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1. Markov chains

Section 1. What is a Markov chain? How to simulate one.
Section 2. The Markov property.
Section 3. How matrix multiplication gets into the picture.
Section 4. Statement of the Basic Limit Theorem about conver-
gence to stationarity. A motivating example shows how compli-
cated random objects can be generated using Markov chains.
Section 5. Stationary distributions, with examples. An exercise
introduces the idea of probability 
ux.
Section 6. Other concepts from the Basic Limit Theorem: ir-
reducibility, periodicity, and recurrence. An interesting classical
example: recurrence or transience of random walks.
Section 7. Introduces the idea of coupling.
Section 8. Uses coupling to prove the Basic Limit Theorem.
Section 9. A Strong Law of Large Numbers for Markov chains.
Section 10. Markov chains in general state spaces.

Markov chains are a relatively simple but very interesting and useful class of random
processes. A Markov chain describes a system whose state changes over time. The changes
are not completely predictable, but rather are governed by probability distributions. These
probability distributions incorporate a simple sort of dependence structure, where the con-
ditional distribution of future states of the system, given some information about past
states, depends only on the most recent piece of information. That is, what matters in
predicting the future of the system is its present state, and not the path by which the
system got to its present state. Markov chains illustrate many of the important ideas of
stochastic processes in an elementary setting. This classical subject is still very much alive,
with important developments in both theory and applications coming at an accelerating
pace in recent decades.

1.1 Specifying and simulating a Markov chain

What is a Markov chain�? One answer is to say that it is a sequence fX0;X1;X2; : : :g of
random variables that has the \Markov property"; we will discuss this in the next section.
For now, to get a feeling for what a Markov chain is, let's think about how to simulate one,
that is, how to use a computer or a table of random numbers to generate a typical \sample

�Unless stated otherwise, when we use the term \Markov chain," we will be restricting our attention
to the subclass of time-homogeneous Markov chains. We'll do this to avoid monotonous repetition of the
phrase \time-homogeneous." I'll point out below the place at which the assumption of time-homogeneity
enters.
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path." To start, how do I tell you which particular Markov chain I want you to simulate?
There are three items involved: to specify a Markov chain, I need to tell you its

� State space S.

S is a �nite or countable set of states, that is, values that the random variables Xi

may take on. For de�niteness, and without loss of generality, let us label the states as
follows: either S = f1; 2; : : : ; Ng for some �nite N , or S = f1; 2; : : :g, which we may
think of as the case \N =1".

� Initial distribution �0.

This is the probability distribution of the Markov chain at time 0. For each state
i 2 S, we denote by �0(i) the probability PfX0 = ig that the Markov chain starts out
in state i. Formally, �0 is a function taking S into the interval [0,1] such that

�0(i) � 0 for all i 2 S

and X
i2S

�0(i) = 1:

Equivalently, instead of thinking of �0 as a function from S to [0,1], we could think
of �0 as the vector whose ith entry is �0(i) = PfX0 = ig.

� Probability transition rule

This is speci�ed by giving a matrix P = (Pij). If S is the �nite set f1; : : : ; Ng, say,
then P is an N�N matrix. Otherwise, P will have in�nitely many rows and columns;
sorry. The interpretation of the number Pij is the conditional probability, given that
the chain is in state i at time n, say, that the chain jumps to the state j at time n+1.
That is,

Pij = PfXn+1 = j j Xn = ig:

We will also use the notation P (i; j) for the same thing. Note that we have written
this probability as a function of just i and j, but of course it could depend on n
as well. The time homogeneity restriction mentioned in the previous footnote is
just the assumption that this probability does not depend on the time n, but rather
remains constant over time.

Formally, a probability transition matrix is an N � N matrix whose entries are
all nonnegative and whose rows sum to 1.

Finally, you may be wondering why we bother to arrange these conditional probabil-
ities into a matrix. That is a good question, and will be answered soon.
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(1.1) Figure. The Markov frog.

We can now get to the question of how to simulate a Markov chain, now that we know how
to specify what Markov chain we wish to simulate. Let's do an example: suppose the state
space is S = f1; 2; 3g, the initial distribution is �0 = (1=2; 1=4; 1=4), and the probability
transition matrix is

P =

0@
1 2 3

1 0 1 0
2 1=3 0 2=3
3 1=3 1=3 1=3

1A:(1.2)

Think of a frog hopping among lily pads as in Figure 1.1. How does the Markov frog
choose a path? To start, he chooses his initial position X0 according to the speci�ed
initial distribution �0. He could do this by going to his computer to generate a uniformly
distributed random number U0 � Unif(0; 1), and then taking

X0 =

8<:
1 if 0 < U0 < 1=2
2 if 1=2 < U0 < 3=4
3 if 3=4 < U0 < 1

[[We don't have to be fastidious about specifying what to do if U0 comes out be exactly 1/2
or 3/4, since the probability of this happening is 0.]] For example, suppose that U0 comes
out to be 0.8419, so that X0 = 3. Then the frog chooses X1 according to the probability
distribution in row 3 of P , namely, (1=3; 1=3; 1=3); to do this, he paws his computer again
to generate U1 � Unif(0; 1) independently of U0, and takes

X1 =

8<:
1 if 0 < U0 < 1=3
2 if 1=3 < U0 < 2=3
3 if 2=3 < U0 < 1:

Suppose he happens to get U1 = 0:1234, so that X1 = 1. Then he chooses X2 according to
row 1 of P , so that X2 = 2; there's no choice this time. Next, he chooses X3 according to
row 2 of P . And so on. . . .
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1.2 The Markov property

Clearly, in the previous example, if I told you that we came up with the values X0 = 3,
X1 = 1, and X2 = 2, then the conditional probability distribution for X3 is

PfX3 = j j X0 = 3;X1 = 1;X2 = 2g =
8<:
1=3 for j = 1
0 for j = 2
2=3 for j = 3,

which is also the conditional probability distribution for X3 given only the information that
X2 = 2. In other words, given that X0 = 3, X1 = 1, and X2 = 2, the only information
relevant to the distribution to X3 is the information that X2 = 2; we may ignore the
information that X0 = 3 and X1 = 1. This is clear from the description of how to simulate
the chain! Thus,

PfX3 = j j X2 = 2;X1 = 1;X0 = 3g = PfX3 = j j X2 = 2g for all j.

This is an example of the Markov property.

(1.3) Definition. A process X0;X1; : : : satis�es the Markov property if

PfXn+1 = in+1 j Xn = in;Xn�1 = in�1; : : : ;X0 = i0g
= PfXn+1 = in+1 j Xn = ing

for all n and all i0; : : : ; in+1 2 S.

The issue addressed by the Markov property is the dependence structure among random
variables. The simplest dependence structure for X0;X1; : : : is no dependence at all, that
is, independence. The Markov property could be said to capture the next simplest sort of
dependence: in generating the process X0;X1; : : : sequentially, each Xn depends only on
the preceding random variable Xn�1, and not on the further past values X0; : : : ;Xn�2. The
Markov property allows much more interesting and general processes to be considered than
if we restricted ourselves to independent random variables Xi, without allowing so much
generality that a mathematical treatment becomes intractable.

The Markov property implies a simple expression for the probability of our Markov
chain taking any speci�ed path, as follows:

PfX0 = i0;X1 = i1;X2 = i2; : : : ;Xn = ing
= PfX0 = i0gPfX1 = i1 j X0 = i0gPfX2 = i2 j X1 = i1;X0 = i0g

� � �PfXn = in j Xn�1 = in�1; : : : ;X1 = i1;X0 = i0g
= PfX0 = i0gPfX1 = i1 j X0 = i0gPfX2 = i2 j X1 = i1g

� � �PfXn = in j Xn�1 = in�1g
= �0(i0)P (i0; i1)P (i1; i2) � � �P (in�1; in):
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So, to get the probability of a path, we start out with the initial probability of the �rst state
and successively multiply by the matrix elements corresponding to the transitions along the
path.

(1.4) Exercise. Let X0;X1; : : : be a Markov chain, and let A and B be subsets of the state
space.

1. Is it true that PfX2 2 B j X1 = x1;X0 2 Ag = PfX2 2 B j X1 = x1g? Give a proof or
counterexample.

2. Is it true that PfX2 2 B j X1 2 A;X0 = x0g = PfX2 2 B j X1 2 Ag? Give a proof or
counterexample.

[[The moral: be careful about what the Markov property says!]]

(1.5) Exercise. Let X0;X1; : : : be a Markov chain on the state space f�1; 0; 1g, and suppose
that P (i; j) > 0 for all i; j. What is a necessary and su�cient condition for the sequence of
absolute values jX0j; jX1j; : : : to be a Markov chain?

(1.6) Definition. We say that a process X0;X1; : : : is rth order Markov if

PfXn+1 = in+1 j Xn = in;Xn�1 = in�1; : : : ;X0 = i0g
= PfXn+1 = in+1 j Xn = in; : : : ;Xn�r+1 = in�r+1g

for all n � r and all i0; : : : ; in+1 2 S.

(1.7) Exercise [A moving average process]. Moving average models are used frequently
in time series analysis, economics and engineering. For these models, one assumes that there
is an underlying, unobserved process : : : ; Y�1; Y0; Y1; : : : of iid random variables. A moving

average process takes an average (possibly a weighted average) of these iid random variables
in a \sliding window." For example, suppose that at time n we simply take the average of the
Yn and Yn�1, de�ning Xn = (1=2)(Yn+Yn�1). Our goal is to show that the process X0;X1; : : :
de�ned in this way is not Markov. As a simple example, suppose that the distribution of the
iid Y random variables is PfYi = 1g = 1=2 = PfYi = �1g.

1. Show that X0;X1; : : : is not a Markov chain.

2. Show that X0;X1; : : : is not an rth order Markov chain for any �nite r.

(1.8) Notation. We will use the shorthand \Pi" to indicate a probability taken in a

Markov chain started in state i at time 0. That is, \Pi(A)" is shorthand for \PfA j X0 =
ig." We'll also use the notation \E i" in an analogous way for expectation.
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(1.9) Exercise. Let fXng be a �nite-state Markov chain and let A be a subset of the
state space. Suppose we want to determine the expected time until the chain enters the set A,
starting from an arbitrary initial state. That is, letting �A = inffn � 0 : Xn 2 Ag denote the
�rst time to hit A [[de�ned to be 0 if X0 2 A]], we want to determine E i(�A). Show that

E i(�A) = 1 +
X
k

P (i; k)E k (�A)

for i =2 A.

(1.10) Exercise. You are 
ipping a coin repeatedly. Which pattern would you expect to see
faster: HH or HT? For example, if you get the sequence TTHHHTH..., then you see \HH" at
the 4th toss and \HT" at the 6th. Letting N1 and N2 denote the times required to see \HH"
and \HT", respectively, can you guess intuitively whether E (N1 ) is smaller than, the same as,
or larger than E (N2 )? Go ahead, make a guess [[and my day]]. Why don't you also simulate
some to see how the answer looks; I recommend a computer, but if you like tossing real coins,
enjoy yourself by all means. Finally, you can use the reasoning of the Exercise (1.9) to solve the
problem and evaluate E(Ni). A hint is to set up a Markov chain having the 4 states HH, HT,
TH, and TT.

(1.11) Exercise. Here is a chance to practice formalizing some typical \intuitively obvious"
statements. Let X0;X1; : : : be a �nite-state Markov chain.

a. We start with an observation about conditional probabilities that will be a useful tool
throughout the rest of this problem. Let F1; : : : ; Fm be disjoint events. Show that if
P(EjFi) = p for all i = 1; : : : ;m then P(E j Sm

i=1 Fi) = p.

b. Show that

PfXn+1 2 A1; : : : ;Xn+r 2 Ar j Xn = j;Xn�1 2 Bn�1; : : : ;X0 2 B0g
= PjfXn+1 2 A1; : : : ;Xn+r 2 Arg:

c. Recall the de�nition of hitting times: Ti = inffn > 0 : Xn = ig. Show that PifTi =
n +m j Tj = n; Ti > ng = PjfTi = mg, and conclude that PifTi = Tj +m j Tj <
1; Ti > Tjg = PjfTi = mg. This is one manifestation of the statement that the Markov
chain \probabilistically restarts" after it hits j.

d. Show that PifTi < 1 j Tj < 1; Ti > Tjg = PjfTi < 1g. Use this to show that if
PifTj <1g = 1 and PjfTi <1g = 1, then PifTi <1g = 1.

e. Let i be a recurrent state and let j 6= i. Recall the idea of \cycles," the segments of the
path between successive visits to i. For simplicity let's just look at the �rst two cycles.
Formulate and prove an assertion to the e�ect that whether or not the chain visits state
j during the �rst and second cycles can be described by iid Bernoulli random variables.
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1.3 \It's all just matrix theory"

Recall that the vector �0 having components �0(i) = PfX0 = ig is the initial distribution of
the chain. Let �n denote the distribution of the chain at time n, that is, �n(i) = PfXn = ig.
Suppose for simplicity that the state space is �nite: S = f1; : : : ; Ng, say. Then the Markov
chain has an N �N probability transition matrix

P = (Pij) = (P (i; j));

where P (i; j) = PfXn+1 = j j Xn = ig = PfX1 = j j X0 = ig. The law of total probability
gives

�n+1(j) = PfXn+1 = jg

=

NX
i=1

PfXn = igPfXn+1 = j j Xn = ig

=

NX
i=1

�n(i)P (i; j);

which, in matrix notation, is just the equation

�n+1 = �nP:

Note that here we are thinking of �n and �n+1 as row vectors, so that, for example,

�n = (�n(1); : : : ; �n(N)):

Thus, we have

�1 = �0P(1.12)

�2 = �1P = �0P
2

�3 = �2P = �0P
3;

and so on, so that by induction
�n = �0P

n:(1.13)

(1.14) Exercise. Let P n(i; j) denote the (i; j) element in the matrix P n, the nth power of
P . Show that P n(i; j) = PfXn = j j X0 = ig. Ideally, you should get quite confused about
what is being asked, and then straighten it all out.

So, in principle, we can �nd the answer to any question about the probabilistic behavior
of a Markov chain by doing matrix algebra, �nding powers of matrices, etc. However, what
is viable in practice may be another story. For example, the state space for a Markov chain
that describes repeated shu�ing of a deck of cards contains 52! elements|the permutations
of the 52 cards of the deck. This number 52! is large: about 80 million million million million

Stochastic Processes J. Chang, March 30, 1999



Page 1-8 1. MARKOV CHAINS

millionmillionmillion million millionmillion million. The probability transition matrix that
describes the e�ect of a single shu�e is a 52! by 52! matrix. So, \all we have to do" to answer
questions about shu�ing is to take powers of such a matrix, �nd its eigenvalues, and so
on! In a practical sense, simply reformulating probability questions as matrix calculations
often provides only minimal illumination in concrete questions like \how many shu�es are
required in order to mix the deck well?" Probabilistic reasoning can lead to insights and
results that would be hard to come by from thinking of these problems as \just" matrix
theory problems.

1.4 The basic limit theorem of Markov chains

As indicated by its name, the theorem we will discuss in this section occupies a fundamental
and important role in Markov chain theory. What is it all about? Let's start with an
example in which we can all see intuitively what is going on.

(1.15) Figure. A random walk on a clock.

(1.16) Example [Random walk on a clock]. For ease of writing and drawing,
consider a clock with 6 numbers on it: 0,1,2,3,4,5. Suppose we perform a random walk
by moving clockwise, moving counterclockwise, and staying in place with probabilities 1/3
each at every time n. That is,

P (i; j) =

8<:
1=3 if j = i� 1 mod 6
1=3 if j = i
1=3 if j = i+ 1 mod 6.

Suppose we start out at X0 = 2, say. That is,

�0 = (�0(0); �0(1); : : : ; �0(5)) = (0; 0; 1; 0; 0; 0):

Then of course

�1 = (0;
1

3
;
1

3
;
1

3
; 0; 0);
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and it is easy to calculate

�2 = (
1

9
;
2

9
;
1

3
;
2

9
;
1

9
; 0)

and

�3 = (
3

27
;
6

27
;
7

27
;
6

27
;
3

27
;
2

27
):

Notice how the probability is spreading out away from its initial concentration on the state
2. We could keep calculating �n for more values of n, but it is intuitively clear what will
happen: the probability will continue to spread out, and �n will approach the uniform
distribution:

�n ! (
1

6
;
1

6
;
1

6
;
1

6
;
1

6
;
1

6
)

as n ! 1. Just imagine: if the chain starts out in state 2 at time 0, then we close our
eyes while the random walk takes 10,000 steps, and then we are asked to guess what state
the random walk is in at time 10,000, what would we think the probabilities of the various
states are? I would say: \X10;000 is for all practical purposes uniformly distributed over
the 6 states." By time 10,000, the random walk has essentially \forgotten" that it started
out in state 2 at time 0, and it is nearly equally likely to be anywhere.

Now observe that the starting state 2 was not special; we could have started from
anywhere, and over time the probabilities would spread out away from the initial point,
and approach the same limiting distribution. Thus, �n approaches a limit that does not
depend upon the initial distribution �0.

The following \Basic Limit Theorem" says that the phenomenon discussed in the previ-
ous example happens quite generally. We will start with a statement and discussion of the
theorem, and then prove the theorem later. We'll use the notation \P�0" for probabilities
when the initial distribution is �0.

(1.17) Theorem [Basic Limit Theorem]. Let X0;X1; : : : be an irreducible, aperiodic

Markov chain having a stationary distribution �(�). Then for all initial distributions �0,

lim
n!1

P�0fXn = ig = �(i) for all i 2 S:

We need to de�ne the words \irreducible," \aperiodic," and \stationary distribution." Let's
start with \stationary distribution."

1.5 Stationary distributions

Suppose a distribution � on S is such that, if our Markov chain starts out with initial
distribution �0 = �, then we also have �1 = �. That is, if the distribution at time 0 is �,
then the distribution at time 1 is still �. Then � is called a stationary distribution for
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the Markov chain. From (1.12) we see that the de�nition of stationary distribution amounts
to saying that � satis�es the equation

� = �P;(1.18)

that is,

�(j) =
X
i2S

�(i)P (i; j) for all j 2 S:

[[In the case of an in�nite state space, (1.18) is an in�nite system of equations.]] Also from
equations (1.12) we can see that if the Markov chain has initial distribution �0 = �, then
we have not only �1 = �, but also �n = � for all n. That is, a Markov chain started out in
a stationary distribution � stays in the distribution � forever; that's why the distribution
� is called \stationary."

(1.19) Example. If the N � N probability transition matrix P is symmetric, then the
uniform distribution [[�(i) = 1=N for all i]] is stationary. More generally, the uniform
distribution is stationary if the matrix P is doubly stochastic, that is, the column-sums of
P are 1 (we already know the row-sums of P are all 1).

It should not be surprising that � appears as the limit in Theorem (1.17). It is easy to
see that if �n approaches a limiting distribution as n!1, then that limiting distribution
must be stationary. To see this, suppose that limn!1 �n = ~�, and let n ! 1 in the
equation �n+1 = �nP to obtain ~� = ~�P , which says that ~� is stationary.

(1.20) Exercise [For the mathematically inclined]. What happens in the case of a
countably in�nite state space? Does the sort of argument in the previous paragraph still work?

Computing stationary distributions is an algebra problem. Since most people are ac-
customed to solving linear systems of the form Ax = b, let us take the transpose of the
equation �(P � I) = 0, getting the equation (P T � I)�T = 0. For example, for the matrix
P from (1.2), we get the equation0@ �1 1=3 1=3

1 �1 1=3
0 2=3 �2=3

1A0@ �(1)
�(2)
�(3)

1A = 0;

or 0@ �1 1=3 1=3
0 �2=3 2=3
0 2=3 �2=3

1A0@ �(1)
�(2)
�(3)

1A = 0;

which has solutions of the form � = const(2=3; 1; 1). For the unique solution that satis�es
the constraint

P
�(i) = 1, take the constant to be 3/8, so that � = (1=4; 3=8; 3=8).

Here is another way, aside from solving the linear equations, to approach the problem
of �nding a stationary distribution; this idea can work particularly well with computers. If
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we believe the Basic Limit Theorem, we should see the stationary distribution in the limit
as we run the chain for a long time. Let's try it: Here are some calculations of powers of
the transition matrix P from (1.2):

P 5 =

0@ 0:246914 0:407407 0:345679
0:251029 0:36214 0:386831
0:251029 0:366255 0:382716

1A ;

P 10 =

0@ 0:250013 0:37474 0:375248
0:249996 0:375095 0:374909
0:249996 0:375078 0:374926

1A ;

P 20 =

0@ 0:2500000002 0:3749999913 0:3750000085
0:2499999999 0:375000003 0:374999997
0:2499999999 0:3750000028 0:3749999973

1A :

So we don't really have to solve equations; in this example, any of the rows of the matrix
P 20 provides a very accurate approximation for �. No matter what state we start from, the
distribution after 20 steps of the chain is very close to (:25; :375; :375). This is the Basic
Limit Theorem in action.

(1.21) Exercise [Stationary distribution of Ehrenfest chain]. The Ehrenfest
chain is a simple model of \mixing" processes. This chain can shed light on perplexing questions
like \Why aren't people dying all the time due to the air molecules bunching up in some odd
corner of their bedrooms while they sleep?" The model considers d balls distributed among
two urns, and results in a Markov chain fX0;X1; : : :g having state space f0; 1; : : : ; dg, with the
state Xn of the chain at time n being the number of balls in urn #1 at time n. At each time,
we choose a ball at random uniformly from the d possibilities, take that ball out of its current
urn, and drop it into the other urn. Thus, P (i; i� 1) = i=d and P (i; i+ 1) = (d� i)=d for all
i.

What is the stationary distribution of the Ehrenfest chain? You might want to solve the
problem for a few small values of d. You should notice a pattern, and come up with a familiar
answer. Can you explain without calculation why this distribution is stationary?

A Markov chain might have no stationary distribution, one stationary distribution,
or in�nitely many stationary distributions. We just saw an example with one. A trivial
example with in�nitely many is when P is the identity matrix, in which case all distributions
are stationary. To �nd an example without any stationary distribution, we need to consider
an in�nite state space. [[We will see later that any �nite-state Markov chain has at least one
stationary distribution.]] An easy example of this has S = f1; 2; : : :g and P (i; i+ 1) = 1 for
all i, which corresponds to a Markov chain that moves deterministically \to the right." In
this case, the equation �(j) =

P
i2S �(i)P (i; j) reduces to �(j) = �(j�1), which clearly has

no solution satisfying
P

�(j) = 1. Another interesting example is the simple, symmetric

random walk on the integers: P (i; i � 1) = 1=2 = P (i; i + 1). Here the equations for
stationarity become

�(j) =
1

2
�(j � 1) +

1

2
�(j + 1):
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Again it is easy to see [[how?]] that these equations have no solution � that is a probability
mass function.

Intuitively, notice the qualitative di�erence: in the examples without a stationary dis-
tribution, the probability doesn't settle down to a limit probability distribution|in the
�rst example the probability moves o� to in�nity, and in the second example it spreads out
in both directions. In both cases, the probability on any �xed state converges to 0; one
might say the probability escapes o� to in�nity (or �1). How can we keep the probability
from escaping? Here is an example.

(1.22) Exercise. Consider a Markov chain on the integers with

P (i; i + 1) = :4 and P (i; i � 1) = :6 for i > 0;

P (i; i + 1) = :6 and P (i; i � 1) = :4 for i < 0;

P (0; 1) = P (0;�1) = 1=2:

This is a chain with in�nitely many states, but it has a sort of probabilistic \restoring force"
that always pushes back toward 0. Find the stationary distribution.

The next exercise may look a bit inscrutable at �rst, but it is well worth doing and it
introduces an important idea.

(1.23) Exercise [Probability flux]. Consider a partition of the state space S of a Markov
chain into two subsets A and Ac. Suppose the Markov chain has stationary distribution �.
Show that X

i2A

X
j2Ac

�(i)P (i; j) =
X
i2Ac

X
j2A

�(i)P (i; j):(1.24)

(1.25) Exercise. Use exercise (1.23) to re-do Exercise (1.21), by writing the equations
produced by (1.24) with the choice A = f0; 1; : : : ; ig for various i. The calculation should be
easier.

The left side of (1.24) may be thought of the \probability 
ux 
owing out of A into Ac."
The equality says that this must be the same as the 
ux from Ac back into A. This has the
suggestive interpretation that the stationary probabilities describe a stable system in which
all the probability is happy where it is, and does not want to 
ow to anywhere else, so that
the net 
ow from A to Ac must be zero. We can say this in a much less mysterious way
as follows. Think of �(i) as the long run fraction of time that the chain is in state i. [[We
will soon see a theorem (\a strong law of large numbers for Markov chains") that supports
this interpretation.]] Then �(i)P (i; j) is the long run fraction of times that a transition
from i to j takes place. But clearly the long run fraction of times occupied by transitions
going from a state in A to a state in Ac must equal the long run fraction of times occupied
by transitions going the opposite way. [[In fact, along any sample path, the numbers of
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transitions that have occurred in the two directions up to any time n may di�er by at most
1!]]

(1.26) Exercise [Renewal theory, the residual, and length-biased sampling].
Let X1;X2; : : : be iid taking values in f1; : : : ; dg. [[These are typically thought of as lifetimes
of lightbulbs. . . ]] De�ne Sk = X1 + � � � +Xk, �(n) = inffk : Sk � ng, and Rn = S�(n) � n.
Then Rn is called the residual lifetime at time n. [[This is the amount of lifetime remaining in
the bulb that is in operation at time n.]]

1. The sequence R0; R1; : : : is a Markov chain. What is its transition matrix? What is the
stationary distribution?

2. De�ne the total lifetime Ln at time n by Ln = X�(n). This has an obvious interpretation
as the total lifetime of the lightbulb in operation at time n. Show that L0; L1; : : : is not a
Markov chain. But Ln still has a limiting distribution, and we'd like to �nd it. We'll do this
by constructing a Markov chain by enlarging the state space and considering the sequence
of random vectors (R0; L0); (R1; L1); : : :. This sequence does form a Markov chain. What
is its probability transition function and stationary distribution? Now, assuming the Basic
Limit Theorem applies here, what is the limiting distribution of Ln as n ! 1? This is
the famous \length-biased sampling" distribution.

1.6 Irreducibility, periodicity, and recurrence

We now turn to the de�nition of irreducibility. Let i and j be two states. We say that j
is accessible from i if it is possible [[with positive probability]] for the chain ever to visit
state j if the chain starts in state i, or, in other words,

Pf
1[
n=0

fXn = jg j X0 = ig > 0:

Clearly an equivalent condition is

1X
n=0

P n(i; j)
4
=

1X
n=0

PfXn = j j X0 = ig > 0:(1.27)

(1.28) Exercise. Prove the last assertion.

We say i communicates with j if j is accessible from i and i is accessible from j.

(1.29) Exercise. Show that the relation \communicates with" is an equivalence relation.
That is, show that the \communicates with" relation is re
exive, symmetric, and transitive.
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We say that the Markov chain is irreducible if all pairs of states communicate.

Recall that an equivalence relation on a set induces a partition of that set into equiva-
lence classes. Thus, by Exercise (1.29), the state space S may be partitioned into what we
will call \communicating classes," or simply \classes." The chain is irreducible if there is
just one communicating class, that is, the whole state space S. Note that whether or not
a Markov chain is irreducible is determined by the state space S and the transition matrix
(P (i; j)); the initial distribution �0 is irrelevant. In fact, all that matters is the pattern of
zeroes in the transition matrix.

Why do we require irreducibility in the \Basic Limit Theorem" (1.17)? Here is a trivial
example of how the conclusion can fail if we do not assume irreducibility. Let S = f0; 1g
and let P =

�
1 0
0 1

�
: Clearly the resulting Markov chain is not irreducible. Also, clearly

the conclusion of the Basic Limit Theorem does not hold; that is, �n does not approach
any limit that is independent of �0. In fact, �n = �0 for all n.

Next, to discuss periodicity, let's begin with another trivial example: take S = f0; 1g
again, and let P =

�
0 1
1 0

�
: The conclusion of the Basic Limit Theorem does not hold

here: for example, if �0 = (1; 0), then �n = (1; 0) if n is even and �n = (0; 1) if n is odd.
So in this case �n(1) alternates between the two values 0 and 1 as n increases, and hence
does not converge to anything. The problem in this example is not lack of irreducibility;
clearly this chain is irreducible. So, assuming the Basic Limit Theorem is true, the chain
must not be aperiodic! That is, the chain is periodic. The trouble stems from the fact
that, starting from state 1 at time 0, the chain can visit state 1 only at even times. The
same holds for state 2.

Given a Markov chain fX0;X1; : : :g, de�ne the period of a state i to be

di = gcdfn : P n(i; i) > 0g:

Note that both states 1 and 2 in the example P =

�
0 1
1 0

�
have period 2. In fact, the

next result shows that if two states i and j communicate, then they must have the same
period.

(1.30) Theorem. If the states i and j communicate, then di = dj.

Proof: Since j is accessible from i, by (1.27) there exists an n1 such that P n1(i; j) > 0.
Similarly, since i is accessible from j, there is an n2 such that P n2(j; i) > 0. Noting that
Pn1+n2(i; i) > 0, it follows that

di j n1 + n2;

that is, di divides n1 + n2, which means that n1 + n2 is an integer multiple of di. Now
suppose that P n(j; j) > 0. Then P n1+n+n2(i; i) > 0, so that

di j n1 + n+ n2:
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Subtracting the last two displays gives di j n. Since n was an arbitrary integer satisfying
P n(j; j) > 0, we have found that di is a common divisor of the set fn : P n(j; j) > 0g. Since
dj is de�ned to be the greatest common divisor of this set, we have shown that dj � di.
Interchanging the roles of i and j in the previous argument gives the opposite inequality
di � dj . This completes the proof.

It follows from Theorem (1.30) that all states in a communicating class have the same
period. We say that the period of a state is a \class property." In particular, all states in
an irreducible Markov chain have the same period. Thus, we can speak of the period of

a Markov chain if that Markov chain is irreducible: the period of an irreducible Markov
chain is the period of any of its states.

(1.31) Definition. An irreducible Markov chain is said to be aperiodic if its period is

1, and periodic otherwise.

We have now discussed all of the words we need in order to understand the statement
of the Basic Limit Theorem (1.17). We will need another concept or two before we can get
to the proof, and the proof will then take some time beyond that. So I propose that we
pause to discuss an interesting example of an application of the Basic Limit Theorem; this
will help us build up some motivation to help carry us through the proof, and will also give
some practice that should help be helpful in assimilating the concepts of irreducibility and
aperiodicity.

(1.32) Example [Generating a random table with fixed row and column sums].
Consider the 4� 4 table of numbers that is enclosed within the rectangle below. The four
numbers along the bottom of the table are the column sums, and those along the right edge
of the table are the row sums.

68 119 26 7 220
20 84 17 94 215
15 54 14 10 93
5 29 14 16 64

108 286 71 127
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Suppose we want to generate a random 4 � 4 table that has the same row and column
sums as the table above. That is, suppose that we want to generate a random table of
nonnegative integers whose probability distribution is uniform on the set S of all such 4� 4
tables that have the given row and column sums. Here is a proposed algorithm. Start
with any table having the correct row and column sums; so of course the 4� 4 table given
above will do. Denote the entries in that table by aij. Choose a pair fi1; i2g of rows at
random, that is, uniformly over the

�4
2

�
= 6 possible pairs. Similarly, choose a random

pair of columns fj1; j2g. Then 
ip a coin. If you get heads: add 1 to ai1j1 and ai2j2 , and
subtract 1 from ai1j2 and ai2j1 if you can do so without producing any negative entries|if
you cannot do so, then do nothing. Similarly, if the coin 
ip comes up tails, then subtract
1 from ai1j1 and ai2j2 , and add 1 to ai1j2 and ai2j1 , with the same nonnegativity proviso,
and otherwise do nothing. This describes a random transformation of the original table
that results in a new table in the desired set of tables S. Now repeat the same random
transformation on the new table, and so on.

(1.33) Exercise. Assuming the validity of the Basic Limit Theorem, show that if we run the
\algorithm" in Example (1.32) for \a long time," then we will end up with a random table
having probability distribution very close to the desired distribution. In order to do this, show
that

1. The procedure generates a Markov chain whose state space is S,

2. that Markov chain is irreducible,

3. that Markov chain is aperiodic, and

4. that Markov chain has the desired distribution (that is, uniform on S) as its stationary
distribution.

I consider Exercise (1.33) to be an interesting application of the Basic Limit Theorem.
I hope it helps whet your appetite for digesting the proof of that theorem!

For the proof of the Basic Limit Theorem, we will need one more concept: recurrence.
Analogously to what we did with the notion of periodicity, we will begin by saying what a
recurrent state is, and then show [[in Theorem (1.35) below]] that recurrence is actually a
class property. In particular, in an irreducible Markov chain, either all states are recurrent
or all states are transient , which means \not recurrent." Thus, if a chain is irreducible, we
can speak of the chain being either recurrent or transient.

The idea of recurrence is this: a state i is recurrent if, starting from the state i at time
0, the chain is sure to return to i eventually. More precisely, de�ne the �rst hitting time Ti
of the state i by

Ti = inffn > 0 : Xn = ig;
and make the following de�nition.
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(1.34) Definition. The state i is recurrent if PifTi <1g = 1. If i is not recurrent, it
is called transient .

The meaning of recurrence is this: state i is recurrent if, when the Markov chain is
started out in state i, the chain is certain to return to i at some �nite future time. Observe
the di�erence in spirit between this and the de�nition of \accessible from" [[see the para-
graph containing (1.27)]], which requires only that it be possible for the chain to hit a state
j. In terms of the �rst hitting time notation, the de�nition of \accessible from" may be
restated as follows: for distinct states i 6= j, we say that j is accessible from i if and only
if PifTj <1g > 0. [[Why did I bother to say \for distinct states i 6= j"?]]

Here is the promised result that implies that recurrence is a class property.

(1.35) Theorem. Let i be a recurrent state, and suppose that j is accessible from i. Then
in fact all of the following hold:

(i) PifTj <1g = 1;

(ii) PjfTi <1g = 1;

(iii) The state j is recurrent.

Proof: The proof will be given somewhat informally; it can be rigorized. Suppose i 6= j,
since the result is trivial otherwise.

Firstly, let us observe that (iii) follows from (i) and (ii): clearly if (ii) holds [[that is,
starting from j the chain is certain to visit i eventually]] and (i) holds [[so that starting from
i the chain is certain to visit j eventually]], then (iii) must also hold [[since starting from j
the chain is certain to visit i, after which it will de�nitely get back to j]].

To prove (i), let us imagine starting the chain in state i, so thatX0 = i. With probability
one, the chain returns at some time Ti <1 to i. For the same reason, continuing the chain
after time Ti, the chain is sure to return to i for a second time. In fact, by continuing this
argument we see that, with probability one, the chain returns to i in�nitely many times.
Thus, we may visualize the path followed by the Markov chain as a succession of in�nitely
many \cycles," where a cycle is a portion of the path between two successive visits to i.
That is, we'll say that the �rst cycle is the segment X1; : : : ;XTi of the path, the second cycle
starts with XTi+1 and continues up to and including the second return to i, and so on. The
behaviors of the chain in successive cycles are independent and have identical probabilistic
characteristics. In particular, letting In = 1 if the chain visits j sometime during the nth
cycle and In = 0 otherwise, we see that I1; I2; : : : is an iid sequence of Bernoulli trials. Let
p denote the common \success probability"

p = Pfvisit j in a cycleg = Pi

"
Ti[
k=1

fXk = jg
#

for these trials. Clearly if p were 0, then with probability one the chain would not visit j
in any cycle, which would contradict the assumption that j is accessible from i. Therefore,
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p > 0. Now observe that in such a sequence of iid Bernoulli trials with a positive success
probability, with probability one we will eventually observe a success. In fact,

Pifchain does not visit j in the �rst n cyclesg = (1� p)n ! 0

as n ! 1. That is, with probability one, eventually there will be a cycle in which the
chain does visit j, so that (i) holds.

It is also easy to see that (ii) must hold. In fact, suppose to the contrary that PjfTi =
1g > 0. Combining this with the hypothesis that j is accessible from i, we see that it is
possible with positive probability for the chain to go from i to j in some �nite amount of
time, and then, continuing from state j, never to return to i. But this contradicts the fact
that starting from i the chain must return to i in�nitely many times with probability one.
Thus, (ii) holds, and we are done.

The \cycle" idea used in the previous proof is powerful and important; we will be using
it again.

The next theorem gives a useful equivalent condition for recurrence. The statement
uses the notation Ni for the total number of visits of the Markov chain to the state i, that
is,

Ni =

1X
n=0

IfXn = ig:

(1.36) Theorem. The state i is recurrent if and only if E i (Ni) =1.

Proof: We already know that if i is recurrent, then

PifNi =1g = 1;

that is, starting from i, the chain visits i in�nitely many times with probability one. But
of course the last display implies that E i(Ni) = 1. To prove the converse, suppose that
i is transient, so that q := PifTi = 1g > 0. Considering the sample path of the Markov
chain as a succession of \cycles" as in the proof of Theorem (1.35), we see that each cycle
has probability q of never ending, so that there are no more cycles, and no more visits to i.
In fact, a bit of thought shows that Ni, the total number of visits to i [[including the visit
at time 0]], has a geometric distribution with \success probability" q, and hence expected
value 1=q, which is �nite, since q > 0.

(1.37) Corollary. If j is transient, then limn!1 P n(i; j) = 0 for all states i.

Proof: Supposing j is transient, we know that E j (Nj) < 1. Starting from an arbitrary
state i 6= j, we have

E i(Nj) = PifTj <1gE i (Nj j Tj <1):
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However, E i(Nj j Tj < 1) = E j (Nj); this is clear intuitively since, starting from i, if the
Markov chain hits j at the �nite time Tj , then it \probabilistically restarts" at time Tj .
[[Exercise: give a formal argument.]] Thus, E i(Nj) � E j (Nj) < 1, so that in fact we have
E i(Nj) =

P1
n=1 P

n(i; j) <1, which implies the conclusion of the Corollary.

(1.38) Example [\A drunk man will find his way home, but a drunk bird may
get lost forever," or, recurrence and transience of random walks]. The
quotation is from Yale's own professor Kakutani, as told by R. Durrett in his probability
book. We'll consider a certain model of a random walk in d dimensions, and show that the
walk is recurrent if d = 1 or d = 2, and the walk is transient if d � 3.

In one dimension, our random walk is the \simple, symmetric" random walk on the inte-
gers, which takes steps of +1 and �1 with probability 1/2 each. That is, letting X1;X2; : : :
be iid taking the values �1 with probability 1/2, we de�ne the position of the random walk
at time n to be Sn = X1+ � � �+Xn. What is a random walk in d dimensions? Here is what
we will take it to be: the position of such a random walk at time n is

Sn = (Sn(1); : : : ; Sn(d)) 2 Z
d;

where the coordinates Sn(1); : : : ; Sn(d) are independent simple, symmetric random walks in
Z. That is, to form a random walk in Zd, simply concatenate d independent one-dimensional
random walks into a d-dimensional vector process.

Thus, our random walk Sn may be written as Sn = X1 + � � � + Xn, where X1;X2; : : :
are iid taking on the 2d values (�1; : : : ;�1) with probability 2�d each. This might not be
the �rst model that would come to your mind. Another natural model would be to have
the random walk take a step by choosing one of the d coordinate directions at random
(probability 1=d each) and then taking a step of +1 or �1 with probability 1/2. That is,
the increments X1;X2; : : : would be iid taking the 2d values

(�1; 0; : : : ; 0); (0;�1; : : : ; 0); : : : ; (0; 0; : : : ;�1)
with probability 1=2d each. This is indeed a popular model, and can be analyzed to reach
the conclusion \recurrent in d � 2 and transient in d � 3" as well. But the \concatenation of
d independent random walks" model we will consider is a bit simpler to analyze. Also, for all
you Brownian motion fans out there, our model is the random walk analog of d-dimensional
Brownian motion, which is a concatenation of d independent one-dimensional Brownian
motions.

We'll start with d = 1. It is obvious that S0; S1; : : : is an irreducible Markov chain.
Since recurrence is a class property, to show that every state is recurrent it su�ces to show
that the state 0 is recurrent. Thus, by Theorem (1.36) we want to show that

E 0(N0) =
X
n

P n(0; 0) =1:(1.39)

But P n(0; 0) = 0 if n is odd, and for even n = 2m, say, P 2m(0; 0) is the probability that a
Binomial(2m; 1=2) takes the value m, or

P 2m(0; 0) =

�
2m

m

�
2�2m:
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This can be closely approximated in a convenient form by using Stirling's formula, which
says that

k! �
p
2�k (k=e)k ;

where the notation \ak � bk" means that ak=bk ! 1 as k !1. Applying Stirling's formula
gives

P 2m(0; 0) =
(2m)!

(m!)222m
�
p
2�(2m) (2m=e)2m

2�m(m=e)2m22m
=

1p
�m

:

Thus, from the fact that
P
(1=

p
m) = 1 it follows that (1.39) holds, so that the random

walk is recurrent.
Now it's easy to see what happens in higher dimensions. In d = 2 dimensions, for

example, again we have an irreducible Markov chain, so we may determine the recurrence
or transience of chain by determining whether the sum

1X
n=0

P(0;0)fS2n = (0; 0)g(1.40)

is in�nite or �nite, where S2n is the vector (S1
2n; S

2
2n), say. By the assumed independence

of the two components of the random walk, we have

P(0;0)fS2m = (0; 0)g = P0fS1
2m = 0gP0fS2

2m = 0g �
�

1p
�m

��
1p
�m

�
=

1

�m
;

so that (1.40) is in�nite, and the random walk is again recurrent. However, in d = 3
dimensions, the analogous sum

1X
n=0

P(0;0;0)fS2n = (0; 0; 0)g

is �nite, since

P(0;0;0)fS2m = (0; 0; 0)g = P0fS1
2m = 0gP0fS2

2m = 0gP0fS3
2m = 0g �

�
1p
�m

�3

;

so that in three [[or more]] dimensions the random walk is transient.
The calculations are simple once we know that in one dimension P0fS2m = 0g is of order

of magnitude 1=
p
m. In a sense it is not very satisfactory to get this by using Stirling's for-

mula and having huge exponentially large titans in the numerator and denominator �ghting
it out and killing each other o�, leaving just a humble

p
m standing in the denominator

after the dust clears. In fact, it is easy to guess without any unnecessary violence or cal-
culation that the order of magnitude is 1=

p
m|note that the distribution of S2m, having

variance 2m, is \spread out" over a range of order
p
m, so that the probabilities of points

in that range should be of order 1=
p
m. Another way to see the answer is to use a Nor-

mal approximation to the binomial distribution. We approximate the Binomial(2m; 1=2)
distribution by the Normal distribution N(m;m=2), with the usual continuity correction:

PfBinomial(2m; 1=2) = mg � Pfm� 1=2 < N(m;m=2) < m+ 1=2g
= Pf�(1=2)

p
2=m < N(0; 1) < (1=2)

p
2=mg

� �(0)
p
2=m = (1=

p
2�)
p
2=m = 1=

p
�m:
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Although this calculation does not follow as a direct consequence of the usual Central Limit
Theorem, it is an example of a \local Central Limit Theorem."

(1.41) Exercise [The other 3-dimensional random walk]. Consider a random walk
on the 3-dimensional integer lattice; at each time the random walk moves with equal probability
to one of the 6 nearest neighbors, adding or subtracting 1 in just one of the three coordinates.
Show that this random walk is transient.

Hint: You want to show that some series converges. An upper bound on the terms will be
enough. How big is the largest probability in the Multinomial(n; 1=3; 1=3; 1=3) distribution?

Here are a few additional problems about a simple symmetric random walk fSng in one
dimension starting from S0 = 0 at time 0.

(1.42) Exercise. Let a and b be integers with a < 0 < b. De�ning the hitting times
�c = inffn � 0 : Sn = cg, show that the probability Pf�b < �ag is given by (0 � a)=(b � a).
Show that Pfg

(1.43) Exercise. Let S0; S1; : : : be a simple, symmetric random walk in one dimension as
we have discussed, with S0 = 0. Show that

PfS1 6= 0; : : : ; S2n 6= 0g = PfS2n = 0g:

Now you can do a calculation that explains why the expected time to return to 0 is in�nite.

(1.44) Exercise. As in the previous exercise, consider a simple, symmetric random walk
started out at 0. Letting k 6= 0 be any �xed state, show that the expected number of times the
random walk visits state k before returning to state 0 is 1.

We'll end this section with a discussion of the relationship between recurrence and the
existence of a stationary distribution. The results will be useful in the next section.

(1.45) Proposition. Suppose a Markov chain has a stationary distribution �. If the

state j is transient, then �(j) = 0.

Proof: Since � is stationary, we have �P n = � for all n, so thatX
i

�(i)P n(i; j) = �(j) for all n:(1.46)
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However, since j is transient, Corollary (1.37) says that limn!1 P n(i; j) = 0 for all i. Thus,
the left side of (1.46) approaches 0 as n approaches 1, which implies that �(j) must be 0.

The last bit of reasoning about equation (1.46) may look a little strange, but in fact
�(i)P n(i; j) = 0 for all i and n. In light of what we now know, this is easy to see. Firstly,
if i is transient, then �(i) = 0. Otherwise, if i is recurrent, then P n(i; j) = 0 for all n, since
if not, then j would be accessible from i, which would contradict the assumption that j is
transient.

(1.47) Corollary. If an irreducible Markov chain has a stationary distribution, then the

chain is recurrent.

Proof: Being irreducible, the chain must be either recurrent or transient. However, if the
chain were transient, then the previous Proposition would imply that �(j) = 0 for all j,
which would contradict the assumption that � is a probability distribution, and so must
sum to 1.

The previous Corollary says that for an irreducible Markov chain, the existence of a
stationary distribution implies recurrence. However, we know that the converse is not
true. That is, there are irreducible, recurrent Markov chains that do not have stationary
distributions. For example, we have seen that the simple symmetric random walk on
the integers in one dimension is irreducible and recurrent but does not have a stationary
distribution. This random walk is recurrent all right, but in a sense it is \just barely
recurrent." That is, by recurrence we have P0fT0 <1g = 1, for example, but we also have
E 0(T0) = 1. The name for this kind of recurrence is null recurrence: the state i is null
recurrent if it is recurrent and E i(Ti) = 1. Otherwise, a recurrent state is called positive

recurrent : the state i is positive recurrent if E i(Ti) <1. A positive recurrent state i is not
just barely recurrent, it is recurrent by a comfortable margin|when started at i, we have
not only that Ti is �nite almost surely, but also that Ti has �nite expectation.

Positive recurrence is in a sense the right notion to relate to the existence of a stationary
distibution. For now let me state just the facts, ma'am; these will be justi�ed later. Positive
recurrence is also a class property, so that if a chain is irreducible, the chain is either
transient, null recurrent, or positive recurrent. It turns out that an irreducible chain has
a stationary distribution if and only if it is positive recurrent. That is, strengthening
\recurrence" to \positive recurrence" gives the converse to Corollary (1.47).

1.7 An aside on coupling

Coupling is a powerful technique in probability. It has a distinctly probabilistic 
avor. That
is, using the coupling idea entails thinking probabilistically, as opposed to simply applying
analysis or algebra or some other area of mathematics. Many people like to prove assertions
using coupling and feel happy when they have done so|a probabilisitic assertion deserves
a probabilistic proof, and a good coupling proof can make obvious what might otherwise
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be a mysterious statement. For example, we will prove the Basic Limit Theorem of Markov
chains using coupling. As I have said before, we could do it using matrix theory, but the
probabilist tends to �nd the coupling proof much more appealing, and I hope you do too.

It is a little hard to give a crisp de�nition of coupling, and di�erent people vary in how
they use the word and what they feel it applies to. Let's start by discussing a very simple
example of coupling, and then say something about what the common ideas are.

(1.48) Example [Connectivity of a random graph]. A graph is said to be connected
if for each pair of distinct nodes i and j there is a path from i to j that consists of edges of
the graph.

Consider a random graph on a given �nite set of nodes, in which each pair of nodes
is joined by an edge independently with probability p. We could simulate, or \construct,"
such a random graph as follows: for each pair of nodes i < j, generate a random number
Uij � U [0; 1], and join nodes i and j with an edge if Uij � p. Here is a problem: show that
the probability of the resulting graph being connected is nondecreasing in p. That is, for
p1 < p2, we want to show that

Pp1fgraph connectedg � Pp2fgraph connectedg:

I would say that this is intuitively obvious, but we want to give an actual proof. Again,
the example is just meant to illustrate the idea of coupling, not to give an example that
can be solved only with coupling!

One way that one might approach this problem is to try to �nd an explicit expression
for the probability of being connected as a function of p. Then one would hope to show
that that function is increasing, perhaps by di�erentiating with respect to p and showing
that the derivative is nonnegative.

That is conceptually a straightforward approach, but you may become discouraged at
the �rst step|I don't think there is an obvious way of writing down the probability the
graph is connected. Anyway, doesn't it seem somehow very ine�cient, or at least \overkill,"
to have to give a precise expression for the desired probability if all one desires is to show
the inituitively obvious monotonicity property? Wouldn't you hope to give an argument
that somehow simply formalizes the intuition that we all have?
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One nice way to show that probabilities are ordered is to show that the corresponding
events are ordered: if A � B then PA � PB. So let's make two events by making two
random graphs G1 and G2, with each edge of G1 having probability p1 and each edge of
G2 having probability p2. We could do that by using two sets of U [0; 1] random variables:
fUijg for G1 and fVijg for G2. OK, so now we ask: is it true that

fG1 connectedg � fG2 connectedg?(1.49)

The answer is no; indeed, the random graphs G1 and G2 are independent, so that clearly

PfG1 connected; G2 not connectedg = PfG1 connectedgPfG2 not connectedg > 0:

The problem is that we have used di�erent, independent random numbers in constructing
the graphs G1 and G2, so that, for example, it is perfectly possible to have simultaneously
Uij � p1 and Vij > p2 for all i < j, in which the graph G1 would be completely connected
and the graph G2 would be completely disconnected.

Here is a simple way to �x the argument: use the same random numbers in de�ning the
two graphs. That is, draw the edge (i; j) in graph G1 if Uij � p1 and the edge (i; j) in graph
G2 if Uij � p2. Now notice how the picture has changed: with the modi�ed de�nitions it is
obvious that, if an edge (i; j) is in the graph G1, then that edge is also in G2. From this, it
is equally obvious that (1.49) now holds. This establishes the desired monotonicity of the
probability of being connected. Perfectly obvious, isn't it?

So, what characterizes a coupling argument? In our example, we wanted to establish
a statement about two distributions: the distributions of random graphs with edge proba-
bilities p1 and p2. To do this, we showed how to \construct" [[i.e., simulate using uniform
random numbers!]] random objects having the desired distributions in such a way that the
desired conclusion became obvious. The trick was to make appropriate use of the same
uniform random variables in constructing the two objects. I think this is a general feature
of coupling arguments: somewhere in there you will �nd the same set of random variables
used to construct two di�erent objects about which one wishes to make some probabilistic
statement. The term \coupling" re
ects the fact that the two objects are related in this
way.

(1.50) Exercise. Consider a Markov Chain on the nonnegative integers S = f0; 1; 2; : : :g.
De�ning P (i; i + 1) = pi and P (i; i � 1) = qi, assume that pi + qi = 1 for all i 2 S, and also
p0 = 1, q0 = 0, and both pi and qi are positive for all i � 1. Use what you know about the
simple, symmetric random walk to show that the given Markov chain is recurrent.
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1.8 Proof of the Basic Limit Theorem

The Basic Limit Theorem says that if an irreducible, aperiodic Markov chain has a station-
ary distribution �, then for each initial distribution �0, as n ! 1 we have �n(i) ! �(i)
for all states i. Let me start by pointing something out, just in case the wording of the
statement strikes you as a bit strange. Why does the statement read \. . .a stationary dis-
tribution"? For example, what if the chain has two stationary distributions? The answer
is that this is impossible: the assumed conditions imply that a stationary distribution is in
fact unique. In fact, once we prove the Basic Limit Theorem, we will know this to be the
case. Clearly if the Basic Limit Theorem is true, an irreducible and aperodic Markov chain
cannot have two di�erent stationary distributions � and ~�, since obviously �n(i) cannot
approach both �(i) and ~�(i) for all i.

An equivalent but conceptually useful reformulation is to de�ne a distance between
probability distributions, and then to show that as n ! 1, the distance between the
distribution �n and the distribution � converges to 0. The notion of distance that we will
use is called \total variation distance."

(1.51) Definition. Let � and � be two probability distributions on the set S. Then the

total variation distance k�� �k between � and � is de�ned by

k�� �k = sup
A�S

[�(A) � �(A)]:

(1.52) Exercise. Show that k�� �k may also be expressed in the alternative forms

k�� �k = sup
A�S

j�(A) � �(A)j = 1

2

X
i2S

j�(i)� �(i)j = 1�
X
i2S

minf�(i); �(i)g:

Two probability distributions � and � assign probabilites to all possible events. The
total variation distance between � and � is the largest possible discrepancy between the
probabilities assigned by � and � to any event. For example, let �7 denote the distribution
of the ordering of a deck of cards after 7 shu�es, and let � denote the uniform distribution
on all 52! permutations of the deck, which corresponds to the result of perfect shu�ing
(or \shu�ing in�nitely many times"). Suppose, for illustration, that the total variation
distance k�7 � �k happens to be 0:17. This tells us that the probability of any event |
for example, the probability of winning any speci�ed card game | using a deck shu�ed
7 times di�ers by at most 0.17 from the probability of the same event using a perfectly
shu�ed deck.

(1.53) Exercise. Let �0 and �0 be probability mass functions on S, and de�ne �1 = �0P
and �1 = �0P , where P is a probability transition matrix. Show that k�1 � �1k � k�0 � �0k.
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To introduce the coupling method, let Y0; Y1; : : : be a Markov chain with the same
probability transition matrix as X0;X1; : : :, but let Y0 have the distribution �; that is, we
start the Y chain o� in the initial distribution � instead of the initial distribution �0 of the
X chain. Note that fYng is a stationary Markov chain, and, in particular, that Yn has the
distribution � for all n. Further let the Y chain be independent of the X chain.

Roughly speaking, we want to show that for large n, the probabilistic behavior of Xn

is close to that of Yn. The next result says that we can do this by showing that for large n,
the X and Y chains have met with high probability by time n. De�ne the coupling time T
to be the �rst time at which Xn equals Yn:

T = inffn : Xn = Yng;
where of course we de�ne T =1 if Xn 6= Yn for all n.

(1.54) Lemma [\The coupling inequality"]. For all n we have

k�n � �k � PfT > ng:

Proof: De�ne the process fY �n g by

Y �n =

�
Yn if n < T
Xn if n � T .

It is easy to see that fY �n g is a Markov chain, and it has the same probability transition
matrix P (i; j) as fXng has. [[To understand this, start by thinking of the X chain as a
frog carrying a table of random numbers jumping around in the state space. The frog uses
his table of iid uniform random numbers to generate his path as we described earlier in
the section about specifying and simulating Markov chains. He uses the �rst number in
his table together with his initial distribution �0 to determine X0, and then reads down
successive numbers in the table to determine the successive transitions on his path. The
Y frog does the same sort of thing, except he uses his own, di�erent table of uniform
random numbers so he will be independent of the X frog, and he starts out with the initial
distribution � instead of �0. How about the Y � frog? Is he also doing a Markov chain?
Well, is he choosing his transitions using uniform random numbers like the other frogs?
Yes, he is; the only di�erence is that he starts by using Y 's table of random numbers (and
hence he follows Y ) until the coupling time T , after which he stops reading numbers from
Y 's table and switches to X's table. But big deal; he is still generating his path by using
uniform random numbers in the way required to generate a Markov chain.]] The chain fY �n g
is stationary: Y �0 � �, since Y �0 = Y0 and Y0 � �. Thus, Y �n � � for all n. so that for A � S

we have

�n(A) � �(A) = PfXn 2 Ag � PfY �n 2 Ag
= PfXn 2 A; T � ng+ PfXn 2 A; T > ng
�PfY �n 2 A; T � ng � PfY �n 2 A; T > ng:
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However, on the event fT � ng, we have Y �n = Xn, so that the two events fXn 2 A; T � ng
and fY �n 2 A; T � ng are the same, and hence they have the same probability. Therefore,
the �rst and third terms in the last expression cancel, yielding

�n(A)� �(A) = PfXn 2 A; T > ng � PfY �n 2 A; T > ng:

Since the last di�erence is obviously bounded by PfT > ng, we are done.

Note the signi�cance of the coupling inequality: it reduces the problem of showing that
k�n � �k ! 0 to that of showing that PfT > ng ! 0, or equivalently, that PfT <1g = 1.
To do this, we consider the \bivariate chain" fZn = (Xn; Yn) : n � 0g. A bit of thought
con�rms that Z0; Z1; : : : is a Markov chain on the state space S � S. Since the X and Y
chains are independent, the probability transition matrix PZ of the Z chain can be written
as

PZ(ixiy; jxjy) = P (ix; jx)P (iy; jy):

It is easy to check that the Z chain has stationary distribution

�Z(ixiy) = �(ix)�(iy):

Watch closely now; we're about to make an important reduction of the problem. Recall
that we want to show that PfT <1g = 1. Stated in terms of the Z chain, we want to show
that with probability one, the Z chain hits the \diagonal" f(j; j) : j 2 Sg in S� S in �nite
time. To do this, it is su�cient to show that the Z chain is irreducible and recurrent [[why?]].
However, since we know that the Z chain has a stationary distribution, by Corollary (1.47),
to prove the Basic Limit Theorem, it su�ces to show that the Z chain is irreducible.

This is, strangelyy, the hard part. This is where the aperiodicity assumption comes in.
For example, consider a Markov chain fXng having the \type A frog" transition matrix

P =

�
0 1
1 0

�
started out in the condition X0 = 0. Then the stationary chain fYng starts

out in the uniform distribution: probability 1/2 on each state 0,1. The bivariate chain
f(Xn; Yn)g is not irreducible: for example, from the state (0; 0), we clearly cannot reach
the state (0; 1). And this ruins everything. For example, if Y0 = 1, which happens with
probability 1/2, the X and Y chains can never meet, so that T =1. Thus, PfT <1g < 1.

A little number-theoretic result will help us establish irreducibility of the Z chain.

(1.55) Lemma. Suppose A is a set of positive integers that is closed under addition and

has greatest common divisor (gcd) one. Then there exists an integer N such that n 2 A for

all n � N .

Proof: First we claim that A contains at least one pair of consecutive integers. To see
this, suppose to the contrary that the minimal \spacing" between successive elements of
A is s > 1. That is, any two distinct elements of A di�er by at least s, and there exists
an integer n1 such that both n1 2 A and n1 + s 2 A. Let m 2 A be such that s does not

yOr maybe not so strangely, in view of Example (1.32).
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divide m; we know that such an m exists because gcd(A) = 1. Write m = qs + r, where
0 < r < s. Now observe that, by the closure under addition assumption, the two numbers
a1 = (q+1)(n1+s) and a2 = (q+1)n1+m are both in A. However, a1�a2 = s�r 2 (0; s),
which contradicts the de�nition of s. This proves the claim.

Thus, A contains two consecutive integers, say, c and c+1. Now we will �nish the proof
by showing that n 2 A for all n � c2. If c = 0 this is trivially true, so assume that c > 0.
We have, by closure under addition,

c2 = (c)(c) 2 A

c2 + 1 = (c� 1)c+ (c+ 1) 2 A

...

c2 + c� 1 = c+ (c� 1)(c + 1) 2 A:

Thus, fc2; c2 + 1; : : : ; c2 + c� 1g, a set of c consecutive integers, is a subset of A. Now we
can add c to all of these numbers to show that the next set fc2+c; c2+c+1; : : : ; c2+2c�1g
of c integers is also a subset of A. Repeating this argument, clearly all integers c2 or above
are in A.

Let i 2 S, and retain the assumption that the chain is aperiodic. Then since the set
fn : P n(i; i) > 0g is clearly closed under addition, and, by the aperiodicity assumption,
has greatest common divisor 1, the previous lemma applies to give that P n(i; i) > 0 for all
su�ciently large n. From this, for any i; j 2 S, since irreducibility implies that Pm(i; j) > 0
for some m, it follows that P n(i; j) > 0 for all su�ciently large n.

Now we complete the proof of the Basic Limit Theorem by showing that the chain fZng
is irreducible. Let ix; iy; jx; jy 2 S. It is su�cient to show, in the bivariate chain fZng, that
(jxjy) is accessible from (ixiy). To do this, it is su�cient to show that P n

Z (ixiy; jxjy) > 0
for some n. However, by the assumed independence of fXng and fYng,

P n
Z (ixiy; jxjy) = P n(ix; jx)P

n(iy; jy);

which, by the previous paragraph, is positive for all su�ciently large n. Of course, this
implies the desired result, and we are done.

(1.56) Exercise. [[A little practice with the coupling idea]]

(i) Consider a Markov chain fXng having probability transition matrix

P =

0@ 1=2 1=4 1=4
1=4 1=2 1=4
1=4 1=4 1=2

1A :

Note that fXng has stationary distribution � = (1=3; 1=3; 1=3). Using the sort of coupling
we did in the proof of the Basic Limit Theorem, show that, no matter what the initial
distribution �0 of X0 is, we have

k�n � �k � 2

3

�
11

16

�n

for all n.
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(ii) Do you think the bound you just derived is a good one? In particular, is 11/16 the smallest
we can get? What is the best we could do?

(iii) Can you use a more \aggressive" coupling to get a better bound? [[What do I mean? The
coupling we used in the proof of the Basic Limit Theorem was not very aggressive, in that
it let the two chains evolve independently until they happened to meet, and only then
started to use the same uniform random numbers to generate the paths. No attempt was
made to get the chains together as fast as possible. A more aggressive coupling would
somehow make use of some random numbers in common to both chains in generating
their paths right from the beginning.]]

1.9 A SLLN for Markov chains

The usual Strong Law of Large Numbers for independent and identically distributed
(iid) random variables says that if X1;X2; : : : are iid with mean �, then the average
(1=n)

Pn
t=1Xt converges to � with probability 1 as n!1.

Some �ne print: It is possible to have � = +1, and the SLLN still holds. For example, supposing that
the random variables Xt take their values in the set of nonnegative integers f0; 1; 2; : : :g, the mean is
de�ned to be � =

P1
k=0 kPfX0 = kg. This sum could diverge, in which case we de�ne � to be +1,

and we have (1=n)
Pn

t=1Xt !1 with probability 1.

For example, if X0;X1; : : : are iid with values in the set S, then the SLLN tells us that

(1=n)
nX
t=1

IfXt = ig ! PfX0 = ig

with probability 1 as n!1. That is, the fraction of times that the iid process takes the
value i in the �rst n observations converges to PfX0 = ig, the probability that any given
observation is i.

We will do a generalization of this result for Markov chains. This law of large numbers
will tell us that the fraction of times that a Markov chains occupies state i converges to a
limit.

It is possible to view this result as a consequence of a more general and rather advanced
ergodic theorem (see, for example, Durrett's Probability: Theory and Examples). However,
I do not want to assume prior knowledge of ergodic theory. Also, the result for Markov
chains is quite simple to derive as a consequence of the ordinary law of large numbers for iid
random variables. Although the successive states of a Markov chain are not independent, of
course, we have seen that certain features of a Markov chain are independent of each other.
Here we will use the idea that the path of the chain consists of a succession of independent
\cycles," the segments of the path between successive visits to a recurrent state. This
independence makes the treatment of Markov chains simpler than the general treatment of
stationary processes, and it allows us to apply the law of large numbers that we already
know.
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(1.57) Theorem. Let X0;X1; : : : be a Markov chain starting in the state X0 = i, and

suppose that the state i communicates with another state j. The limiting fraction of time

that the chain spends in state j is 1=E jTj. That is,

Pi

(
lim
n!1

1

n

nX
t=1

IfXt = jg = 1

E jTj

)
= 1:

Proof: The result is easy if the state j is transient, since in that case E jTj =1 and (with
probability 1) the chain visits j only �nitely many times, so that

lim
n!1

1

n

nX
t=1

IfXt = jg = 0 =
1

E jTj

with probability 1. So we assume that j is recurrent. We will also begin by proving the
result in the case i = j; the general case will be an easy consequence of this special case.
Again we will think of the Markov chain path as a succession of cycles, where a cycle is a
segment of the path that lies between successive visits to j. The cycle lengths C1; C2; : : :
are iid and distributed as Tj ; here we have already made use of the assumption that we are
starting at the state X0 = j. De�ne Sk = C1 + � � � + Ck and let Vn(j) denote the number
of visits to state j made by X1; : : : ;Xn, that is,

Vn(j) =

nX
t=1

fXt = jg:

A bit of thought [[see also the picture below]] shows that Vn(j) is also the number of cycles
completed up to time n, that is,

Vn(j) = maxfk : Sk � ng:

To ease the notation, let Vn denote Vn(j). Notice that

SVn � n < SVn+1;
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and divide by Vn to obtain
SVn
Vn

� n

Vn
<

SVn+1

Vn
:

Since j is recurrent, Vn ! 1 with probability one as n ! 1. Thus, by the ordinary
Strong Law of Large Numbers for iid random variables, we have both

SVn
Vn

! E j (Tj)

and
SVn+1

Vn
=

�
SVn+1

Vn + 1

��
Vn + 1

Vn

�
! E j (Tj)� 1 = E j (Tj)

with probability one. Note that the last two displays hold whether E j (Tj) is �nite or in�nite.
Thus, n=Vn ! E j (Tj) with probability one, so that

Vn
n
! 1

E jTj

with probability one, which is what we wanted to show.

Next, to treat the general case where i may be di�erent from j, note that PifTj <1g =
1 by Theorem 1.35. Thus, with probability one, a path starting from i behaves as follows.
It starts by going from i to j in some �nite number Tj of steps, and then proceeds on from
state j in such a way that the long run fraction of time that Xt = j for t � Tj approaches
1=E j (Tj). But clearly the long run fraction of time the chain is at j is not a�ected by the
behavior of the chain on the �nite segment X0; : : : ;XTj�1. So with probability one, the

long run fraction of time that Xn = j for n � 0 must approach 1=E j (Tj).

The following result follows directly from Theorem (1.57) by the Bounded Convergence
Theorem from the Appendix. [[That is, we are using the following fact: if Zn ! c with
probability one as n!1 and the random variables Zn all take values in the same bounded
interval, then we also have E(Zn)! c. To apply this in our situation, note that we have

Zn :=
1

n

nX
t=1

IfXt = jg ! 1

E jTj

with probability one as n ! 1, and also each Zn lies in the interval [0,1]. Finally, use
the fact that the expectation of an indicator random variable is just the probability of the
corresponding event.]]

(1.58) Corollary. For an irreducible Markov chain, we have

lim
n!1

1

n

nX
t=1

P t(i; j) =
1

E j (Tj)

for all states i and j.
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There's something suggestive here. Consider for the moment an irreducible, aperiodic
Markov chain having a stationary distribution �. From the Basic Limit Theorem, we know
that, P n(i; j) ! �(j) as n ! 1. However, it is simple fact that if a sequence of numbers
converges to a limit, then the sequence of \Cesaro averages" converges to the same limit;
that is, if at ! a as t!1, then (1=n)

Pn
t=1 at ! a as n!1. Thus, the Cesaro averages

of P n(i; j) must converge to �(j). However, the previous Corollary shows that the Cesaro
averages converge to 1=E j (Tj). Thus, it follows that

�(j) =
1

E j (Tj)
:

It turns out that the aperiodicity assumption is not needed for this last conclusion; we'll
see this in the next result. Incidentally, we could have proved this result much earlier; for
example we don't need the Basic Limit Theorem in the development.

(1.59) Theorem. An irreducible, positive recurrent Markov chain has a unique stationary

distribution � given by

�(j) =
1

E j (Tj)
:

Proof: For the uniqueness, let � be a stationary distribution. We start with the relationX
i

�(i)P t(i; j) = �(j);

which holds for all t. Averaging this over values of t from 1 to n givesX
i

�(i)
1

n

nX
t=1

P t(i; j) = �(j):

By Corollary 1.58 [[and the Dominated Convergence Theorem]], the left side of the last
equation approaches X

i

�(i)
1

E j (Tj)
=

1

E j (Tj)

as n!1. Thus, �(j) = 1=E j (Tj), which establishes the uniqueness assertion.
We begin the proof of existence by doing the proof in the special case where the state

space is �nite. The proof is simpler here than in the general case, which involves some
distracting technicalities.

So assume for the moment that the state space is �nite. We begin again with Corollary
1.58, which says that

1

n

nX
t=1

P t(i; j) ! 1

E j (Tj)
:(1.60)

However, the sum over all j of the left side of (1.60) is 1, for all n. Therefore,X
j

1

E j (Tj)
= 1:

Stochastic Processes J. Chang, March 30, 1999



1.9. A SLLN FOR MARKOV CHAINS Page 1-33

That's good, since we want our claimed stationary distribution to be a probability distri-
bution.

Next we write out the matrix equation P tP = P t+1 as follows:X
k

P t(i; k)P (k; j) = P t+1(i; j):(1.61)

Averaging this over t = 1; : : : ; n gives

X
k

"
1

n

nX
t=1

P t(i; k)

#
P (k; j) =

1

n

nX
t=1

P t+1(i; j):

Taking the limit as n!1 of the last equation and using (1.60) again gives

X
k

�
1

EkTk

�
P (k; j) =

1

E jTj
:

Thus, our claimed stationary distribution is indeed stationary.

Finally, let's see how to handle the in�nite state space case. Let A � S be a �nite subset
of the state space. Summing (1.60) over j 2 A gives the inequalityX

j2A

1

E j (Tj)
� 1:

Therefore, since this is true for all subsets A, we getX
j2S

1

E j (Tj)
=: C � 1:

By the assumption of positive recurrence, we have C > 0; in a moment we'll see that C = 1.
The same sort of treatment of (1.61) [[i.e., sum over k 2 A, average over t = 1; : : : ; n, let
n!1, and then take supremum over subsets A of S]] gives the inequality

X
k

�
1

EkTk

�
P (k; j) � 1

E jTj
:(1.62)

However, the sum over all j of the left side of (1.62) is

X
k

�
1

EkTk

�X
j

P (k; j) =
X
k

�
1

EkTk

�
;

which is the same as the sum of the right side of (1.62). Thus, the left and right sides of
(1.62) must be the same for all j. From this we may conclude that the distribution

~�(j) =
1

C

�
1

E j (Tj)

�
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is stationary, so that, in particular, we know that our chain does have a stationary distri-
bution. Thus, by the uniqueness assertion we proved above, we must have C = 1, and we
are done.

(1.63) Exercise. Consider a knight sitting on the lower left corner square of an ordinary
8 � 8 chess board. The knight has residual frog-like tendencies, left over from an old spell an
older witch cast upon him. So he performs a random walk on the chess board, at each time
choosing a random move uniformly distributed over the set of his possible knight moves. What
is the expected time until he �rst returns to the lower left corner square?

(1.64) Exercise. Recall the de�nition of positive recurrence on page 1-22. Show that positive
recurrence is a class property.

(1.65) Exercise. Suppose a Markov chain has a stationary distribution � and the state j is
null recurrent. Show that �(j) = 0.

(1.66) Exercise [Birth-collapse chain]. Consider a Markov chain on S = f0; 1; 2; : : :g
having P (i; i + 1) = pi, P (i; 0) = 1 � pi for all i, with p0 = 1 and 0 < pi < 1 for all i > 0.
Show that

(i) The chain is recurrent if and only if limn!1
Qn

i=1 pi = 0. [[This, in turn, is equivalent to
the condition

P1
i=1(1� pi) =1. (This was just for interest; not a problem or a hint.)]]

(ii) The chain is positive recurrent if and only if
P1

n=1

Qn
i=1 pi <1.

(iii) What is the stationary distribution if pi = 1=(i + 1)?

1.10 General state space Markov chains

So far we have been discussing Markov chains with �nite or countably in�nite state spaces.
But many applications are most naturally modeled as processes moving on more general
state spaces, such as the real line or higher dimensional Euclidean spaces.

WARNING: This section may be rather long and tiring. It should probably be revised
and streamlined... Suggestions welcome.

(1.67) Example. Another standard use of the term \random walk" is for a sequence of
partial sums of iid random variables. For example, we might have Z1; Z2; : : : independent
and distributed according to the normal distribution N(�; 1) with mean � and variance 1,
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and de�ne the random walk X0;X1; : : : byXn = Z1+� � �+Zn for n � 0. In contrast with the
simple symmetric random walk, which moves around on the integers, such a normal random
walk has probability 0 of being in any given countable set of numbers at any positive time.

(1.68) Example [Autoregressive process]. Autoregressive processes are the bread
and butter of time series analysis. Here is a simple example. Let X0 have a Normal distri-
bution N(�0; �

2
0); and de�ne X1;X2; : : : recursively by Xt = �Xt�1 + Zt, where Z1; Z2; : : :

are iid N(0; �2). Then fXtg is an example of an autoregressive process of order 1.

(1.69) Example [Reflected random walk]. Let X1;X2; : : : be iid, and de�ne the
process fWtg by the recursion

Wt = maxf0;Wt�1 +Xtg for t > 0:

and W0 = 0, say. Then fWtg is called a re
ected random walk . The W process makes
iid increments like a random walk, except when taking such an increment would cause the
process to become negative, in which case the process takes the value 0. Re
ected random
walks arise in diverse contexts, including queueing theory and statistical procedures for
quickly detecting a change in a probability distribution. As an example, if the random
variables X1;X2; : : : are iid with distribution N(�; 1), with the \drift" � < 0, then the
re
ected random walk keeps trying to drift downward and repeatedly bumps against the
re
ecting barrier at 0. An example with � = �0:3 is shown in the �gure.
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Notice a qualitative di�erence between this process and the previous examples: here we have
an atom, in the sense that there is a state (0, here) that is hit with positive probability.

A Markov chain fX0;X1; : : :g is determined by a state space S, an initial distribution
�0, and a probability transition rule. The state space is a set, and the initial distribution
is a probability measure on that set. For each x 2 S, the probability transition rule, or
\transition kernel," speci�es a probability measure on S. That is, the transition kernel P
of the chain gives conditional probabilities like

P (x;A) = PfXt+1 2 A j Xt = xg:
Letting �t denote the distribution of Xt, we have �t+1 = �tP , that is,

�t+1(A) =

Z
�t(dx)P (x;A)

As you might suspect by now, much of the theory we have developed for countable state
spaces extends to more general state spaces, with sums replaced by integrals.

A stationary distribution � is a probability distribution on S that satis�es the equationZ
�(dx)P (x;A) = �(A)

for all A � S.

(1.70) Example [Autoregressive process, continued]. Continuing with Example
(1.68), suppose �1 < � < 1. Sensibly suspecting the family of Normal distributions as
the plausible candidates for a stationary distribution here, let us try out the distribution
� = N(�; �2) and see what the values of � and � have to be. Assuming Xt�1 and Xt

are distributed according to � and noting that Zt is independent of Xt�1; by equating the
means and variances of the left and right side of Xt = �Xt�1 + Zt we obtain the equations
� = �� and �2 = �2�2 + �2, which imply � = 0 and �2 = �2=(1 � �2). Denoting the
distribution at time t by �t = N(�t; �

2
t ), we ask: does �t approach � as t ! 1? Let's

compute �t and �t explicitly. Applying the relations �t = ��t�1 and �2t = �2�2t�1 + �2 to
t = 1; 2; : : : gives

�1 = ��0; �21 = �2�20 + �2;

�2 = �2�0; �22 = �4�20 + �2�2 + �2;

�3 = �3�0; �23 = �6�20 + �4�2 + �2�2 + �2;

...

�t = �t�0; �2t = �2t�20 + (�2t�2 + �2t�4 + � � �+ �2 + 1)�2;

...

Thus, �t ! 0 and �2t ! �2
P1

k=0 �
2k = �2=(1� �2), and we have established convergence to

the stationary distribution N(0; �2=(1 � �2)). So here is a continuous-state-space Markov
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chain for which we have found a stationary distribution and established convergence to
stationarity.

The last example was nice and easy, but we have shamelessly exploited the special fea-
tures of this problem. In particular, the Normality assumptions allowed us to do explicit
computations of the distributions �t and �. However, what happens, for example, if the
random variables fZtg are not Normally distributed? Presumably under some mild con-
ditions we will still have convergence to the stationary distribution, whatever it is, but
our simple calculations go out the window. Is there a general theorem we can appeal to,
analogous to the Basic Limit Theorem we got in the discrete space case?

(1.71) Example [Markov sampling]. We have seen this idea before in discrete state
spaces; it works more generally also. If we want to simulate a sample from a given prob-
ability distribution � on a set S, the Basic Limit Theorem will tell us that we can do this
approximately by running a Markov chain having state space S and stationary distribution
�. There are a number of popular methods for manufacturing a Markov chain having a
given desired distribution as its stationary distribution, such as the Metropolis method and
the Gibbs sampler.

As discussed earlier, the Gibbs sampler proceeds by simulating from conditional dis-
tributions that are, one hopes, simpler to simulate than the original distribution. For
example, suppose we wish to simulate from a given probability density function f on R

2 ,
which is an uncountable set, not discrete. For purposes of this discussion let (X;Y ) denote
a pair of random variables having joint density f . We would like to simulate such a pair
of random variables, at least approximately. Given that we are now (time t) at the state
(Xt; Yt) = (x; y), we could generate the next state (Xt+1; Yt+1) as follows. Flip a coin. If
Heads, let Xt+1 = Xt = x, and draw Yt+1 from the conditional distribution of Y given
X = x. If Tails, let Yt+1 = Yt = y, and draw Xt+1 from the conditional distribution of X
given Y = y. The sequence f(Xt; Yt) : t = 0; 1; : : :g is a Markov chain having stationary
density f .

What we would like here is a general Basic Limit Theorem that would allow us to prove
that the Gibbs sampler Markov chain converges in distribution to its stationary distribution.

1.10.1 Chains with an atom

Do you remember our proof of the Basic Limit Theorem in the discrete case? We used the
coupling idea: run two independent copies of the chain until they couple, that is, until they
hit the same state at some time T . The coupling inequality k�t � �k � PfT > tg reduced
the problem of showing that k�t � �k ! 0 to the problem of showing that PfT < 1g =
1. In other words, we reduced the problem to showing that with probability 1, the two
chains eventually must couple. However, in typical examples in general state spaces, each
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individual state is hit with probability 0, and independent copies of the chain will never
couple. An atom is a state that is hit with positive probability. If a Markov chain has an
atom, then we can hope to carry through the same sort of coupling argument as we used
in the descrete case. In this section we develop a basic limit theorem for chains having an
atom.

(1.72) Definition. An accessible atom � is a state that is hit with positive probability

starting from each state, that is,
P1

t=0 PxfXt = �g > 0 for all x 2 S.

(1.73) Example. In Example (1.69), the state 0 is an accessible atom.

Our goal in this section is a Basic Limit Theorem for chains that have atoms. Although
it is natural to think that most chains of interest do not have atoms, so that the theory
developed in this section would not often apply, we will see in the next section how a
surprisingly large class of chains may be viewed as chains with an atom.

(1.74) Proposition. Suppose a chain with an accessible atom � has a stationary distri-

bution �. Then �f�g > 0 and � is recurrent.

Proof: Since � is accessible, it follows that for each state x there is a t such that
P t(x; f�g) > 0. That is, de�ning Gt = fx : P t(x; f�g) > 0g, we have

S
Gt = S. So

there is an n such that �(Gn) > 0, which gives

�f�g =
Z

�(dx)P n(x; f�g) �
Z
Gn

�(dx)P n(x; f�g) > 0:

[[The integral of a positive function over a set of positive measure is positive.]] The proof
that � is recurrent is like what we did before for countable state spaces. Since P�fXt =
�g = �f�g > 0 for all t, de�ning N� =

P1
t=0 IfXt = �g, we get E� (N�) = 1. But

E�(N�) � Ex(N�) for all states x; recall that starting from � we get to count at least one
visit to � for sure! So, averaging over �, we get E�(N�) �

R
�(dx)Ex(N�) = E� (N�), so

that E� (N�) =1. This implies the recurrence of �, by the geometric trials argument from
before.

(1.75) Proposition. Suppose the chain fXtg has an accessible atom � and a stationary

distribution �. Let B be a set that is not accessible from �, that is, P�fTB < 1g = 0.
Then �(B) = 0.

Proof: De�ne
B�;n = fx 2 B : PxfT� � ng � �g:

By the assumption that � is an accessible atom,
S
m;nB1=m;n = B. Thus, we will be done

if we show that �(B�;n) = 0 for each n and each � > 0. So consider a �xed n and � > 0.
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Starting from any x 2 B�;n, with probability at least �, the chain goes to � within n steps,
and then never returns to B�;n. [[The last statement about not returning to B�;n follows by
de�nition of B and the fact that B�;n � B.]] So each time we enter B�;n, there is probability
at least � that within n steps we leave B�;n forever. De�ning N =

P1
t=0 IfXt 2 B�;ng to be

the total number of visits to the set B�;n, a bit of thought shows that EyN � n=� for each
y 2 S. [[Here is one way to see this. Look at the total number N0 =

P1
r=0 IfXrn 2 B�;ng

of visits to B�;n at times 0; n; 2n; : : :. Then PyfN0 > 1g � 1 � �, PyfN0 > 2g � (1 � �)2,
and so on. So

EyN0 =

1X
r=0

PfN0 > rg �
1X
r=0

(1� �)r = 1=�:

Similarly, for each 0 < k < n, the number Nk =
P1

r=0 IfXk+rn 2 B�;ng of visits at times
k; k+n; k+2n; : : : satis�es EyNk � 1=�. Thus, N = N0+N1+� � �+Nn�1 has expected value
at most n=�, starting from any state y.]] So E�N � n=�. This implies that �(B�;n) = 0: if
�(B�;n) were positive, then clearly E�N would be in�nite, which we have just shown is not

the case.

The previous result implies that a stationary chain with an accessible atom � will not enter
a set of states that is not accessible from �.

(1.76) Proposition. Suppose a Markov chain has an accessible atom � and a stationary

distribution �. Then P�fT� <1g = 1.

Proof: Let B = fx : PxfT� =1g > 0g; these are the states from which it is possible to
go forever without hitting �. We want to show that �(B) = 0. Since � is recurrent, if the
chain starts from state �, then with probability 1 it will return to � in�nitely many times.
Therefore, the set B cannot be accessible from �, for if it were, there would be positive
probability, starting from �, of eventually entering the set B and then never returning to
�. Thus, by the previous proposition, �(B) = 0.

(1.77) Definition. Let � and � be two probability measures on a set S. We say that �
is absolutely continuous with respect to � if �(A) = 0 for all A � S such that �(A) = 0,
that is, each set having probability 0 under � also has probability 0 under �.

(1.78) Theorem. Suppose a chain fXtg with transition kernel P and an aperiodic,

accessible atom � has a stationary distribution �. Let �t denote the distribution of Xt and

start the chain in any distribution �0 that is absolutely continuous with respect to �. Then

k�t � �k ! 0 as t!1.

Proof: We use the coupling technique from before; much of the reasoning remains the
same, so I'll just give a sketch. Again, we run two independent copies of the chain, fXtg
and fX�

t g, starting in the initial distributions �0 and �, respectively. We want to show that

Stochastic Processes J. Chang, March 30, 1999



Page 1-40 1. MARKOV CHAINS

with probability 1 the two chains eventually couple; in fact we claim that they eventually
visit the state � at the same time. By using the aperiodicity assumption together with
the number-theoretic lemma from before, we see that the bivariate chain f(Xt;X

�
t ) : t =

0; 1; : : :g has an accessible atom (�; �). The bivariate chain has a stationary distribution:
the obvious product distribution � � �. So by Proposition 1.76, if the bivariate chain were
started out in its stationary distribution � � �, it would eventually hit its atom (�; �)
with probability 1. That is, letting A denote the set of pairs of states (x; y) such that
P(x;y)fT(�;�) < 1g = 1, we have (� � �)(A) = 1. From this, the absolute continuity of
�0 with respect to � implies that (�0 � �)(A) = 1 [[observe that (� � �)(Ac) = 0 implies
(�0 � �)(A) = 0]]. Thus, P�0��fT(�;�) <1g = 1, as claimed.

(1.79) Exercise. Do we really need the hypothesis about the absolute continuity of �0? Here
is an example (although somewhat technical and arti�cial) that shows how things can go wrong
without it. Let the state space S be the unit interval [0; 1]. Let B = f2�n : n = 1; 2; : : :g.
De�ne the distribution � to have probability mass 1/2 on the point 1 and density 1/2 on the
rest of the interval, [0; 1). For each state x =2 B, take the next-state distribution P (x; �) to

be �. For x = 2�n 2 B, de�ne P (2�n; �) to have mass 2n+1�2
2n+1�1

on the point 2�(n+1) and the

remaining mass 1=(2n+1 � 1) on the point 1. Show that the state 1 is an accessible atom, and
that � is a stationary distribution for the chain. But what happens if we start out the chain in
the state 1/2?

[[For your convenience, a bit of helpful algebra:
Qm

n=1
2n+1�2
2n+1�1

= 1
2�2�m

.]]

1.10.2 Warm up for Harris chains

The purpose of this section is to warm up for the next section on Harris chains. If you are
already feeling warm, you might �nd all this a bit slow and repetitious, in which case you
might try skipping to the next section and see how it goes. If that section seems mysterious
to you, you can always come back here then.

To illustrate the method of thinking we will see how the ideas work in some simple
chains having �nite state spaces. Of course, the ideas are not needed in order to obtain a
Basic Limit Theorem for countable-state Markov chains; we have already done that! But
we will use the ideas to extend the Basic Limit Theorem to more general state spaces.

(1.80) Example. A lesson of exercise (1.5) [[***make this an example rather than an
exercise?]] was that we can \lump" states if the transition probabilities out of those states
are the same. That is, what characterizes a state x is really its next-state transition
probabilities P (x; �), and if P (x; �) = P (y; �), then we may combine the two states x and y
into one state and still have a Markov chain. In a sense, if we have just made a transition
and are told that the chain went to either x or y and we are wondering which, it really
doesn't matter, in the sense that it makes no di�erence to our probabilistic predictions of
the future path of the chain. In general, suppose there is a set R of states all having the
same next-state transition probabilites; that is, suppose P (x; �) = P (y; �) for all x; y 2 R.
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Then we may lump the states in R into a new state �, say. Whenever the X chain enters
the set R, that is, whenever it occupies a state in the set R, we will say that the chain
~X enters the state �. For example, given a chain X0;X1; : : : having transition matrix

P =

0@
1 2 3

1 :1 :5 :4
2 :3 :1 :6
3 :3 :1 :6

1A, states 2 and 3 may be lumped into one state �. That is, if we just

keep track of visits to state 1 and state �, de�ning ~Xt by

~Xt =

�
1 if Xt = 1
� if Xt 2 f2; 3g ;

the process ~X0; ~X1; : : : is a Markov chain in its own right, with transition matrix ~P =� 1 �

1 :1 :9
� :3 :7

�
. In fact, we can combine the processes together to form the interlaced sequence

X0; ~X0;X1; ~X1; : : :, which is also a Markov chain, although it is time-inhomogeneous. The

transitions from Xt to ~Xt use the matrix U =

0@
1 �

1 1 0
2 0 1
3 0 1

1A, and the transitions from ~Xt to

Xt+1 use the matrix V =

� 1 2 3

1 :1 :5 :4
� :3 :1 :6

�
. Note that UV = P and V U = ~P .

(1.81) Figure. A tricky but useful way of thinking of running the chain.

This edi�ce we have erected on top of the given chain X0;X1; : : : is an unnecessarily
complicated way of thinking about this particular chain, but this style of thinking will
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be used for the general Basic Limit Theorem. This sort of lumping of states becomes
particularly important in uncountably in�nite state spaces, where each individual state
may be hit with probability 0 while sets of states can be hit with positive probability. In
such a case, by considering a set of states as a new lumped state, we can produce an atom.

Next let us look at a case where there is no pair of states with exactly the same transition
probabilities. This is the typical case; for example, in Example ..., no two states have the
same next-state transition probabilities. But nearby states have nearly the same transition
probabilities. This will allow us to use a modi�ed version of the trick above. We'll see that
it is enough for a set of states to have a common \component."

(1.82) Example. Consider the matrix P =

0@
1 2 3

1 :1 :5 :4
2 :4 0 :6
3 :3 :2 :5

1A, and suppose we are

interested in lumping the states in the set R = f2; 3g. Now since P (2; �) 6= P (3; �)
things are not as simple as before. But note that rows 2 and 3 of P are both at least
(:3; 0; :5) = 0:8(:375; 0; :625). In fact,

P (2; �) = (:4; 0; :6) = (:3; 0; :5) + (:1; 0; :1) = 0:8(:375; 0; :625) + 0:2(:5; 0; :5)

and
P (3; �) = (3:; :2; :5) = (:3; 0; :5) + (0; :2; 0) = 0:8(:375; 0; :625) + 0:2(0; 1; 0):

These equations express each of the distributions P (2; �) and P (3; �) as a mixture of the
distribution (:375; 0; :625) with some other distribution. In other words, both distributions
P (2; �) and P (3; �) share the common \component" 0:8(:375; 0; :625). A useful interpretion
of these equations is as follows. Suppose we have access to a biased coin having probability
0.8 of Heads and probability 0.2 of Tails. In order to generate the next state of the chain,
given the present state is 2, we start by tossing the coin. If we get Heads, we then draw from
the distribution (:375; 0; :625), and if we get Tails, we draw from the distribution (:5; 0; :5).
Similarly, if we are now in state 3, we can generate the next state by tossing the same
coin, drawing from the distribution (:375; 0; :625) if we get Heads, and drawing from the
distribution (0; 1; 0) if we get Tails.

With this description, there are now two scenarios under which we use precisely the
same distribution [[i.e., (:375; 0; :625)]] to generate the next state:

1. Enter state 2 and get Heads from coin toss

2. Enter state 3 and get Heads from coin toss

Since these two scenarios lead to the same next-state distribution, we can lump them
together into a new state.

So here is another way to conceptualize the running of this chain. At time t, say the
state is Xt. First we look to see whether we are in either of states 2 or 3, and if so we toss
the biased coin, getting the outcome C 2 fHeads;Tailsg. Then de�ne ~Xt as follows:

~Xt =

�
Xt if Xt = 1, or if Xt 2 f2; 3g and C = Tails
� if Xt 2 f2; 3g and C = Heads
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We can use ~Xt to generate the next state Xt+1 as follows. If ~Xt = 1, we draw Xt+1 from the
probability mass function (:1; :5; :4). If ~Xt = 2, then we know that Xt was 2 and C came
out as Tails, so we use the mass function (:5; 0; :5). Similarly, if ~Xt = 3, we use the mass
function (0; 1; 0). Finally, if ~Xt = �, we know that Xt was either 2 or 3 and C = Heads, so
we use the mass function (:375; 0; :625).

Again we have decomposed each transition of the given chain, according to P , into 2
stages, as depicted in Figure (1.81). These stages make transitions according to the matrices
U and V , given by

U =

0@
1 2 3 �

1 1 0 0 0
2 0 :2 0 :8
3 0 0 :2 :8

1A; V =

0BB@
1 2 3

1 :1 :5 :4
2 :5 0 :5
3 0 1 0
� :375 0 :625

1CCA:
We started with a set of states R = f2; 3g. For each i 2 R, we then wrote P (i; �)

as a mixture of some �xed probability mass function � = (:375; 0; :625) with some other
probability mass function Q(i; �) [[in our example Q(2; �) = (:5; 0; :5) and Q(3; �) = (0; 1; 0)]].
P (i; �) = 0:8�+ 0:2Q(i; �).

We have broken down each transition of the chain into two stages. Starting from the
state Xt in the �rst stage we note whether or not Xt is in the set R, and if so we toss the
biased coin. If the coin toss comes up Heads, we move to state �, and otherwise we stay
where we are; the result is the state we have called ~Xt. Then we draw the next state Xt+1

from the appropriate distribution. The point is that we have introduced a new state � that
we can reach by hitting any state in the set R and then getting a Heads from the coin toss.
This is the key in general state spaces: if we can take the set R to be large enough, the set
R will have positive probability of being hit, even though each individual state in R may
have probability 0 of being hit. And if R is hit with positive probability, then so is �, since
hitting � only requires hitting R and a Heads from the coin toss.

Note also that we could have chosen R in di�erent ways. For example, consider taking
R to be the whole state space f1; 2; 3g. In that case we have

P (i; �) � (:1; 0; :4) = :5(:2; 0; :8) for all i 2 R:

So we can take � = (:2; 0; :8) and for each i 2 R = f1; 2; 3g write P (i; �) as a mixture

P (i; �) = 0:5�+ 0:5Q(i; �);
where Q(1; �) = (0; 1; 0), Q(2; �) = (:6; 0; :4), and Q(3; �) = (:4; :4; :2). The way of running
the chain that corresponds to this decomposition of the transition probabilities is as follows.
Starting from any state Xt, toss a coin with PfHeadsg = 0:5. If Heads, de�ne ~Xt = �,
with ~Xt = Xt otherwise. Then choose Xt+1 according to the probability mass function � if
~Xt = � and according to Q(i; �) if ~Xt = i 2 S.

(1.83) Exercise.
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(a) Suppose we have a �nite-state Markov chain and we are considering taking our set R
to consist of 2 states R = fi; jg. Express � and \PfHeadsg" in terms of the ith and
jth rows of the probability transition matrix of the chain. In particular, show that p =
1� kP (i; �) � P (j; �)k.

(b) Consider the frog chain. What happens when we try to take R = f1; 2g?

1.10.3 Harris Chains

A Markov chain fXtg with transition kernel P is a Harris chain if there is a set R � S,
a probability measure � on S, and a positive number � such that

(1) PxfXt 2 R for some t � 0g > 0 for all x 2 S

(2) For all states x 2 R and all subsets A � S, P (x;A) � ��(A).

Conditions (1) and (2) pull in opposite directions: Roughly speaking, (1) wants the set R
to be large, while (2) wants R to be small. Condition (1) requires that R be accessible from
each state x 2 S. For example, (1) is satis�ed trivially by taking R to be the whole state
space S, but in that case (2) becomes a very demanding condition, asking for P (x; �) � ��(�)
to hold for all states x 2 S. On the other hand, (2) is satis�ed trivially if we take R to be
any singleton fx1g: just take �(�) to be P (x1; �) (and take � = 0:9, for example). But in
many examples each singleton is hit with probability 0, so that no singleton choice for R will
satisfy condition (1). A Harris chain is one for which there is a set R that is simultaneously
large enough to satisfy (1) but small enough to satisfy (2).

Let's think a bit about the interpretation of (2). What does this inequality tell us?
Writing

P (x;A) = � [�(A)] + (1� �)

�
P (x;A)� ��(A)

1� �

�
=: ��(A) + (1� �)Q(x;A);

we have expressed the distribution P (x; �) as a mixture of two probability distributions �
and Q(x; �), where Q(x; �) is de�ned by Q(x;A) = [P (x;A) � ��(A)]=(1 � �). Note that
Q(x; �) is indeed a probability measure; for example, Q(x;A) � 0 by the assumption that
P (x;A) � ��(A), and Q(x; S) = 1 because we have divided by the appropriate quantity
(1 � �) in the de�ning Q(x; �). Thus, we can simulate a draw from the distribution P (x; �)
by the following procedure.

� Flip a \coin" having P(heads) = � and P(tails) = 1� �.

� If the outcome is heads, take a random draw from the distribution �.

� If the outcome is tails, take a draw from the distribution Q(x; �).
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It is useful to imagine essentially the same process in another slightly di�erent way, on
a slightly di�erent state space. Let us adjoin an additional state, �, to the given state space
S, obtaining the new state space ~S = S[f�g. This new state � will be our accessible atom.
We will say that the new chain visits the state � whenever the old chain enters the set R
and the coin 
ip turns up heads. Thus, after the state � is entered, we know that the next
state will be distributed according to the distribution �; note that this distribution is the
same for all x 2 R. When the chain enters the state x 2 R and the coin 
ip turns up tails,
the next state is chosen according to the distribution Q(x; �).

To put all of this together, consider a Markov chain X0; ~X0;X1; ~X1; : : : generated re-
cursively as follows. Suppose we are at time t, and we have already generated the value of
Xt, and we are about to generate ~Xt. If Xt 2 Rc = S�R, then ~Xt = Xt. If Xt 2 R, then
we toss a coin. If the toss comes up heads, which happens with probability �, then ~Xt = �.
If the toss comes up tails, then ~Xt = Xt. Next we use the value of ~Xt to generate Xt+1. If
~Xt = � then Xt+1 is chosen from the distribution �. If ~Xt 2 R then Xt+1 is chosen from
the distribution Q(Xt; �). If ~Xt 6= � and ~Xt =2 R then Xt+1 is chosen from the distribution
P (Xt; �).

In other words, again we have imbedded our given Markov chain in the structure shown
in Figure (1.81), with the transition kernels U and V given by

For x 2 R: U(x; f�g) = �; U(x; fxg) = 1� �

For x 2 S�R: U(x; fxg) = 1

V (�;A) = �(A)

For x 2 R: V (x;A) = Q(x;A)

For x 2 S�R: V (x;A) = P (x;A):

The sequence X0; ~X0;X1; ~X1; : : : is a time-inhomogeneous Markov chain; the transition
kernel U used in going from Xt to ~Xt is di�erent from the kernel V used in going from
~Xt to Xt+1. Note that Xt 2 S and ~Xt 2 ~S for all t. The sequence X0;X1; : : : is a
time-homogeneous Markov chain on S with transition kernel UV , de�ned by

(UV )(x;B) =

Z
U(x; dy)V (y;B):

We claim that UV = P . If x 2 S�R then U(x; �) is point mass on x, so that (UV )(x;B) =
V (x;B) = P (x;B). If x 2 R then U(x; �) puts probability � on the point � and probability
1� � on the point x, so that

(UV )(x;B) = �V (�;B) + (1� �)V (x;B)

= ��(B) + (1� �)Q(x;B) = P (x;B):

The sequence ~X0; ~X1; : : : is a time-homogeneous Markov chain, with transition kernel
V U =: ~P .

(1.84) Exercise. Write down the transition kernel ~P in terms of the information given in the
problem.
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If Xt has distribution �t on S, then ~Xt has distribution ~�t = �tU on eS.
Finally, here is our Basic Limit Theorem for Harris chains. As usual, the statement

involves an aperiodicity condition. Letting G = ft � 1 : P�fXt�1 2 Rg > 0g, we say the
chain is aperiodic if gcd(G) = 1. For example, as a simple su�cient condition, if �(R) > 0,
then the set G contains 1, so that the chain is aperiodic.

(1.85) theorem. Let fXtg be an aperiodic Harris chain having a stationary distribution

�. Let �t denote the distribution of Xt and let the initial distribution �0 be absolutely

continuous with respect to �. Then k�t � �k ! 0 as t!1.

Proof: We are given the Harris chain fXtg with transition kernel P . Suppose we are also
given a set R, probability measure �, and number � 2 (0; 1) as in the de�nition of a Harris
chain. As discussed above, these determine transition kernels U and V with P = UV and
~P = V U , and we will study the chain X0; ~X0;X1; ~X1; : : :. We are assuming that fXtg
has a stationary distribution �, and we now know that f ~Xtg has corresponding stationary
distribution ~� = �U . By the de�nition of the Harris chain fXtg, the state � is an accessible
atom for f ~Xtg, and the aperiodicity assumption implies that � is aperiodic. [[***WHY?
EXPLAIN THIS.]] De�ning ~�0 = �0U , we see that ~�0 is absolutely continuous with respect
to ~�. Therefore, by Theorem (1.78) we have k~�t�~�k ! 0, where ~�t denotes the distribution
of ~Xt. But

~�V = (�U)V = �(UV ) = �P = �:

Thus, since
k�t+1 � �k = k~�tV � ~�V k � k~�t � ~�k;

we have k�t+1 � �k ! 0 as t!1.

*** NOTE: Argue somewhere that k�P � �Pk � k� � �k. Can use coupling. Consider
chains fXtg, fYtg having transition rule P , with X0 � � and Y0 � �. Look at PfX1 = Y1g,
conditioning on whether or not X0 = Y0.

*** ALSO apply this stu� back to a Gibbs sampling example.

1.10.4 More about stationary distributions

*** Omit or incorporate in earlier sections?
Suppose the chain has a positive recurrent atom �, so that E� (T�) <1. De�ne

�(A) =
E�

hPT��1
t=0 IfXt 2 Ag

i
E� (T�)

:(1.86)

What is this? Remember the I denotes an indicator random variable. The sumPT��1
t=0 IfXt 2 Ag is accumulating 0's and 1's as t ranges over the values 0; 1; : : : ; T� � 1.

So the sum is simply a count of the number of times that Xt 2 A holds for t between 0 and
T� � 1. In other words, the sum is the number of visits made by X0; : : : ;XT��1 to the set
A, and the numerator of �(A) is the expected number of such visits. Think again of the
\cycle" idea, where a cycle is now a portion of the Markov chain path between successive
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visits to the state �. Then �(A) is the expected number of times the chain visits the set A
during a cycle, divided by the expected length of a cycle.

Now, Ta is a random variable, so the sum in (1.86) is running over a random number
of terms. That looks a bit hard to work with, but we can use the following standard and
useful trick, which should be your �rst reaction when you see sums like this: we make the
summation sign run over all possible t values and introduce another indicator function to
restrict the sum to the values of t that we want. That is,

T��1X
t=0

IfXt 2 Ag =
1X
t=0

IfXt 2 AgIft < Tag =
1X
t=0

IfXt 2 A; Ta > tg:

Taking the expected value, since the expected value of an indicator random variable is its
probability, we can write � in the equivalent form

�(A) =

P1
t=0 P�fXt 2 A; T� > tg

E� (T�)
:(1.87)

The manipulation from (1.86) to (1.87) is so fundamental and often used in probability that
you will often see it used without any comment. It is a trick that is well worth mastering
and remembering.

(1.88) Proposition. Let fXtg be a Markov chain with a positive recurrent atom �, and
de�ne

�(A) =
E�

hPT��1
t=0 IfXt 2 Ag

i
E�(T�)

=

P1
t=0 P�fXt 2 A; T� > tg

E�(T�)
:

Then � is a stationary distribution for fXtg.

Proof: Clearly � is a probability distribution. We want to show that
R
P (x;A)�(dx) =

�(A). De�ning �(A) = E�(T�)�(A), we want to show that
R
P (x;A)�(dx) = �(A). We

have Z
P (x;A)�(dx) =

1X
t=0

Z
P�fXt 2 dx; T� > tgP (x;A):

But
P (x;A) = P�fXt+1 2 A j Xt = xg = P�fXt+1 2 A j Xt = x; T� > tg;

where the last equality holds by the Markov property, because the event fT� > tg =
fT� � tgc depends only on the random variables X0; : : : ;Xt. (That is, given the precise
information about the state Xt = x, we can throw away the information T� > t.) SoZ

P (x;A)�(dx) =

1X
t=0

Z
P�fXt 2 dx; T� > tgP�fXt+1 2 A j Xt = x; T� > tg

=
1X
t=0

P�fXt+1 2 A; T� > tg
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= E�

"
T��1X
t=0

IfXt+1 2 Ag
#

= E�

"
T�X
t=1

IfXt 2 Ag
#
:

That is,
R
P (x;A)�(dx) is the expected number of visits made by the segment (X1; : : : ;XT�)

to the set A. Is this the same as �(A), which is the expected number of visits made
by the segment (X0; : : : ;XT��1) to the set A? The answer is yes! In fact, since X0 =
XT� = �, the two segments (X1; : : : ;XT�) = (X1; : : : ;XT��1; �) and (X0; : : : ;XT��1) =
(�;X1; : : : ;XT��1) consist of precisely the same states, just visited in a di�erent order. Of
course the mere di�erence in ordering leaves the number of visits to the set A unchanged
between the two segments.

(1.89) Proposition. Suppose a Markov chain has an accessible atom � and a stationary

distribution �. Then �f�g = 1=E�(T�).

Proof: By the same proof as the SLLN before, using the cycle idea, we know that if the
chain is started in the state �, then (1=n)

Pn
t=1 IfXt = �g ! 1=E�(T�) with probability 1.

Combining this with Proposition (1.76), here is what we know. If the chain is started out
in the distribution �, then with probability 1 it hits � at some �nite time, after which, with
probability 1, the long run fraction of visits to � converges to 1=E� (T�). We have used this
type of reasoning before: the �nite amount of time it takes the chain to hit � does not have
any e�ect on the limiting long-run fraction of time the chain spends in the state �. Thus,
for a chain started in the distribution �,

P�

(
lim
n!1

(1=n)
nX
t=1

IfXt = �g = 1=E� (T�)

)
= 1:

By the Bounded Convergence Theorem,

E�

(
(1=n)

nX
t=1

IfXt = �g
)
! 1=E� (T�)

as n!1. But for each n,

E�

(
(1=n)

nX
t=1

IfXt = �g
)
= (1=n)

nX
t=1

P�fXt = �g = �f�g:

This, �f�g = 1=E� (T�).

*** ALTERNATIVELY, do it this way.....

(1.90) Theorem. Suppose the chain fXtg has an accessible atom � and a stationary

distribution �. Then
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1. �f�g > 0

2. � is positive recurrent: E� (T�) <1
3. For all A 2 A,

�(A) =
1

E� (T�)
E�

T��1X
t=0

IfXt 2 Ag

4. For �-a.a. x, PxfT� <1g = 1.

Proof:

1. Since � is accessible, for all states x, P t(x; �) > 0 for some t. That is, de�ning
Gt = fx : P t(x; �) > 0g, we have SGt = S. So there is an n such that �(Gn) > 0,
which gives

�f�g =
Z

�(dx)P n(x; �) �
Z
Gn

�(dx)P n(x; �):

The last expression is an integral of a positive function over a set of positive measure,
so it is positive.

2. Let A 2 A be arbitrary. Start with the general decomposition

PfXn 2 Ag = PfXn�1 = �;Xn 2 Ag+ PfXn�2 = �;Xn�1 6= �;Xn 2 Ag
+ � � �+ PfX0 = �;X1 6= �; : : : ;Xn�1 6= �;Xn 2 Ag
+PfX0 6= �;X1 6= �; : : : ;Xn�1 6= �;Xn 2 Ag:

For a stationary chain this becomes

�(A) = �f�gP�fX1 2 Ag+ �f�gP�fX1 6= �;X2 2 Ag
+ � � �+ �f�gP�fX1 6= �; : : : ;Xn�1 6= �;Xn 2 Ag
+P�fX0 6= �;X1 6= �; : : : ;Xn�1 6= �;Xn 2 Ag

= �f�gP�fX1 2 Ag+ �f�gP�fX2 2 A; T� � 2g
+ � � �+ �f�gP�fXn 2 A; T� � ng+ P�fX0 6= �; : : : ;Xn�1 6= �;Xn 2 Ag:

Dropping the last term, we get the inequality

�(A) � �f�g
nX
t=1

P�fXt 2 A; T� � tg = 1

E�(T�)

nX
t=1

P�fXt 2 A; T� � tg;

and since this holds for all n, we have

�(A) � 1

E� (T�)

1X
t=1

P�fXt 2 A; T� � tg:(1.91)

Applying this last inequality to the choice A = S, the whole state space, gives
1 � �f�gP1

t=1 P�fT� � tg = �f�gE� (T�), so that, since we know �f�g is strictly
positive, E� (T�) � 1=�f�g <1.
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3. De�ning ~�(A) to be the right-hand side of (1.91), we have �(A) � ~�(A) for all A. So
since both � and ~� are probability distributions, we must have �(A) = ~�(A) for all
A. [[Why?]]

1.11 More notes to myself

1. Streamline general state space stu�.

2. Make notation consistent; e.g. is MC time index t or n? Probably should make it t
throughout.

3. Include a Gibbs sampling example.

4. More detail on counting contingency tables; describe an actual simulation run.
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