(T+AT)cos(6+AB)—T cosf = pAASQ

ot?

and in the y direction:

==
(T +AT)sin(0+A0) -Tsin@ = pAAS%

Where the bar over the partial derivative signifies the average acceleration over the
element As. A is the cross section of the string, assumed constant and equal to 1.

Dividing through by As and taking the limit As — 0 we obtain:

2

0 0°X
—(Tcosf)=p—
as( ) P
o . 0%y
—(Tsing) = p—=— 15
83( ) P (15)



since cosé = % and siné = % the above equations can be reduced to the form (for
constant T)

o2 Lo

oy oYy

2 _ 2 15a

st ot (152)

. . o o
Since there is no motion in the x direction ra 0.
Note that tan g = % , therefore
X
sinez—tang z@
JVi+tan?@ OX
for small @ therefore in (15a):
2

TQQ:Tingismngig:T@_g

0S OX OX 0S OX OX OX OX
and the system of equations reduces to:

==
az 2 (16)
oy_Toy
ot pox?

The first equation has a trivial solution. The second equation can be solved by the
method of separation of variables by assuming that y(x,t) = X (x)F(t) which leads to:

2 2
d '2: Ted )2< and dividing both sides by T XF we obtain:
dt® p dx P

according to previous reasoning indicating that an equality between functions of different
variables implies that the functions are equal to a constant. Therefore we can write:



2 2
0F__TF ang 3%

dt? 0 TR

as previously, the solutions of these equations correspond to the case where the constant
is positive and therefore the characteristic equation of the second order differential
equation has imaginary coefficients, leading to the following solutions in terms of
trigonometric functions:

F= Aicos;c\/fu B, sin K\/ft
P P

X = A, coskx+ B, sinkx

Therefore the system of equations given in (16) has product solutions of the form:

y(t,x) = (Alcosrc\/ft +B,sin zc\/ftj(A2 COS KX+ B, sinxX)
p p

When x =0 then:

F,=A +Bit
X, =C, + D,x
= (A, +Byt)(C, + DyX)

Boundary conditions. Vibrating string clamped at both ends

If we impose the B.C.s that the string is clamped at the ends, namely y = 0 at x = 0, L then
there is no motion in the y direction and:

y(t,x) = AICOSK\ﬁHBlsin K‘\/ft A =0
p p
Y

=(A,+Bt)C,=0

y(t,x) = ACOSK\/7t+B smx\/i (A, coskL+B,sinkL)=0

o =(A +Byt)(Cy+DyL)=
These B.C.s are satisfied by A, =C, = D, =0 and the eigenvalues
xkL=nzr n=123,..

leading to eigenfunctions:



=Zsin% A cos™% It+aninn—” T (17)
n=1 L L Y% L P

where the constant A is now include in A, and B,. Note that for any time t, the string
has a configuration that depend son on n:

Yy, (x,t,) =C, (t, )sanLX

which describes a family of modes of the string for the specific B.C.s of clamped ends.
These are called the normal modes of vibration. The intensity of sound depends on the

amplitude C, =/A’ +B? which is derived from:

Acos@+Bsind =~ A’ +B*sin(@+ 1) ;t=tan‘1§

The number of oscillations per unit time or frequency in cycles per second is:

B 1 nz
2z L p 2L
Sound is produced by the superposition of natural frequenciesn =1,2,3,.... The normal

mode is the first harmonic or fundamental n = 1. The larger the natural frequency, the
higher the pitch. Tuning is accomplished by varying either L, o or T. For vibrating
strings the frequencies of the higher harmonics are all integral multiples of the
fundamental. Note that sound is produced by strings vibrating in a lateral direction,
however it is transmitted by waves of compression and rarefaction in the longitudinal
direction (the direction of propagation).

Standing waves and summation of traveling waves

Each standing wave is composed by the summation of two waves traveling in opposite
directions.

Recall that: sinxsiny = %cos(x— y) —%cos(x+ y)

Cos(X + y) =CcosXCcosy—sinxsiny
CoS(X —y) =C0S XC0S Yy +sin xsin 'y

Subtracting we obtain:



sinxsiny :%cos(x— y)—%cos(x+ y)

Therefore any single component y,(x,t) of the function y, (x,t)

y.(x,t)zsinﬂsinj—” T =lcosj—” X— It —lcosj—ﬂ X+ 1t
! L L\p 2 L p ) 2 L 0

Wave travelingto ~ Wave traveling to the left.
the right.

Where the wave velocity Vis V = \/f .
Yo

X

Figure 2

Figure 2 shows how the equation in time is set up for advancing pulse. The upper
diagram shows the pulse at t = 0 given by the equation y = f(x). The lower diagram
shows the same pulse at time t = t having advanced a distance Vt without changing shape.
A new axis Y’ is constructed, displaced a distance x = Vt to the right, x” being the new
coordinate of any point referred to the new origin. The equation f(x) at time t in terms of
X" is the same as the equation at t = 0 in terms of x, or y = f(x’) for t = t. However:

X'=x-Vt therefore y=f(x-Vt)
Initial conditions

Suppose the I.C.s are given by a function y(x) such that for t = O:



2xd L
X,0) =——— 0<x<—=
y(x,0) 1 5

2d L
X,00=—(L-x) —<x<L
y(x,0) L( ) 5
dy(x,0)
dt

Applying the velocity boundary conditions for t = 0 to (17) we obtain:

:ZBnn_ﬂ— ICOS@ZO
n=1 LYNp L

Which satisfies the 1.C.s by setting B, =0. Solution of the problem requires determining
the constants A, so that that the initial conditions are satisfied:

Zﬂsnnﬁx 2, OSXS%

(18)

multiplying both sides of (18) bysin? and integrating between 0 and L we obtain:

nzx) . mzx . ‘f2d . mzx 5 2d mzX
1(2ﬁ3|n—j5|anx— ITsde IT(L— X)si anx (19)

0 L/2

Integrating (19) term by term:

Aﬂ% 2d ﬁz SIanX+L‘!‘2(L x)sm—dx (20)

These integrals can be evaluated by considering that:
. . . 1 : 1 .
jxsm Xdx =sinx—xcosx and Ixsmaxdx:gj.axsmaxdax:gj&’smede (21)

where ax =¢. In (20), upon integration and evaluation at the limits the only non-zero
terms exist at L/2, of which there are two, with same sign. Therefore, in (21) we can set
a=mz/L,then



which vanishes when m is even and when it is odd the sine term oscillates between the
values +1.

The product solution therefore is:

= 8d . mxx mz [T
X, t) = sin coS —t m=13,5,... 22
y(x,1t) ;mzﬁz 1 L\, (22)
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Transmission of waves in gases. Sound.

Strings present the transmission of transverse waves. In gases waves are
transmitted longitudinally. We will analyze the transmission of waves in tube where gas
displacements are made by a piston. Moving the piston creates a compression that travels
forward. If the piston is quickly retracted then there is a wave of rarefaction that also
travels along the tube.

Consider an element of gas in the tube located between x and x + Ax where the
gas has an equilibrium pressure p,. As the wave advances the element of gas oscillates

about its equilibrium position. The coordinate y is used to describe displacements of gas
from its equilibrium position. The displacement of the left side of the element of gas has
coordinate y and that on the right side y+ Ay. Pressure on the left side is p and on the

right side is p+Ap. For a very thin slice pressure in the displaced gas is p+ p,, which

is also the pressure on the left side face, and the pressure on the right side face is
p+ p, +Ap. The forces acting on the element of gas are obtained by multiplying by the

area of the tube A. The net restoring force acting on the displaced gas is —ApA. If p, is
the density of the gas at the equilibrium pressure p, then the mass of element is p, AAX
leading to the equation of motion:

— X — Ax —

Do :

» p0+p -

——

.

Note that x gives the position of the gas molecules at rest (therefore while p, is uniform in
Ax ) while y gives the position of displaced molecules and p is not uniform in Ay . In the
case illustrated since Ay > Ax we are dealing with a rarefaction wave.

d2
((p+Py)—(P+ Py +AP)) A= —ApA = p, AAX J

dt?




dy __14p
dt? Py AX

and at the limit for very small Ax :

2
oy 1 op (23)

o> p, OX

The volume in its equilibrium position is AAx. In the displaced position the
coordinate of the right face is X+ Ax+ Yy + Ay while the coordinate of the left face is x +

y. Therefore the length of the displaced element is given by the difference of these two
coordinates or AXx+ Ay and the change in length, and therefore the change in volume is

AAy .
Consider the general definition of compressibility k:

1 change in volume
original volume change in pressure

k =
Note that the compressibility of a gas can be derived from the perfect gas equation

pV =RT where

v _ RT g o L4V _PRT 1

dp P’ Vdp RTp? p

Referring this definition to our development:

1 AAy Ay
k=— -
AAX ((Po+P)—Py)  PAX
therefore:
__ 1Ay
P= k AX

and in the limit;

and in view of (23)



op_ 13

OX k ox?

Therefore substituting in (23) we are led to the one dimensional wave equation for
the transmission of longitudinal perturbations:

o’y 1 dy
ot? kp, dx?

The velocity of propagation, by analogy to the wave equation for strings (lateral
displacements) is given by:

/ 1
V= |—
Koo
The bulk modulus B is the reciprocal of the compressibility, in other words, the
pressure required to induce a volume change relative to the total volume. This quantity is
the equivalent to the Young’s modulus Y for linear changes (stress required o induce a

change in strain). Therefore a general expression for the velocity at which waves travel
in a materials is:

Pressure variation in a sound wave
From the development of the propagation velocity of lateral displacement (waves)

in a string we found that a disturbance is propagated with a velocity v, where in this case
L = wave length, and A = displacement amplitude

y= ACOSZ—fn(X—Vt)

If we know the displacement as a function of time y(x,t) we can compute the
pressure by differentiating with respect to x since:

__ 1oy
P= k Ox

in view of (24) which leads to:



v _ —%sm—(x— vt)
dx L L

and therefore:

27A

:—sm— X—vt
P==0 3 (X—1)
Since v = i
Koo
2
=[2””EV A} 'nz—”(x vt) (25)

The term within brackets represents the maximal pressure amplitude P while A is the
maximal displacement.

Wave velocity & thermodynamics of perfect gases
The previous equation (25) shows that:

Op _27A ZSII‘IZ—(X vt)
8,00 L L

(26)
therefore using the thermodynamic relation:

pV:nRT:n%RT where %zp then p:ﬁ

therefore in terms of maximum values (26) is also equal to:

o _RT_ .
op M

a result derived by Newton, which underestimates the actual speed by about 15%. The
more correct formulation was give by Laplace, who realized that the compression and
relaxation in the sound wave is too rapid for allowing constant temperature (isothermal
conditions), and that the actual conditions were adiabatic, i.e., no heat transfer due to the
high speed at which compression and rarefaction occur, leading to the expression:

RT
"M



C

where y = C—"

v

which is the ratio of specific heat at constant pressure vs. constant volume, usually about
14.

Pressure dispersion

The analytical derivation does not include a mechanism for the attenuation of the
pressure amplitude, which occurs due to refraction and absorption of the pressure wave.
This can be accounted for the expression:

A=Ae™

where « is a parameter that characterizes the viscous effects in the medium, or the
conversion of mechanical energy in the wave into thermal energy.

Pressure waves that originate from a point source decay naturally at the rate of
-60 log R db, where R is the ratio of radial distances, and for cylindrical sources at the
rate of -40 log R.

The dispersion of pressure can also be described by the diffusion equation:

op 2
P _kv
ot P

Intensity of sound waves

Waves propagate energy. The intensity | of a traveling wave is defined as the
average rate energy is transported by the wave per unit area across a surface
perpendicular to the direction of propagation. Also intensity is the average power
transported per unit area. The energy associated with a travelling wave is in part
potential, associated with the compression of the medium, and Kinetic relate to particle
velocity. By analogy to the dynamics and energy distribution of the spring mass system,
the total energy is constant in time (no dissipation) ad we can calculate intensity by
considering only pressure effects.

Work done in the compression process is:
W = —I pdv

and introducing the definition for compressibility:



dv=—kv,dpo therefore W = —kvOJ' pdp

Integrating between 0 and the maximum pressure change P defines the pressure energy
per unit volume, which is the same as the total energy per unit volume:

W _1yp
v, 2

The sound energy in the volume traveling with a wave, or energy crossing per unit area
per unity time equals the energy in the volume element AvAt divided by A:

2
| =3kP2v= P
2 2pv






