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Chapter 1

Markov Chains

This chapter introduces Markov chatna special kind of random process which is said to have “no angimthe
evolution of the process in the future depends only on thegmiestate and not on where it has been in the past. In
order to be able to study Markov chains, we first need to intcedhe concept of a stochastic process.

1.1 Stochastic processes

Definition 1.1 (Stochastic process). A stochastic procesX is a family{X; : t € T} of random variables
X : 2 — S.Tis hereby called thndex sef(“time”) and S is called thestate space

We will soon focus on stochastprocesses in discrete timiee. we assume thdt ¢ N orT" C Z. Other choices
would beT" = [0, 00) or T' = R (processes in continuous tijner 7' = R x R (spatial procesp

An example of a stochastic process in discrete time woulchbesequence of temperatures recorded every
morning at Braemar in the Scottish Highlands. Another eXxamuld be the price of a share recorded at the
opening of the market every day. During the day we can tragsllare price continuously, which would constitute
a stochastic process in continuous time.

We can distinguish between processes not only based orintlei setl’, but also based on their state sp&ce
which gives the “range” of possible values the process des tan important special case arises if the state space
S is a countable set. We shall then calla discrete processThe reasons for treating discrete processes separately
are the same as for treating discrete random variablesatepame can assume without loss of generality that the
state space are the natural numbers. This special caseumilbtit to be much simpler than the case of a general
state space.

Definition 1.2 (Sample Path).  For a given realisationv € (2 the collection{ X;(w) : t € T'} is called thesample
pathof X atw.

If T'= Nj (discrete time) the sample path is a sequence;# R (continuous time) the sample path is a function
fromR to S.

Figure 1.1 shows sample paths both of a stochastic procelsarete time (panel (a)), and of two stochastic
processes in continuous time (panels (b) and (c)). The psocepanel (b) has a discrete state space, whereas the
process in panel (c) has the real numbers as its state spam#iffuous state space”). Note that whilst certain
stochastic processes have sample paths that are (almelf) suomtinuous or differentiable, this does not need to
be the case.

! named after the Andrey Andreyevich Markov (1856—1922), a Rnss@thematician.
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1 2 3 4 5 ¢ 1 2 3 4 5 Ot
(@) Two sample paths of a discrete prah) Two sample paths of a discrete proic) Two sample paths of a continuous
cess in discrete time. cess in continuous time. process in continuous time.

Figure 1.1. Examples of sample paths of stochastic processes.

A stochastic process is not only characterised by the malrdistributions ofX;, but also by the dependency
structure of the process. This dependency structure cardressed by thénite-dimensional distributionsf the
process:

P(Xy, € Ay,..., Xy, € Ag)

wherety,...,ty € T, k € N, andAy,..., A; are measurable subsets.®f In the case ofS C R the finite-
dimensional distributions can be represented using tait distribution functions

Fyoooy (@, o) = P(Xy, € (—o0,21], ..., Xy, € (=00, 2]).

This raises the question whether a stochastic pra¥eissully described by its finite dimensional distributions.
The answer to this is given by Kolmogorov’s existence theorelowever, in order to be able to formulate the
theorem, we need to introduce the concept of a consisterilyfafriinite-dimensional distributions. To keep things
simple, we will formulate this condition using distributi® functions. We shall call a family of finite dimensional
distribution functiongonsistentf for any collection of timeg, ... ¢, forall j € {1,... k}

Flyotiasty ity soti) (15 o1, +00, @1y o 1) = Floy gty tn) (T1 o T 1, D1, Tg)
(1.1
This consistency condition says nothing else than that da@immensional members of the family have to be the
marginal distributions of the higher-dimensional memlzdithe family. For a discrete state space, (1.1) corresponds
to

Zp(t1,...,t]-,l,tj,tHl,...,tk)($17 B R RR PR ER PR 733k) = P(tl,...,tj,l,tj“,...,tk)(Ih ey L1y Ljpdy e - 793k)7
T
wherep..(-) are the joint probability mass functions (p.m.f.). For attmmous state space, (1.1) corresponds to

/f(tl,...,tjfl,tj,tj+17...,tk)(xh sy L1, LG Tjg 1y e e 7xk) dm_} = f(tl,...,tjfl,tjurl,‘..,tk)(mla sy L1, L1y e e 7$k)

wheref( (-) are the joint probability density functions (p.d.f.).
Without the consistency condition we could obtain diffénersults when computing the same probability using
different members of the family.

Theorem 1.3 (Kolmogorov).  LetF, . ., ,be afamily of consistent finite-dimensional distributiondtions. Then
there exists a probability space and a stochastic proééssuch that

Foy (@1, o) = P(Xy, € (00,21, ..., Xy, € (=00, 21]).

Proof. The proof of this theorem can be for example found in (Gihmath $kohorod, 1974). O
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Thus we can specify the distribution of a stochastic probgsgriting down its finite-dimensional distributions.
Note that the stochastic proce&sis not necessarily uniquely determined by its finite-diniemal distributions.
However, the finite dimensional distributions uniquelyeatatine all probabilities relating to events involving an at
most countable collection of random variables. This is h@#eat least as far as this course is concerned, all that
we are interested in.

In what follows we will only consider the case of a stochastiocess in discrete time i.& = Ny (or Z).
Initially, we will also assume that the state space is discre

1.2 Discrete Markov chains

1.2.1 Introduction

In this section we will define Markov chains, however we wiltfis on the special case that the state spasdat
most) countable. Thus we can assume without loss of getyettadit the state spaceis the set of natural numbers
N (or a subset of it): there exists a bijection that uniquelyps@ach element t§ to a natural number, thus we can
relabel the statek, 2, 3, . . ..

Definition 1.4 (Discrete Markov chain).  Let X be a stochastic process in discrete time with countablesgtite”)
state spaceX is called aMarkov chain (with discrete state spa@eX satisfies thévarkov property

]P(Xt+1 = 9Ct+1|Xt =T4,..., X0 = UCO) = ]P(Xt+1 = $t+1|Xt = CL’t)

This definition formalises the idea of the process dependimthe past only through the present. If we know the
current stateX;, then the next stat&’, ,; is independent of the past stat¥s, ... X;_;. Figure 1.2 illustrates this

idea?
L X,
. e
: c
................ %
Past 1) Future
: L :
................ ,\\n-/’\
// \\\ /// \\
o 7 ~ B - N
................ AP SR ST S
: 4 :
4 "
............ //‘
t;l t t—(—l ]

Figure 1.2. Past, present, and future of a Markov chain.at

Proposition 1.5. The Markov property is equivalent to assuming that forkadt Nand allt; < ... <t <t
P(Xep1 = 21| Xy = agps oo, Xy = 2y) = P(Xi1 = 21| Xy, = 21).
Proof. (homework) O

Example 1.1 (Phone line). Consider the simple example of a phone line. It can eitheusg fwe shall call this state
1) or free (which we shall caD). If we record its state every minute we obtain a stochasticgss{ X; : ¢ € Ny}.

2 A similar concept iarkov processgsexists for processes in continuous time. Seeletd.p: / / en. wi ki pedi a. or g/
wi ki / Mar kov_pr ocess.
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If we assume thafX; : ¢t € Ny} is a Markov chain, we assume that probability of a new photiebeing ended

is independent of how long the phone call has already laSidilarly the Markov assumption implies that the
probability of a new phone call being made is independenbaf long the phone has been out of use before.

The Markov assumption is compatible with assuming that #agja pattern changes over time. We can assume that
the phone is more likely to be used during the day and moréyltkebe free during the night. <

Example 1.2 (Random walk on Z). Consider a so-callechtndom walkon Z starting atX, = 0. At every time, we
can either stay in the state or move to the next smaller or laex¢r number. Suppose that independently of the
current state, the probability of staying in the currentestsill — o — 3, the probability of moving to the next smaller
number isa and that the probability of moving to the next larger numises,iwherea, 8 > 0 with o + 3 < 1.
Figure 1.3 illustrates this idea. To analyse this processare detail we writeX;,; as

l-a-p 1-a-p 1—-a—-0 1—-a—-p0p 1—-a—-pF 1l—-a—-p 1—a-—p
0,00, 00,00, 00,000,070,
Pl Pt © Pl © bl O P O Bl O Pd © Peaat
Figure 1.3. lllustration (“Markov graph”) of the random walk d.
X1 = Xy + Ey,
with the E; being independent and for all
PE,=-1)=« P(E;=0)=1—a—-0 P(E, =1)=p.

It is easy to see that
]P(Xt+1 :l’t—1|Xt :.’L't) =« ]P(Xt+1 th|Xt :(Et) = I—OZ—/B ]P(Xt+1 :mt+1|Xt :l't) :6

Most importantly, these probabilities do not change when oeedition additionally on the pastX; ; =

Ty 1,...,X0 = {L‘()}:
P(Xip1 =21 Xy =2, Xem1 = 241 ..., Xo = 20)
= PE = —2|Brs =2 —a41,..., By = 21 — 20, X0 = %)
E,LE,
= IP(Et = Tt41 — xt) = IP(Xt+1 = xt+1|Xt = iUt)
Thus{X; : t € Ny} is a Markov chain. <

The distribution of a Markov chain is fully specified by itstial distribution P(X, = () and thetransition
probabilitiesP(X; 1 = x411|X: = x¢), as the following proposition shows.
Proposition 1.6.  For a discrete Markov chaig X; : ¢t € Ny} we have that

t—1
P(X: =24, X1 =24-1,..., Xo = 20) = P(Xo = 20) - H P(Xry1 = 27 11| X7 = 27).
7=0

Proof. From the definition of conditional probabilities we can gerihat
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P(Xy =24, Xpm1 = 241, .., Xo = 20) = P(Xo = 20)
P(Xo = 22| X1 = 21, Xo = 20)

:]P(XQZ.TQ‘Xlz.’L'l)

. IP(Xt = l’t|Xt_1 = Tt—1y--- 7)(Q = xo)

=P(Xi=z¢|X¢_1=x¢_1)

t—1

= [[P(Xri1 = 2r 1| X7 = 7). O
7=0

Comparing the equation in proposition 1.6 to the first equmatif the proof (which holds for any sequence of
random variables) illustrates how powerful the Markoviaswmption is.

To simplify things even further we will introduce the contep a homogeneous Markov chaiwhich is a
Markov chains whose behaviour does not change over time.

Definition 1.7 (Homogeneous Markov Chain). A Markov chain{ X; : t € Ny} is said to behomogeneous
IP(Xt+1 = j|Xt = Z) = Pij
forall 4,5 € S, and independent afc Nj.
In the following we will assume that all Markov chains are faganeous.

Definition 1.8 (Transition kernel). ~ The matrixK = (k;;);; with k;; = P(X,;41 = j|X, = 9) is called thetransi-
tion kernel(or transition matriy of the homogeneous Markov chaih

We will see that together with the initial distribution, wehiwe might write as a vectox, = (P(Xo = 7)) gcs),
the transition kerneK fully specifies the distribution of a homogeneous Markovicha
However, we start by stating two basic properties of thesiteom kernelK:

— The entries of the transition kernel are non-negative (dreyprobabilities).
— Each row of the transition kernel sumsitoas

D kij =Y P(Xpp1 =X = i) =P(Xp1 € S|Xy =i) =1
J J

Example 1.3 (Phone line (continued)). Suppose that in the example of the phone line the probaltilittysomeone
makes a new call (if the phone is currently unused) is 10% hagtobability that someone terminates an active
phone call is 30%. If we denote the statesphone not in use) antl(phone in use). Then

]P(Xt+1 = O‘Xt = 0) =0.9 ]P(Xt+1 = ].|Xt = O) =0.1
P(Xps1 = 0[X; = 1) = 0.3 P(Xpsr = 1|X, = 1) = 0.7,

0.9 0.1
K= .
( 0.3 0.7 )

The transition probabilities are often illustrated usirgpacalled Markov graph. The Markov graph for this example

and the transition kernel is

is shown in figure 1.4. Note that knowirlg alone is not enough to find the distribution of the statestlic we
also need to know the initial distributioky. <
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Figure 1.4. Markov graph for the phone line example.

Example 1.4 (Random walk on Z (continued)). The transition kernel for the random walk @nis a Toeplitz matrix
with an infinite number of rows and columns:

a l—-a—-p I} 0 0 0
K — 0 « 1—a—p Jé] 0 0
0 0 « l—a—0 I} 0
0 0 0 « 1—a— Jé]
The Markov graph for this Markov chain was given in figure 1.3. N

We will now generalise the concept of the transition kermdlich contains the probabilities of moving from
statei to stepj in one step, to then-step transition kernel, which contains the probabilibésoving from state
to stepj in m steps:
Definition 1.9 ( m-step transition kernel).  The matrixK (™) = (kam))” with kl(]m) = P(Xipm = j| Xy = 1) is
called them-step transition kerneldf the homogeneous Markov chaith

We will now show that then-step transition kernel is nothing other than thepower of the transition kernel.
Proposition 1.10. Let X be a homogeneous Markov chain, then
i. KW =K™, and
i. P(X,, =j)=(AKm™);.

Proof. i. We will first show that form,, ms € N we have thak (m1+m2) = K(m1) . K (m2):

]P(Xt+77l1+7n2 = k|Xt = Z) = ZIP(Xt+ml+7nz = k7Xt+m1 = J‘Xt = Z)
J

=Y PXipmyims = K[ X, =5, X0 =) P(Xypm, = j|X; =)

J

:IP(Xt+1n1+7n2 :k|Xt+'rrzl :j):IP(Xt+'r7L2 :kIXt :])

=Y P(Xtimy = kIXe = )P (Xpsm, = jIXe = i)

J
o (m1)gr(ma2) m m
7ZK” K" = (K( DK 2))2_’]6
J

ThusK® = K - K = K2, and by inductiorK (™) = K™.
i. P(X,, =J)= Z]P(Xm =j,Xo=1) = Z]P(Xm =j|Xo = i) P(Xg =14) = (A\K™); O
% i

=K§;"> =(Xo)i

Example 1.5 (Phone line (continued)). In the phone-line example, the transition kernel is

0.9 0.1
K= .
( 0.3 0.7 )

Them-step transition kernel is
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n )" )"
K(m) == Km - 09 01 == 4:3 m 43 m
0.3 0.7 ()" a-(3)

Thus the probability that the phone is free given that it wae fL.0 hours ago B(X,10 = 0|X, = 0) = K§)) =

3+(2)" _ 7338081
1 = Svergor — 0.7515. N

1.2.2 Classification of states

Definition 1.11 (Classification of states). () A statei is said tolead toa statej (“i ~» j") if thereisanm > 0
such that there is a positive probability of getting fromtstato statej in m steps, i.e.

k‘z(;n) = ]P(Xt-i-m = .7|Xt = Z) > 0.
(b) Two states andj are said tocommunicaté* i ~ ;") if i ~ j andj ~ .

From the definition we can derive for stateg, k € S:

— i~ i (@sk?) = P(Xpp0 = i|X; = i) = 1> 0), thusi ~ i.

— If i ~ j,then alsgj ~ i.

— If i ~ jandj ~ k, then there existn;;, ma > 0 such that the probability of getting from statéo statej in
m;; steps is positive, i.ek,g””) =P(X¢4m,, = j|X: = i) > 0, as well as the probability of getting from state
to statek in m;;, steps, i.ek](.Z”’“) =P(Xiim,, = k|IX: = j) = P(Xiqm,4m,. = k| Xitm,, = j) > 0. Thus
we can get (with positive probability) from staitéo statek in m;; + m;; steps:

o) = P (X, emy, = kX =) = > P(Xopm, omy = k[ Xim,, = )P (Xeqm,, = 1| X; =)

= ]P(Xt+mij+mjk = k‘Xt"l‘mij = j) ]P(Xt"l'mzj = j‘Xt - 7/) >0

>0 >0
Thusi ~ j andj ~» kimply i ~ k. Thusi ~ j andj ~ k also imply: ~ &
Thus~ is an equivalence relation and we can partition the stateespanto communicating classesuch that all
states in one class communicate and no larger classes camief A clas€” is calledclosedif there are no paths

going out ofC, i.e. for alli € C' we have that ~ j implies thatj € C.
We will see that states within one class have many propértiesmmon.

Example 1.6. Consider a Markov chain with transition kernel

£ 4 0 5 00
000 100
KZOO%OOi
0000010
03 00 0 3
00 4+ 00 %

The Markov graph is shown in figure 1.5. We have that 4,2 ~ 5,3 ~ 6,4 ~ 5. Thus the communicating
classes aré¢l}, {2,4,5}, and{3,6}. Only the clasq3, 6} is closed. <

Finally, we will introduce the notion of anreducible chain This concept will become important when we
analyse the limiting behaviour of the Markov chain.

Definition 1.12 (Irreducibility). A Markov chain is calledrreducibleif it only consists of a single class, i.e. all
states communicate.



12 1. Markov Chains

Figure 1.5. Markov graph of the chain of example 1.6. The communicating classgd & {2, 4,5}, and{3, 6}.

The Markov chain considered in the phone-line example (@esrl.1,1.3, and 1.5) and the random walkZon
(examples 1.2 and 1.4) are irreducible chains. The chairarhgle 1.6 is not irreducible.

In example 1.6 the stat@s4 and5 can only be visited in this order: if we are currently in stafge. X; = 2),
then we can only visit this state again at time 3, ¢ + 6, .... Such a behaviour is referred to as periodicity.

Definition 1.13 (Period). (a) A statei € S is said to haveperiod
d(i) = ged{m >1: KZ-(Z-m) > 0},

whereged denotes the greatest common denominator.
(b) If d(i) = 1 the statei is calledaperiodic
(c) Ifd(z) > 1 the statei is calledperiodic

For a periodic state, the number of steps required to possibly get back to thie staist be a multiple of the
periodd(i).

To analyse the periodicity of a stateve must check the existence of paths of positive probalaility of length
m going from the staté back toi. If no path of lengthm exists, thenKi(im) = 0. If there exists a single path of
positive probability of lengthn, thenk ™ > 0.

Example 1.7 (Example 1.6 continued). In example 1.6 the statehas periodi(2) = 3, as all paths fron2 back to2
have a length which is a multiple 6f thus

K >0, K >0, K >0
All otherKQ(;") = 0(% ¢ Ny), thus the period id(2) = 3 (3 being the greatest common denominatas @f, 9, . . .).
Similarly d(4) = 3 andd(5) = 3.
The state$ and6 are aperiodic, as there is a positive probability of remmagnin these states, thdé?()?) >0
andK 7" > 0 for all m, thusd(3) = d(6) = 1. g

In example 1.6 all states within one communicating classthadsame period. This holds in general, as the
following proposition shows:

Proposition 1.14. (a) All states within a communicating class have the samoger
(b) In an irreducible chain all states have the same period.

Proof. (a) Supposeé ~ j. Thus there are paths of positive probability between thesestates. Suppose we can
get froms to j in m;; steps and from to ¢ in m;; steps. Suppose also that we can get fyolack toj in m;;
steps. Then we can get franback toi in m;; +m;; steps as well as im;; +m;; +m;; steps. Thusn;; +m;;
andm;; + m;; + m;; must be divisible by the period(:) of state:. Thusm; is also divisible byd(:) (being
the difference of two numbers divisible lay:)).
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The above argument holds for any path betwgandj, thus the length of any path frojrback toj is divisible
by d(i). Thusd(i) < d(j) (d(j) being the greatest common denominator).
Repeating the same argument with thkes ofi and;j swapped gives ud(j) < d(i), thusd(i) = d(j).

(b) Anirreducible chain consists of a single communicatitass, thus (b) is implied by (a). O

1.2.3 Recurrence and transience

If we follow the Markov chain of example 1.6 long enough, wel wientually end up switching between state
and6 without ever coming back to the other states Whilst the statexl6 will be visited infinitely often, the other
states will eventually be left forever.

In order to formalise these notions we will introduce thenber of visitsn state i:

—+o0
Vi= Z Lix,=i}
t=0

The expected number of visits in statgiven that we start the chain iris

+oo +o00 +oo
E(V;|Xo = i) (Z Lix,=iy | Xo = z) =Y B(lx,—plXo =i) = Y P(X; =i[X, =i) = Yk}
t=0

t=0 t=0 t=0

Based on whether the expected number of visits in a statdinsténor not, we will classify states as recurrent
or transient:

Definition 1.15 (Recurrence and transience). (&) A statei is calledrecurrentf E(V;| Xy = i) = +oo.
(b) A statei is calledtransientf E(V;| Xy = i) < +oo.

One can show that a recurrent state will (almost surely) sigad infinitely often, whereas a transient state will
(almost surely) be visited only a finite number of times.

In proposition 1.14 we have seen that within a communicatlags either all states are aperiodic, or all states
are periodic. A similar dichotomy holds for recurrence anagh$ience.

Proposition 1.16. Within a communicating class, either all states are trans@ all states are recurrent.

Proof. Suppose ~ j. Then there exists a path of lengih; leading from: to j and a path of lengtin;; from j
back toz, i.e.kf;”"’-’) >0 andkj(:”ﬂ) < 0.

+oo
Suppose furthermore that the state transient, i.eE(V;| Xy = i) = Z kff) < +o0.
t=0
This implies
20 L &m0 .m0 1 ( )
- o o mij t M4 mij+t+mj;
E(VHXO o J) o kjj - k(m.”)k(m«]z) ZkU ’ kjj kji s k(m”)k mj;) Zk
t=0 ij Ry =0T~ Wy Ry
Skg;ﬂr+t+n)
< k ) < +00,
k(mm)k(mw) Z
thus statg is be transient as well. O

Finally we state without proof two simple criteria for deténing recurrence and transience.

Proposition 1.17. (&) Every class which is not closed is transient.
(b) Every finite closed class is recurrent.

Proof. For a proof see (Norris, 1997, sect. 1.5). |
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Example 1.8 (Examples 1.6 and 1.7 continued). The chain of example 1.6 had three classgs;, {2,4,5}, and
{3,6}. The classe$1} and{2,4,5} are not closed, so they are transient. The c{8s§} is closed and finite, thus
recurrent. q

Note that an infinite closed class is not necessarily rentirfihe random walk o studied in examples 1.2
and 1.4 is only recurrent if it is symmetric, i®.= 3, otherwise it drifts off to—oo or +co. An interesting result is
that a symmetric random walk G&F is only recurrent ifp < 2 (see e.g. Norris, 1997, sect. 1.6).

1.2.4 Invariant distribution and equilibrium

In this section we will study the long-term behaviour of Mavkchains. A key concept for this is the invariant
distribution.

Definition 1.18 (Invariant distribution). Letu = (1:)ics be a probability distribution on the state spageand let
X be a Markov chain with transition kern&. Theng is called theinvariant distributior{or stationary distribution
of the Markov chainX if3
WK =y
If u is the stationary distribution of a chain with transitiorrel K, then
l,l// _ HI K _ H/K2 e HIKm _ H/K(m)
~—~
=u'K

for all m € N. Thus if X, in drawn fromu, then all.X,,, have distributioru: according to proposition 1.10
P(Xy = j) = (WK™); = (n);
for all m. Thus, if the chain hag as initial distribution, the distribution ok will not change over time.

Example 1.9 (Phone line (continued)). In example 1.1,1.3, and 1.5 we studied a Markov chain withwltestates)
(“free™) and1 (“in use”) and which modeled whether a phone is free or nettréinsition kernel was

0.9 0.1
K= .
0.3 0.7
To find the invariant distribution, we need to solu&K = u’ for u, which is equivalent to solving the following
system of linear equations:

L _ —01 03\ [\ _ [0
K —Du=0,le. <0.1 —0.3) <m> (0)

It is easy to see that the corresponding system is underndieted and that-jo + 31 = 0, i.e. o = (po, 1)
(3,1),i.e.p = (2, i)/ (asp has to be a probability distribution, thug + ;= 1). Q

Not every Markov chain has an invariant distribution. Thedam walk onZ (studied in examples 1.2 and 1.4)
for example does not have an invariant distribution, asaleviing example shows:

Example 1.10 (Random walk on Z (continued)). The random walk oiZ had the transition kernel (see example 1.4)

a l—-a—p I6] 0 0 0
K — 0 o 1—a—p 3 0 0
0 0 « l—a—p 1] 0
0 0 0 « 1—-a— 3

3 i.e. p is the left eigenvector dK corresponding to the eigenvallie
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Asa+ (1—a—p)+ 3 =1wehaveforu = (...,1,1,1,...) thatu'K = p/, howeveru cannot be renormalised
to become a probability distribution. <

We will now show that if a Markov chain is irreducible and apédic, its distribution will in the long run tend

to the invariant distribution.

Theorem 1.19 (Convergence to equilibrium).  Let X be an irreducible and aperiodic Markov chain with invariant
distribution ;.. Then

for all statesi.

Outline of the proof. We will explain the outline of the proof using the idea of cbog.
Suppose thaK has initial distributionA and transition kerneK. Define a new Markov chaiiy” with initial
distributionp and same transition kernBl. LetT" be the first time the two chains “meet” in the statee.

T=min{t>0: X;, =Y, =14}

Then one can show th&(T" < co) = 1 and define a new procegsby

X, ift<T
Zy = _
Y, ift>T

Figure 1.6 illustrates this new chaifi. One can show tha¥ is a Markov chain with initial distributiortA (as

X
\\\
N /’\\XI
\\ . 7/ N
g —— 0 ——0
SN
/ > —-a 7
/o N/
. N Y
e R
T T t
Figure 1.6. lllustration of the chainsX (— — —), Y (— —) andZ (thick line) used in the proof of theorem 1.19.

Xo = Zp) and transition kernek (as bothX andY have the transition kernd&(). Thus X andZ have the same
distribution and for alt € Ny we have thalP(X; = j) = P(Z; = j) for all statesj € S.

The chainY” has its invariant distribution as initial distributionu$lP (Y; = j) = p; forall t € Ny andj € S.

Ast — +oo the probability of{Y; = Z,} tends tol, thus

P(Xy =j) = P(Z = j) = P(Yy = j) = .
A more detailed proof of this theorem can be found in (No&97, sec. 1.8).

Example 1.11 (Phone line (continued)). We have shown in example 1.9 that the invariant distributitthe Markov
chain modeling the phone line js = (2, 1), thus according to theorem 1.T9X; = 0) — 3 andP(X; = 1) —
i. Thus, in the long run, the phone will be free 75% of the time. N
Example 1.12. This example illustrates that the aperiodicity conditiortieorem 1.19 is necessary.

Consider a Markov chaiX’ with two statesS = {1,2} and transition kernel
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0 1
K = .
This Markov chains switches deterministically, thus godlsee1, 0, 1, 0, ...or0, 1, 0, 1, .... Thusitis

periodic with period2.
Its invariant distribution i’ = (1, 3), as

11 0 1 11
/K: -, - = -, - :/_
(1) (1) (33) -

However if the chain is started iy = 1, i.e. X = (1,0), then

1 iftisodd 0 iftisodd
P(X, =0) = P(X;=1)=

0 iftiseven’ 1 iftiseven

which is different from the invariant distribution, undehigh all these probabilities would b? <

1.2.5 Reversibility and detailed balance

In our study of Markov chains we have so far focused on caoolitig on the past. For example, we have defined
the transition kernel to consist &f; = P(X;y1 = j|X; = ¢). What happens if we analyse the distribution’of
conditional on the future, i.e we turn the universal clockkveards?

P(X; = j, Xi11 =1) P(X; = j)
]P(Xt+1 - Z) ]P(Xt+1 - ’L)
This suggests defining a new Markov chain which goes backnie.tiAs the defining property of a Markov

P(Xy = jlX¢y1 =) =

=P(X¢q1 =1 Xy =) -

chain was that the past and future are conditionally indeeengiven the present, the same should hold for the
“backward chain”, just with thetles of past and future swapped.

Definition 1.20 (Time-reversed chain). For T € Nlet{X;: ¢t =0,...,7} be a Markov chain. TheflY; : ¢t =
0,...,7} defined by¥; = X,_, is called thetime-reversed chaicorresponding taX .

We have that

P(Xs =j, X541 =1)
]P(Xs+1 = Z)

IP(Yt = j‘Yt—l = Z) = IP(XT—t = jIX‘r—t-H = 7') = IP(XS = j‘XS-i-l - 'L) =

=P (Xsp1 =14 Xs =7) - IP((XH:])Z) = kji -

P(X = j)
P(X,41 =1)’
thus the time-reversed chain is in general not homogenewas,if the forward chaiX is homogeneous.

This changes however if the forward chainis initialised according to its invariant distributign In this case
P(Xep1 = 1) = p; andP(X; = j) = p; for all s, and thusY” is a homogeneous Markov chain with transition
probabilities

P(Y; = j|Yi1 =) = kyi - Z— (1.2)
In general, the transition probabilities for the time-mneesl chain will thus be different from the forward chain.

Example 1.13 (Phone line (continued)). In the example of the phone line (examples 1.1, 1.3, 1.5ah@,1.11) the
transition matrix was
The invariant distribution wag = (2,1)".

0.9 0.1
K= .
0.3 0.7
11

If we use the invariant distributiop as initial distribution forX, then using (1.2)
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P(Y; = 0]Yi—; = 0) = koo - % = koo = P(X; = 0| X,y = 1)
3
P(Y; = 0]V, = 1) = ko; - % =011 =03=kio=P(X, =0/X,-; = 1)
4
M1 o
P(Y; =1Y;1 =0) = kyo - o =0.3- g =01=ko =P(X; =1|X;_1 =0)
4
P(Y; = 1|V 1 = 1) = ki - % — kb =P(X, = 1|X;1 = 1)

Thus in this case both the forward chaihand the time-reversed chain have the same transition probabilities.
We will call such chainsime-reversibleas their dynamics do not change when time is reversed. <

We will now introduce a criterion for checking whether a c¢his time-reversible.

Definition 1.21 (Detailed balance). A transition kernelK is said to be irdetailed balanceith a distributiong if
foralli,j € S
pikij = pjkji-

It is easy to see that Markov chain studied in the phone lirrergte (see example 1.13) satisfies the detailed-
balance condition.

The detailed-balance condition is a very important contegtt we will require when studying Markov Chain
Monte Carlo (MCMC) algorithms later. The reason for its valece is the following theorem, which says that if a
Markov chain is in detailed balance with a distributi@nthen the chain is time-reversible, and, more importantly,
w is the invariant distribution. The advantage of the detabbalance condition over the condition of definition 1.18
is that the detailed-balance condition is often simplertieck, as it does not involve a sum (or a vector-matrix
product).

Theorem 1.22. Let X be a Markov chain with transition kern®& which is in detailed balance with some distribu-
tion v on the states of the chain. Then

i. p is the invariant distribution ofX .
ii. If initialised according tou, X is time-reversible, i.e. botlX and its time reversal have the same transition
kernel.

Proof. i. We have that
(W'K); = ik = ps Y kij = i,
2=l

=pikij ~—
=1
thuspu'K = i/, i.e. p is the invariant distribution.
ii. LetY be the time-reversal of, then using (1.2)
pikij
k
P(Y; = j|Y,1 =) = HT = kij = P(X; = j| X,y = i),
thus X andY have the same transition probabilities. |

Note that not every chain which has an invariant distributiotime-reversible, as the following example shows:

Example 1.14. Consider the following Markov chain ofi = {1, 2, 3} with transition matrix

0 0.8 0.2
K=1] 02 0 0.8
08 02 0

The corresponding Markov graph is shown in figure 1.7: Theastary distribution of the chainig = (3, 1, 1).
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@
0 %2 O&g

®w®
0.8
Figure 1.7. Markov graph for the Markov chain of example 1.14.

However the distribution is not time-reversible. Using atipn (1.2) we can find the transition matrix of the time-

reversed chaiy”, which is
0 0.2 0.8

0.8 0 0.2 |,

02 08 0
which is equal taK’, rather thariK. Thus the chains{ and its time reversal” have different transition kernels.
When going forward in time, the chain is much more likely to tprkwise in figure 1.7; when going backwards in
time however, the chain is much more likely to go counteckiase. <

1.3 General state space Markov chains

So far, we have restricted our attention to Markov chaing &itliscrete (i.e. at most countable) state sgacEhe
main reason for this was that this kind of Markov chain is meakier to analyse than Markov chains having a more
general state space.

However, most applications of Markov Chain Monte Carlo alipons are concerned with continuous random
variables, i.e. the corresponding Markov chain has a coatis state spacg, thus the theory studied in the preced-
ing section does not directly apply. Largely, we defined ncosicepts for discrete state spaces by looking at events
of the type{ X; = j}, which is only meaningful if the state space is discrete.

In this section we will give a brief overview of the theory @ntying Markov chains with general state spaces.
Although the basic principles are not entirely differemirfrthe ones we have derived in the discrete case, the study
of general state space Markov chains involves many moraiealities and subtleties, so that we will not present
any proofs here. The interested reader can find a more rigoreatment in (Meyn and Tweedie, 1993), (Nummelin,
1984), or (Robert and Casella, 2004, chapter 6).

Though this section is concerned with general state spaeesilvnotationally assume that the state space is
S =R9

First of all, we need to generalise our definition of a Markbaia (definition 1.4). We defined a Markov chain
to be a stochastic process in which, conditionally on thesegme the past and the future are independent. In the
discrete case we formalised this idea using the conditipr@ability of { X; = j} given different collections of
past events.

In a general state space it can be that all events of the{tffoe= j} have probability 0, as it is the case for
a process with a continuous state space. A process with moonos state space spreads the probability so thinly
that the probability of exactly hitting one given statedior all states. Thus we have to work with conditional
probabilities of sets of states, rather than individuaiesta

Definition 1.23 (Markov chain). Let X be a stochastic process in discrete time with general stadeesS. X is
called aMarkov chainif X satisfies théMarkov property

P(Xi41 € AlXo =20,..., Xy =a¢) = P(Xy1 € A|Xy = 2y)

for all measurable setd C S.
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If S'is at most countable, this definition is equivalent to debnitl.4.

In the following we will assume that the Markov chairhismogeneoys.e. the probabilitie® (X, € A|X; =
x;) are independent df For the remainder of this section we shall also assume tbaian express the probability
from definition 1.23 using &ansition kernelk : S x S — R{:

P(Xi1 € Al Xy = 24) = / K (2, i41) drey (1.3)
A

where the integration is with respect to a suitable donmgatieasure, i.e. for example with respect to the Lebesgue
measure ifS = R?.% The transition kerneK (z, ) is thus just the conditional probability density &f,; given
X = xy.

We obtain the special case of definition 1.8 by setting, j) = k;;, wherek;; is the (i, j)-th element of the
transition matrixK. For a discrete state space the dominating measure is tinéirepuneasure, so integration just
corresponds to summation, i.e. equation (1.3) is equivaden

P(Xes1 € AIXe=a1) = Y Ko

T 1 €A

We have for measurable sétC S that
IP(Xt+m € A|Xt = xt) = /A/S e '/SK(It, $t+1)K($t+1, $t+2) e K($t+m—17 l‘t-s-m) d$t+1 e d-rt-l-nL—ldxt-‘rma
thus them-step transition kernel is
K(m)(mo,xm) = /S .- -/SK(xmml) o K(Tm—1, @) dTp—q -+ - daq
Them-step transition kernel allows for expressing thestep transition probabilities more conveniently:
P(Xiym € Al X =2) = /A KT (24, 244 m) dzyym
Example 1.15 (Gaussian random walk on R). Consider the random walk dh defined by

X1 =Xy + Ey,

2
whereE; ~ N(0, 1), i.e. the probability density function df; is ¢(z) = exp <ZQ> This is equivalent to

1
_ V2T
assuming that
Xt+1|Xt =T ~ N(.’,Et7 1)

We also assume tha, is independent oKX, E1, ..., E;_;. Suppose thaX, ~ N(0, 1). In contrast to the random
walk onZ (introduced in example 1.2) the state space of the Gaussmiom walk isR. In complete analogy with
example 1.2 we have that

P(Xi1 € A|Xy = 24y, Xo =20) = P(Ey € A — 24| Xy = 24,..., Xo = 0)
= ]P(Et cA-— xt) == ]P(Xt+1 € A|Xt = l't)7

whereA — z;, = {a — z; : a € A}. ThusX is indeed a Markov chain. Furthermore we have that
P(Xip1 €Al Xy =ay) =P(E, € A—ay) = /Agb(xt_,_l — ) drpq
Thus the transition kernel (which is nothing other than theditional density ofX; ;| X; = ) is thus
K(zt,2441) = ¢(Te41 — 24)

To find them-step transition kernel we could use equation (1.3). Howeabe resulting integral is difficult to
compute. Rather we exploit the fact that

* A more correct way of stating this would B X, € A|X; = z) = [, K(zt,dwiq1).
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Xepm =Xe + Er+ o+ By 1,

~N(0,m)

thUSXt+m‘Xt = Tt ~ N(fﬂt,m).

1
P(XiyymeAlXy =) =P Xy — Xy € A—1x :/—
(Xt | X t) (Xer t t) M
Comparing this with (1.3) we can identify

1 _
K () = —— (w)

asm-step transition kernel. <

In section 1.2.2 we defined a Markov chain to be irreducibileéfe is a positive probability of getting from any
statei € S to any other statg € S, possibly via intermediate steps.

Again, we cannot directly apply definition 1.12 to Markov otsawith general state spaces: it might be — as
it is the case for a continuous state space — that the pratyadsilhitting a given state i§ for all states. We will
again resolve this by looking at sets of states rather thaimidual states.

Definition 1.24 (Irreducibility).  Given a distributionu on the statess, a Markov chain is said to bg-irreducible
if for all sets A with (A) > 0 and for allz € S, there exists am € Ny such that

P(Xiym € AlXy =) = /K(m)(:c,y) dy > 0.
A

If the number of steps = 1 for all A, then the chain is said to srongly u-irreducible

Example 1.16 (Gaussian random walk (continued)). In example 1.15 we had tha€;1|X; = z; ~ N(xy,1). As
the range of the Gaussian distributioriiswe have thalP(X;,1 € A|X; = x;) > 0 for all setsA of non-zero
Lebesgue measure. Thus the chain is strongly irreducilifetive respect to any continuous distribution. <

Extending the concepts of periodicity, recurrence, andsience studied in sections 1.2.2 and 1.2.3 from the
discrete case to the general case requires additionalitaticoncepts liketomsandsmall setswhich are beyond
the scope of this course (for a more rigorous treatment aticencepts see e.g. Robert and Casella, 2004, sections
6.3 and 6.4). Thus we will only generalise the concept of merice.

In section 1.2.3 we defined a discrete Markov chain to be renrif all states are (on average) visited infinitely
often. For more general state spaces, we need to consideuthiger of visits to a set of states rather than single
states. LeVy = 3% 1{x,ec} be the number of visits the chain makes to states in thd getS. We then define
the expected number of visits i C .S, when we start the chain ine S:

+00 +00 too
E(ValXo=2)=E (Z ]‘{XtEA}‘XO = Jf) = ZE(l{XtEA}|XO =1)= Z/AK(t) (z,y) dy
pary pary =0

This allows us to define recurrence for general state sp@éestart with defining recurrence of sets before extend-
ing the definition of recurrence of an entire Markov chain.

Definition 1.25 (Recurrence). (a) A setA C S is said to berecurrentfor a Markov chainX if forall x € A
E(ValXo = z) = +o0,

(b) A Markov chain is said to beecurrent if
i. The chain isu-irreducible for some distributiop.
ii. Every measurable set C S with 1(A) > 0is recurrent.
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According to the definition a set is recurrent if on averade Visited infinitely often. This is already the case if
there is a non-zero probability of visiting the set infinjtefften. A stronger concept of recurrence can be obtained
if we require that the set is visited infinitely often with pability 1. This type of recurrence is referred totdarris
recurrence

Definition 1.26 (Harris Recurrence).  (a) A setA C S is said to beHarris-recurrentor a Markov chainX if for
alze A
P(Va = +o0[Xo=1) =1,
(b) A Markov chain is said to bearris-recurrentif
i. The chain isu-irreducible for some distributiop.
ii. Every measurable set C S with 1(A) > 0 is Harris-recurrent.

It is easy to see that Harris recurrence implies recurrdrmediscrete state spaces the two concepts are equiva-
lent.

Checking recurrence or Harris recurrence can be very diffitde will state (without) proof a proposition
which establishes that if a Markov chain is irreducible aad & unique invariant distribution, then the chain is also
recurrent.

However, before we can state this proposition, we need toelefvariant distributions for general state spaces.

Definition 1.27 (Invariant Distribution). A distributiony with density functiory, is said to be thénvariant distri-
butionof a Markov chainX with transition kerneli if

1) = [ fula)K ) do
S
for almost ally € S.

Proposition 1.28. Suppose thak is a pu-irreducible Markov chain having as unique invariant distribution. Then
X is also recurrent.

Proof. see (Tierney, 1994, theorem 1) or (Athreya et al., 1992) a

Checking the invariance condition of definition 1.27 regaicomputing an integral, which can be quite cum-
bersome. A simpler (sufficient, but not necessary) condisojust like in the case discrete case, detailed balance.

Definition 1.29 (Detailed balance). A transition kernelK is said to be indetailed balancevith a distribution
with densityf,, if for almost allz,y € S

ful@)K(x,y) = fu.(y)K(y,z).

In complete analogy with theorem 1.22 one can also show igéineral case that if the transition kernel of a
Markov chain is in detailed balance with a distributiorthen the chain is time-reversible and heas its invariant
distribution. Thus theorem 1.22 also holds in the genersg.ca

1.4 Ergodic theorems

In this section we will study the question whether we can uspvations from a Markov chain to make inferences
about its invariant distribution. We will see that under somegularity conditions it is even enough to follow a single
sample path of the Markov chain.

For independent identically distributed data the Law ofgeaumbers is used to justify estimating the expected
value of a functional using empirical averages. A similautecan be obtained for Markov chains. This result is
the reason why Markov Chain Monte Carlo methods work: itvedlais to set up simulation algorithms to generate
a Markov chain, whose sample path we can then use for estigniious quantities of interest.
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Theorem 1.30 (Ergodic Theorem). Let X be ap-irreducible, recurrentR?-valued Markov chain with invariant
distribution .. Then we have for any integrable functipn R? — R that with probability1

t—oo t 4

1y B
i 320(X:) = B (9(X) = [ ot@)siw) da

for almost every starting valu&, = «x. If X is Harris-recurrent this holds for every starting value

Proof. For a proof see (Roberts and Rosenthal, 2004, fact 5), (RahdrCasella, 2004, theorem 6.63), or (Meyn
and Tweedie, 1993, theorem 17.3.2). O

Under additional regularity conditions one can also deai¢entral Limit Theorem which can be used to justify
Gaussian approximations for ergodic averages of Markoinsh@his would however be beyond the scope of this
course.

We conclude by giving an example that illustrates that thedi@ns of irreducibility and recurrence are neces-
sary in theorem 1.30. These conditions ensure that the chparmanently exploring the entire state space, which
is a necessary condition for the convergence of ergodiagest

Example 1.17. Consider a discrete chain with two states- {1, 2} and transition matrix

“(21)

The corresponding Markov graph is shown in figure 1.8. Thigirchvill remain in its intial state forever. Any

() ()
ORNO

Figure 1.8. Markov graph of the chain of example 1.17

distributionp on {1, 2} is an invariant distribution, as
H/K — M/I — “/

for all . However, the chain is not irreducible (or recurrent): wergat get from staté to state2 and vice versa.
If the initial distribution isu = («, 1 — «)" with « € [0, 1] then for everyt € N, we have that

By observing one sample path (which is eithiet, 1,... or2,2,2,...) we can make no inference about the distri-
bution of X; or the parametet.. The reason for this is that the chain fails to explore thesae. switch between
the stated and2). In order to estimate the parametewe would need to look at more than one sample patha

Note that theorem 1.30 does not require the chain to theaierin example 1.12 we studied a periodic chain.
Due to the periodicity we could not apply theorem 1.19. We lcawever apply theorem 1.30 to this chain. The
reason for this is that whilst theorem 1.19 was about theibligion of states at a given timi theorem 1.30 is
about averages, and the periodic behaviour does not afferdges.



Chapter 2

An Introduction to Monte Carlo Methods

2.1 What are Monte Carlo Methods?

This lecture course is concerned with Monte Carlo methoti;tware sometimes referred togtechastic simula-
tion (Ripley (1987) for example only uses this term).

Examples of Monte Carlo methods include stochastic intemrawhere we use a simulation-based method to
evaluate an integral, Monte Carlo tests, where we resoitrtolation in order to compute the p-value, and Markov-
Chain Monte Carlo (MCMC), where we construct a Markov chahicl (hopefully) converges to the distribution
of interest.

A formal definition of Monte Carlo methods was given (amorakers) by Halton (1970). He defined a Monte
Carlo method as “representing the solution of a problem aaranpeter of a hypothetical population, and using
a random sequence of numbers to construct a sample of thdéatiopufrom which statistical estimates of the
parameter can be obtained.”

2.2 Introductory examples

Example 2.1 (A raindrop experiment for computing 7). Assume we want to compute an Monte Carlo estimate of
using a simple experiment. Assume that we could producddtmirain” on the squarg-1, 1] x [—1, 1], such that
the probability of a raindrop falling into a regidd C [—1, 1]? is proportional to the area @&, but independent of
the position ofR. It is easy to see that this is the case iff the two coordinates are i.i.d. realisations of uniform
distributions on the intervdl-1, 1] (in shortX, Y "= U[-1, 1]).

Now consider the probability that a raindrop falls into thetwircle (see figure 2.1). Itis

[]  1dzdy
e area of the unitcircle  {az2+42<1} T T
IP(drop within circle = = = L
(drop within circlg area of the square [ ldzdy 2-2 4
{—1<z,y<1}

In other words,
7w = 4 - IP(drop within circle,

i.e. we found a way of expressing the desired quantiis a function of a probability.

Of course we cannot compul¥ drop within circle without knowingr, however we can estimate the probability
using our raindrop experiment. If we observeaindrops, then the number of raindrapghat fall inside the circle
is a binomial random variable:
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Figure 2.1. lllustration of the raindrop experiment for estimating

Z ~ B(n,p), with p = IP(drop within circle.

Thus we can estimageby its maximume-likelihood estimate

. Z
p=—
n
and we can estimate by
Z
T=4p=4-—.
n

Assume we have observed, as in figure 2.1, that 77 of the 1@0rogs were inside the circle. In this case, our

estimate ofr is
477

100

7= = 3.08,

which is relatively poor.

However thdaw of large numberguarantees that our estimateonverges almost surely to Figure 2.2 shows the
estimate obtained afteriterations as a function of for n = 1,...,2000. You can see that the estimate improves
asn increases.

We can assess the quality of our estimate by computing a endiinterval forr. As we haveZ ~ B(100, p) and
p= % we use the approximation that ~ N(100p, 100p(1 — p)). Hence,p ~ N(p,p(1 — p)/100), and we can
obtain a 95% confidence interval fprusing this Normal approximation:

0.77- (1 — 0.77) 0.77-(1-0.77) |
lo.77 —1.96- 50 . 0.77 +1.96 - 0 = [0.6875, 0.8525],

As our estimate ofr is four times the estimate @f we now also have a confidence interval for
[2.750, 3.410]

In more general, let,, = 4p,, denote the estimate after having observedindrops. A(1 —2«) confidence interval

~ /An]-_An A /Anl_An
[pn — Zl—a M’pn + zl_a M] s
n n

thus a(1 — 2«) confidence interval fot is

|jATn _zlfav 7Tn(4_Trn)v'frn +21-a wn(4_ﬂ-n)‘| )
n V n

for p is then
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Monte Carlo estimate ofr (with 90% confidence interval)

Estimate ofr
3
|

n
(\i —]
o
e
I T T T I
0 500 1000 1500 2000
Sample size

Figure 2.2. Estimate ofr resulting from the raindrop experiment

Let us recall again the different steps we have used in thepbea

— We have written the quantity of interest (in our cades an expectatioh.

— Second, we have replaced this algebraic representatitie giutantity of interest by a sample approximation to it.
The law of large numbers guaranteed that the sample appativinconverges to the algebraic representation, and
thus to the quantity of interest. Furthermore we used thea@dmit theorem to assess the speed of convergence.

It is of course of interest whether the Monte Carlo methodsrahore favourable rates of convergence than
other numerical methods. We will investigate this in theecaisMonte Carlo integration using the following simple
example.

Example 2.2 (Monte Carlo Integration). Assume we want to evaluate the integral
! 1
/ f(x)de  with  f(z) = E-(—65536m8 +2621442" — 4096002° + 3112962° — 114688z* + 16384")
0

using a Monte Carlo approaélFigure 2.3 shows the function farc [0, 1]. Its graph is fully contained in the unit
squarg0, 1)%.

Once more, we can resort to a raindrop experiment. Assumeaaw@mduce uniform rain on the unit square. The
probability that a raindrop falls below the curve is equathe area below the curve, which of course equals the
integral we want to evaluate (the area of the unit squaress fye don’t need to rescale the result).

A more formal justification for this is, using the fact thit) = fof(m) 1dt,

! Lopl@) « >f£f< )}1dt dx
x,t):t xT
(1) do = 1dt dr = 1dt dp = L0D=
/of(l)x /0/0 ! // g JT tdids
{(z,t):t<f(2)} {0<z,t<1}

The numerator is nothing other than the dark grey area umgecurve, and the denominator is the area of the
unit square (shaded in light grey in figure 2.3). Thus the esgion on the right hand side is the probability that a

1 A probability is a special case of an expectatioP4sl) = E(I4).
12

? As f is a polynomial we can obtain the result analytically, if#§° = -2— ~ 0.4816.
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raindrop falls below the curve.

We have thus re-expressed our quantity of interest as alpititypén a statistical model. Figure 2.3 shows the result
obtained when observing 100 raindrops. 52 of them are bdievctirve, yielding a Monte-Carlo estimate of the
integral of0.52.

If after n raindrops a proportiop,, is found to lie below the curve, @ — 2«a) confidence interval for the value of

[pn (1 — [Dn(1 —
[ﬁn — Zl-a pn( pn) 7]371 + 21-a pn( pn)‘|
n n

Thus the speed of convergence of our (rather crude) Montie @athod isOp (n~1/2). N

the integral is

0 1

Figure 2.3. lllustration of the raindrop experiment to comp%éf(x)dx

When using Riemann sums (as in figure 2.4) to approximate thgris from example 2.2 the error is of order
O(nfl).3,4

Recall that our Monte Carlo method was “only” of ordep (n~'/2). However, it is easy to see that its speed
of convergence is of the same order, regardless of the diorenfthe support off. This is not the case for other
(deterministic) numerical integration methods. For a tlimensional functiory the error made by the Riemann
approximation using function evaluations i§)(n~'/2). %

This makes the Monte Carlo methods especially suited fdr-Hignensional problems. Furthermore the Monte
Carlo method offers the advantage of being relatively singpld thus easy to implement on a computer.

2.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old @e®snt (1 Kings vii. 23 and 2 Chronicles iv. 2) contains
a rough estimate af (using the columns of King Solomon’s temple). Monte Carlames are a somewhat more
recent discipline. One of the first documented Monte Carfieeixnents iBuffon’s needlexperiment (see example

2.3 below). Laplace (1812) suggested that this experimembe used to approximate

3 The error made for each “bar” can be upper boundeé‘géynax |f'(z)|. Letn denote the number evaluationsfofand thus
the number of “bars”). AsA is proportional to%, the error made for each bar@(n~?2). As there arex “bars”, the total
error isO(n™").

4 The order of convergence can be improved when using the trapegeidnd (even more) by using Simpson’s rule.

5 Assume we partition both axes into segments, i.e. we have to evaluate the functioa: m? times. The error made for

each “bar” isO(m ~?) (each of the two sides of the base area of the “bar” is proportional tb, so is the upper bound on
|f(x) — f(€mia)], yieldingO(m~?2)). There are in totaln? bars, so the total error is ony(m "), or equivalentlyO(n~'/2).
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|f(x) = f(&mia)| < 5 - max |f'(2)] for |o—emal< 4

. | Hg.

0 fmid 1

Figure 2.4. lllustration of numerical integration by Riemann sums

Example 2.3 (Buffon's needle). In 1733, the Comte de Buffon, George Louis Leclerc, askeddif@ving question
(Buffon, 1733): Consider a floor with equally spaced linedistance) apart. What is the probability that a needle
of length! < ¢ dropped on the floor will intersect one of the lines?

Buffon answered the question himself in 1777 (Buffon, 1777)

Assume the needle landed such that its anglg(see figure 2.5). Then the question whether the needle éutsra
line is equivalent to the question whether a box of witkth § intersects a line. The probability of this happening
is

P(intersect) = ls}ng.
Assuming that the angkeis uniform on[0, 7) we obtain
. T 1 A 1 4 2
P(intersect = / P(intersectd) - — df = / [sinf 1 o = — / sinf df = ! .
0 ™ o O ™ T 0 )
N——

When dropping: needles the expected number of needles crossing a linesis thu

2nl
o
Thus we can estimate by
1) 1) )
- A
| ’ 01
| ~
P
[sin @
(a) lllustration of the geometry behind (b) Results of theBuffon’s needleexperi-
Buffon’s needle ment using 50 needles. Dark needles inter-
sect the thin vertical lines, light needles do
not.

Figure 2.5. lllustration of Buffon’s needle
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whereX is the number of needles crossing a line.
The Italian mathematician Mario Lazzarini performed Buffoneedle experiment in 1901 using a needle of length
[ = 2.5¢m and linesd = 3em apart (Lazzarini, 1901). Of 3408 needles 1808 needles@dassine, so Lazzarini’s

estimate ofr was
. 2-3408-2.5 17040 355

1808 -3 5424 133’
which is nothing other than the best rational approximatmn with at most 4 digits each in the denominator and

the numerato?. q

Historically, the main drawback of Monte Carlo methods waat they used to be expensive to carry out.
Physical random experiments were difficult to perform and/as the numerical processing of their results.

This however changed fundamentally with the advent of tigéalicomputer. Amongst the first to realise this
potential were John von Neuman and Stanistaw Ulam, who wexe working for the Manhattan project in Los
Alamos. They proposed in 1947 to use a computer simulatiorsdtving the problem of neutron diffusion in
fissionable material (Metropolis, 1987). Enrico Fermi pwegly considered using Monte Carlo techniques in the
calculation of neutron diffusion, however he proposed te asmechanical device, the so-called “Fermiac”, for
generating the randomness. The name “Monte Carlo” goestbastanistaw Ulam, who claimed to be stimulated
by playing poker (Ulam, 1983). In 1949 Metropolis and Ulanblghed their results in thdournal of the American
Statistical AssociatiofMetropolis and Ulam, 1949). Nonetheless, in the followatgyears Monte Carlo methods
were used and analysed predominantly by physicists, anoynsigatisticians: it was only in the 1980s — following
the paper by Geman and Geman (1984) proposing the Gibbse&amyhat the relevance of Monte Carlo methods
in the context of (Bayesian) statistics was fully realised.

2.4 Pseudo-random numbers

For any Monte-Carlo simulation we need to be able to repredacdomness by a computer algorithm, which,
by definition, is deterministic in nature — a philosophicaladox. In the following chapters we will assume that
independent (pseudo-)random realisations from a unifdfn1] distribution’ are readily available. This section
tries to give very brief overview of how pseudo-random numslman be generated. For a more detailed discussion
of pseudo-random number generators see Ripley (1987) athKhQ97).

A pseudo-random number generator (RNG) is an algorithm Farse output th&) [0, 1] distribution is a suitable
model. In other words, the number generated by the pseudimnanumber generator should have the sestavant
statistical properties as independent realisationsl¢ffial] random variable. Most importantly:

— The numbers generated by the algorithm should reproduepértience, i.e. the numbeXs, . .., X,, that we
have already generated should not contain any discermfdenation on the next valu&,,, ;. This property is
often referred to as the lack of predictability.

— The numbers generated should be spread out evenly acrassethval [0, 1].

In the following we will briefly discuss the linear congrughigenerator. It is not a particularly powerful gen-
erator (so we discourage you from using it in practise), hawé is easy enough to allow some insight into how
pseudo-random number generators work.

5 That Lazzarini's experiment was that precise, however, casts souat over the results of his experiments (see Badger,

1994, for a more detailed discussion).
" We will only use theU(0, 1) distribution as a source of randomness. Samples from other distribationise derived from

realisations ofJ(0, 1) random variables using deterministic algorithms.
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Algorithm 2.1 (Congruential pseudo-random number generator). 1. Chooser, M € N, ¢ € Ny, and the initial
value (“seed")Z, € {1,... M —1}.
2. Fori=1,2,...

SetZ; = (aZ,;_l + C) mod M, andXZ‘ = Z7/M

The integersZ; generated by the algorithm are from the 8etl, ..., M — 1} and thus theX; are in the interval
[0,1).

Itis easy to see that the sequence of pseudo-random numigdepends on the seéf). Running the pseudo-
random number generator twice with the same seed thus gesereactly the same sequence of pseudo-random
numbers. This can be a very useful feature when debuggingoyau code.

Example 2.4. Cosider the choice aof = 81, ¢ = 35, M = 256, and seed, = 4.

Z; = (81-4+35) mod 256 =359 mod 256 = 103
Zy = (81-103+35) mod 256 =8378 mod 256 = 186
Zs = (81-186+35) mod 256 = 15101 mod 256 = 253

The correspondindl; are X; = 103/256 = 0.4023438, X, = 186/256 = 0.72656250, X; = 253/256 =
0.98828120. 4

The main flaw of the congruential generator its “crystallinature (Marsaglia, 1968). If the sequence of gen-
erated values\(;, X», ... is viewed as points in an-dimension cubg they lie on a finite, and often very small
number of parallel hyperplanes. Or as Marsaglia (1968)tptihie points [generated by a congruential generator]
are about as randomly spaced in the wnitube as the atoms in a perfect crystal at absolute zero.hliheer of
hyperplanes depends on the choice of, and M.

An example for a notoriously poor design of a congruenti@up®-random number generator is RANDU,
which was (unfortunately) very popular in the 1970s and dsedxample in IBM’s System/360 and System/370,
and Digital's PDP-11. It used = 26 + 3, ¢ = 0, and M = 23!. The numbers generated by RANDU lie on only
15 hyperplanes in the 3-dimensional unit cube (see figue 2.6

Figure 2.7 shows another cautionary example (taken froneRRifd987). The left-hand panel shows a plot of
1,000 realisations of a congruential generator with= 1229, ¢ = 1, and M = 2''. The random numbers lie
on only 5 hyperplanes in the unit square. The right hand psimalvs the outcome of the Box-Muller method for
transforming two uniform pseudo-random numbers into a @iaiBaussians (see example 3.2).

Due to this flaw of the congruential pseudo-random numbeeiggar, it should not be used in Monte Carlo
experiments. For more powerful pseudo-random number gtorersee e.g. Marsaglia and Zaman (1991) or Mat-
sumoto and Nishimura (1998). GNU R (and other environmemtsyide you with a large choice of powerful
random number generators, see the corresponding help pRYEKI nd) for details.

8 The (k + 1)-th point has the coordinatés .z 1, ..., Xnkin_1)-
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Figure 2.6. 300,000 realisations of the RANDU pseudo-random number gengratted in 3D. A point corresponds to a triplet
(z3k—2,T3k-1,23k) for k = 1,...,100000. The data points lie on 15 hyperplanes.
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(a) 1,000 realisations of this congruential generator plot-

tedin 2D.

—21log(Xaok—1) sin(2m X2r)
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—2log(Xar—1) cos(2m Xay)

(b) Supposedly bivariate Gaussian pseudo-random num-
bers obtained using the pseudo-random numbers shown

in panel (a).

Figure 2.7. Results obtained using a congruential generator with 1229, ¢ = 1, andM = 2"!



Chapter 3

Fundamental Concepts: Transformation, Re-

jection, and Reweighting

3.1 Transformation methods

In section 2.4 we have seen how to create (pseudo-)randorberarfrom the uniform distributiotl[0, 1]. One
of the simplest methods of generating random samples fromtabdition with cumulative distribution function
(c.d.f.)F(z) = P(X < z) is based on the inverse of the c.d.f..

Figure 3.1. lllustration of the definition of the generalised inveise of a c.d.f.F’

The c.d.f. is an increasing function, however it is not neaél/ continuous. Thus we define tigeneralised
inverseF~(u) = inf{z : F(z) > u}. Figure 3.1 illustrates its definition. If" is continuous, thed~ (u) =
F~1(u).

Theorem 3.1 (Inversion Method). LetU ~ U[0,1] and F' be a c.d.f.. Thed (U) has the c.d.fF.

Proof. Itis easy to see (e.g. in figure 3.1) tHat (u) < z is equivalent ta; < F(x). Thus forU ~ U|0, 1]
P(F~(U) < z) =P(U < F(x)) = F(a),

thusF'is the c.d.f. ofX = F—(U). O

Example 3.1 (Exponential Distribution). The exponential distribution with rate > 0 has the c.d.fF)\(z) = 1 —
exp(—Az) for z > 0. ThusFy (u) = Fy '(u) = —log(1 — u)/A. Thus we can generate random samples from
Expo()\) by applying the transformation log(1 — U) /A to a uniformU|0, 1] random variablé/. AsU and1 — U,
of course, have the same distribution we can-useg(U)/\ as well. <
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The Inversion Method is a very efficient tool for generatingdom numbers. However very few distributions
possess a c.d.f. whose (generalised) inverse can be edkféitiently. Take the example of the Gaussian distribu-
tion, whose c.d.f. is not even available in closed form.

Note however that the generalised inverse of the c.d.f.sisgne possible transformation and that there might
be other transformations that yield the desired distrdsutAn example of such a method is the Box-Muller method
for generating Gaussian random variables.

Example 3.2 (Box-Muller Method for Sampling from Gaussians). When sampling from the normal distribution, one
faces the problem that neither the c.&f:), nor its inverse has a closed-form expression. Thus we tarsecthe
inversion method.

It turns out however, that if we consider a paif, X, ~ N(0,1), as a poinf X1, X5) in the plane, then its
polar coordinate$R, ¢) are again independent and have distributions we can easilple from: ~ U0, 27], and
R? ~ Expo(1/2).

This can be shown as follows. Assume that U[0, 27] andR? ~ Expo(1/2). Then the joint density off), r2)

1 1 1 1 1
f(9,7-2)(977’2) = %1[0,%] (9) : 5 exp (27’2) = i exp (27’2> : 1[0,27r] (9)

To obtain the probability density function of
X1 =VR?-cos(h), X2 =V R?-sin(6)

we need to use the transformation of densities formula.

oz, Ox1
55 P2 1 1
fot o anan) = farn O o) | 0| = Lo (~3d+ad?) 2
90 ot 4
(e (-3) (mew (-32))
=\ 7€ — =T | —ex — =X
o P\ T2M o P\ 2"
as
G g | _| —rsin() CO;Q) _‘ rsin(6)?  rcos(0)?| 1
% 3:3 rcos(f) Sigig) 2r 2r 2

Thus X, X5 ~ N(0,1). As their joint density factorisesy; and X, are independent, as required.
ii.d.

Thus we only need to generate~ U[0, 27], andR? ~ Expo(1/2). UsingU;, U < U[0,1] and example 3.1
we can generat® = v R? andd by

R = \V —210g(U1), 9:27TU2,

and thus
X1 =/ —2log(Uy) - cos(2nUs), Xo =/ —2log(Uy) - sin(27Us)

are two independent realisations frorhl€), 1) distribution. <

The idea of transformation methods like the Inversion Mdthvas to generate random samples from a distribu-
tion other than the target distribution and to transfornmttseich that they come from the desired target distribution.
In many situations, we cannot find such a transformationased form. In these cases we have to find other ways
of correcting for the fact that we sample from the “wrong’tdisution. The next two sections present two such
ideas: rejection sampling and importance sampling.
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3.2 Rejection sampling

The basic idea of rejection sampling is to sample fromretrumental distributioh and reject samples that are
“unlikely” under the target distribution.

Assume that we want to sample from a target distribution whaensity f is known to us. The simple idea
underlying rejection sampling (and other Monte Carlo althaons) is the rather trivial identity

f(z) 1
flz) = / 1du= / Locu<f(a) du
0 0 ~~———
:f(wau)

Thus f(x) can be interpreted as the marginal density of a uniformibigion on the area under the densjty)
{(z,u): 0<u< flx)}

Figure 3.2 illustrates this idea. This suggests that we eaeigte a sample froghby sampling from the area under
the curve.

0 1

Figure 3.2. lllustration of example 3.3. Sampling from the area under the curvé @tay) corresponds to sampling from the
Beta(3,5) density. In example 3.3 we use a uniform distribution of the light grey neg¢aas proposal distribution. Empty
circles denote rejected values, filled circles denote accepted values.

Example 3.3 (Sampling from a Beta distribution). The Beta(a, b) distribution @, b > 0) has the density

I'(a+10)

a—1 1— b—1 f 1
7F(a)1“(b)x (I—2)"7", or0 <z <1,

fz) =

wherel'(a) = f0+°° t*~Lexp(—t) dt is the Gamma function. Far, b > 1 the Beta(a, b) density is unimodal with
mode(a — 1)/(a + b — 2). Figure 3.2 shows the density ofBeta(3, 5) distribution. It attains its maximum of
1680/729 ~ 2.305 atz = 1/3.

Using the above identity we can draw frddata(3, 5) by drawing from a uniform distribution on the area under the
density{(z,u) : 0 <u < f(x)} (the area shaded in dark gray in figure 3.2).

In order to sample from the area under the density, we willausinilar trick as in examples 2.1 and 2.2. We will
sample from the light grey rectangle and only keep the sasmplat fall in the area under the curve. Figure 3.2
illustrates this idea.

Mathematically speaking, we sample independetly- U[0, 1] andU ~ UJ0, 2.4]. We keep the paifX, U) if

U < f(X), otherwise we reject it.

The conditional probability that a paiX, U) is kept if X = z is

PU < (X)X =2) =PU < f(z)) = f(x)/2.4

! The instrumental distribution is sometimes referred tpraposal distribution
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As X andU were drawn independently we can rewrite our algorithm aawDX from U[0, 1] and accep& with
probability f(X') /2.4, otherwise rejeck . <

The method proposed in example 3.3 is based on bounding tisétylef the Beta distribution by a box. Whilst
this is a powerful idea, it cannot be directly applied to ottistributions, as the density might be unbounded or
have infinite support. However we might be able to bound tmsiteof f(x) by M - g(z), whereg(x) is a density
that we can easily sample from.

Algorithm 3.1 (Rejection sampling).  Given two densitied, g with f(x) < M - g(x) for all =, we can generate a
sample fromf as follows:

1. DrawX ~ g
2. AcceptX as a sample fronf with probability
f(X)
M- g(X)’
otherwise go back to step 1.
Proof. We have
. f(x)  Jp (@) da
P(X € X and is accepted= /Xg(x) M- g(2) dx = YA (3.1)
——
=P (X is accepteflX =xz)
and thus
P(X is acceptefil= P(X € S and is accepted= %, (3.2)
yielding
. _ P(X € Xandis accepted Sy f(@) da/M
P(x € X|X is acceptefl= D (X is acceptel 1/M / f(z) dx (3.3)
Thus the density of the values accepted by the algorithfif-is O

Remark 3.2. If we know f only up to a multiplicative constant, i.e. if we only know(x), wheref(z) = C - 7(z),

we can carry out rejection sampling using
m(X)
M - g(X)

as probability of rejectind(, providedr(xz) < M - g(«x) for all . Then by analogy with (3.1) - (3.3) we have

P(X € X and is accepted= / g(x)MW-(;C()x) do — Jx w]i;) o _ fx(fj%\zdx’

P(X is acceptefl=1/(C - M), and thus

) d M)
P(x € X|X is acceptefl= Ja I ‘T/ C / fa

/ (©
Example 3.4 (Rejection sampling from the N(0, 1) distribution using a Cauchy proposal). Assume we want to sam-
ple from theN(0, 1) distribution with density

using a Cauchy distribution with density
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—6 -5 —4 -3 -2 -1 1 2 3 4 5 6

Figure 3.3. lllustration of example 3.3. Sampling from the area under the dejfisity (dark grey) corresponds to sampling from
theN(0, 1) density. The proposal(z) is aCauchy(0, 1).

as instrumental distributiohThe smallesf/ we can choose such thitz) < Mg(z) is M = /27 - exp(—1/2).
Figure 3.3 illustrates the results. As before, filled cisaterrespond to accepted values whereas open circles corre-
spond to rejected values.
Note that it is impossible to do rejection sampling from a €audistribution using &l (0, 1) distribution as
instrumental distribution: there is n@ € R such that
1 1 x2
< e (T

the Cauchy distribution has heavier tails than the Gaussgrbution. <

3.3 Importance sampling

In rejection sampling we have compensated for the fact tleasampled from the instrumental distributigfr)
instead off(x) by rejecting some of the values proposedddy). Importance sampling is based on the idea of
using weights to correct for the fact that we sample from tigtrumental distributiog () instead of the target
distribution f(x).

Importance sampling is based on the identity

P(X e A= /Af(x) dx = /Ag(x) g((g dzx = /Ag(a:)w(m) dx (3.4)

for all g(-), such thag(z) > 0 for (almost) allz with f(x) > 0. We can generalise this identity by considering the
expectatiorE s (h(X)) of a measurable functiok:

= x x xXr = €T M €T T = T)wlx €T xXr = w .
By () = [ fha) do = [ o) T 0@ do = [ gapu@h(z) do = B,(w(X)-1(X)). (35
if g(x) > 0 for (almost) allz with f(x) - h(z) # 0.
Assume we have a sampl,, ..., X,, ~ g. Then, providedE,|w(X) - h(X)| exists,

S w(Xh(X) T Ey(w(X) - h(X))

i=1

1
n
(by the Law of Large Numbers) and thus by (3.5)

a.s.

% 3 w(X)h(X,) "= Ep(h(X)).
=1

2 We denote bys the set of all possible values can take, i.e.fs f(z)dx = 1.
3 There is not much point is using this method is practise. The Box-Mulleradéthmore efficient.
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In other words, we can estimgte= E;(h(X)) by

== w(X;)h(X;)
i=1

S|

Note that whilstE, (w(X)) = [ ggfgg(a:) dr = [ f(x) = 1, the weightsw; (X), ..., w,(X) do not neces-

sarily sum up to, so one might want to consider teelf-normalisedrersion

A ; n y | |
ST e & )

This gives rise to the following algorithm:
Algorithm 3.2 (Importance Sampling).  Choosey such that supfy) D supdf - k).

1. Fori=1,...,n:
i. GenerateX; ~ g.

i. Setw(X;) = £54.

2. Return either .
o= Zi:l w(X;)h(X;)
Z:‘L:l w(X;)
7 Siy w(X)h(X)
n

The following theorem gives the bias and the variance of igmze sampling.

or

Theorem 3.3 (Bias and Variance of Importance Sampling). (@) Ey(p) = p
. Var, (w(X) - h(X
(b) Varg(,u) — 9( ( ) ( ))

iVar, (10(X)) — Cov, (w(X), w(X) - h(X))

(©) By(jt) = p+ - +0(n™?)

(@ Vany ) = V(X)) = 20Cov, (), X))+ PV (00) | g,

Proof. (a) 5, (i _ w<x,»>h<Xf,>> = -3 By (X0)h(X0) = By ((X)

(b) Var, (i Z w(X,:)h(Xi)> = % ZVarg(w(Xi)h(Xqi)) = Varg(w(f)h(X))

(©) and (d) see (Liu, 2001, p.35) 0

Note that the theorem implies that in contrasitine self-normalised estimatgris biased. The self-normalised
estimatorj; however might have a lower variance. In addition, it has la@oadvantage: we only need to know
the density up to a multiplicative constant, as it is oftea tase in hierarchical Bayesian modelling. Assume
f(z) =C - 7(z), then

n n X, n C-m(X; n w(X;
S w(X)h(X) | L IGEnG) X, SIS, TG
(

. i)
n= 0 = ) ) = ) )
' . n  f(X; n Cx(X; n (X,
ZZ:I w(Xi) Zi:l gEXz; D y()((i)) Zi:l g(X'i;

i=1

i.e. the self-normalised estimatprdoes not depend on the normalisation cons@AtOn the other hand, as we
have seen in the proof of theorem 3.3 it is a lot harder to @eatlye theoretical properties of the self-normalised
estimatoryi.

Although the above equations (3.4) and (3.5) hold for eyewith supgg) D supdf - k) and the importance
sampling algorithm converges for a large choice of sgicbne typically only considers choices gfthat lead to
finite variance estimatorsThe following two conditions are each sufficient (albeithex restrictive) for a finite
variance of:

4 By complete analogy one can show that is enough to kpaoyw to a multiplicative constant.
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— f(z) < M - g(z) andVar;(h(X)) < +o0.
— Sis compact,f is bounded above ofi, andg is bounded below o015

Note that under the first condition rejection sampling cao &le used to sample frof

So far we have only studied whether a distributipteads to a finite-variance estimator. This leads to the
question which instrumental distributionagtimal i.e. for which choicé/ar () is minimal. The following theorem
answers this question:

Theorem 3.4 (Optimal proposal).  The proposal distributioty that minimises the variance gfis

@@
A NNOTOE

Proof. We have from theroem 3.3 (b) that

n-Var, (i) = Var, (w(X) - h(X)) = Var, (hm ' f<X>) _w, ((WQ | f(X))2> - (m (’“X) | f(X)> )2.

h(X)-f(X)
9(X)

- ([ s d:c)2

2
On the other hand, we can apply the Jensen inequfalitye, ((}L(X))’;)(X)) ) yielding

2
Thus we only have to minimisg, (( ) ) When plugging iry* we obtain:

9(
e ( (M50 ) = (o (ML) - ([ onsior )

An important corollary of theorem 3.4 is that importance pling can besuper-efficienti.e. when using the

O

optimal g* from theorem 3.4 the variance ffis less than the variance obtained when sampling direaiiw ff:

h(X1) + ...+ h(X,)

-V ) = Esnx)?) - 2

> <Ef|h<X>|>2u2< | m@lse) do:) 2 = Varg ()

by Jensen’s inequality. Unle$$ X) is (almost surely) constant the inequality is strict. Thisran intuitive expla-
nation to the super-efficiency of importance sampling. ggihinstead off causes us to focus on regions of high
probability whergh| is large, which contribute most to the integigy (h(X)).

Theorem 3.4 is, however, a rather formal optimality restMhen usingiz we need to know the normalisation
constant ofy*, which is exactly the integral we are looking for. Furthermezd to be able to draw samples frgm
efficiently. The practically important corollary of theone3.4 is that we should choose an instrumental distribution
g whose shape is close to the onefof|h|.

Example 3.5 (Computing IE ;| X | for X ~ t3). Assume we want to compule;| X | for X from at-distribution with
3 degrees of freedonty) using a Monte Carlo method. Three different schemes arsidered

% If X is real-valued random variable, agica convex function, theg(EE(X)) < E(y(X)).



38 3. Fundamental Concepts: Transformation, Rejection, and Reweighting

— SamplingXy, ..., X, directly fromt; and estimatind ;| X | by
1
n 4
1=1

— Alternatively we could use importance sampling using &vhich is nothing other than a Cauchy distribution)
as instrumental distribution. The idea behind this chasahat the density,, (z) of at; distribution is closer to
f(x)|z|, wheref(z) is the density of as distribution, as figure 3.4 shows.

— Third, we will consider importance sampling usind{&), 1) distribution as instrumental distribution.

S 7 — | f(x) (Target)
----  f(z) (direct sampling)

gr, (z) (ISt1) ,

an,1)(#) ISN(0, 1)) /
CV). — ’
e .
N -
o
o
o
o A
=} I I I I I

-4 -2 0 2 4

Figure 3.4. lllustration of the different instrumental distributiohs in example 3.5.

Note that the third choice yields weights of infinite variapas the instrumental distributioN (0, 1)) has lighter
tails than the distribution we want to sample frorg)( The right-hand panel of figure 3.5 illustrates that thisich
yields a very poor estimate of the integifalz|f () dz.

Sampling directly from thes distribution can be seen as importance sampling with algtisiv; = 1, this choice
clearly minimises the variance of the weights. This howel@es not imply that this yields an estimate of the
integral [ || f(x) dz of minimal variance. Indeed, after 1500 iterations the eitgi standard deviation (over 100
realisations) of the direct estimate(i$345, which is larger than the empirical standard deviatiopn @fhen using
at; distribution as instrumental distribution, whichO$182. So using a; distribution as instrumental distribution
is super-efficient (see figure 3.5).

Figure 3.6 somewhat explains why thedistribution is a far better choice than th&0, 1) distributon. As the
N(0, 1) distribution does not have heavy enough tails, the weigtdgeo infinity agxz| — +oo. Thus larggz| get
large weights, causing the jumps of the estimjathown in figure 3.5. The; distribution has heavy enough tails,
so the weights are small for large values|ef, explaining the small variance of the estimatevhen using &;
distribution as instrumental distribution. <

Example 3.6 (Partially labelled data). Suppose that we are given count data from observations igtauwps, such
that

Y; ~ Poi(A1) if the i-th observation is from group 1
Y; ~ Poi(\2) if the i-th observation is from group 2
The data is given in the table 3.1. Note that only the first teseovations are labelled, the group label is missing

for the remaining ten observations.
We will use aGamma(c, 3) distribution as (conjugate) prior distribution far, i.e. the prior density of; is
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Sampling directly from ts IS usingt; as instrumental distribution IS using N(0, 1) as instrumental distribution
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Figure 3.5. Estimates oft| X | for X ~ t3 obtained after 1 to 1500 iterations. The three panels correspond to tealifiezent
sampling schemes used. The areas shaded in grey correspondangaef 100 replications.

Sampling directly from t3 IS using t; as instrumental distribution IS using N(0, 1) as instrumental distribution
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Figure 3.6. WeightsIV; obtained for20 realisationsX; from the different instrumental distributions.
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Group County; Group County; Group County; Group County;
1 3 2 14 * 15 * 21
1 6 2 12 * 4 * 11
1 3 2 11 * 1 * 3
1 5 2 19 * 6 * 7
1 9 2 18 * 11 * 18

Table 3.1. Data of example 3.6.

b

f(Ag) = T

A?‘flﬂ;‘ exp(—BA;).

Furthermore, we believe that a priori each observationuskglikely to stem from group 1 or group 2.
We start with analysing the labelled data only, ignoring2Beunlabelled observations. In this case, we can analyse
the two groups separately. In groupve have that the joint distribution of;, . .., Y5, A\; is given by
5 )
exp(—=A1) A\
Pty s M) = £t oyl F ) = (H (2
i=1 Yi:

1 1 04+Z}?:1 Yi

T T@™
The posterior distribution ok, given the data from group 1 is

fMlyr, .. y5) = T l;((ny’Z?))\\l))d)\ X f(Y1,y---, Y55 A1)
N e Ys,

0T T exp(—(6 4 5))

1 a—1 pa
) ! F(a))‘l 6 eXp(fﬂ)\)

B exp(—(B+5)\1) X;JrZ?:l Yexp(— (B + 5)A\1)

Comparing this to the density of the Gamma distribution wiaiobthat

5
A|Y1,..., Y5 ~ Gamma <a+2yi,ﬁ+5> )

=1

and similarly
10
A2|Ys, ..., Y19 ~ Gamma (a + Zyi,ﬁ + 5) .

=6
Thus, when only using the labelled data, we do not have tatres®onte Carlo methods for finding the posterior
distribution.
This however is not the case any more once we also want todacthe unlabelled data. The conditional density of
Yi|A1, A2 for an unlabelled observation ¢ 10) is

_ lexp(=A)A]" | Texp(=A2)AY

The posterior density for the entire sample (using bothllebend unlabelled data) is

FO, Xalyn, - y20)< fFA) f(yr, - ys A1) F(X2) f(Wes - - - y10lA2) - Fyins - - -5 Y20l A1, A2)

< f(A1ly1,--,ys) o< f(A2|y6,---,y10) =I13211 FyilAsA2)
20

oc falyrs - ys)f Relyss - o) T F(wilAr, o)

=11

This suggests using importance sampling with the produtttedistributions of\; |Y7, ..., Y5 andAs|Ys, ..., Yio
as instrumental distributions, i. e. use

g(A1,x2) = f(Mlya, - ys) f(A2lye, - - -5 y10)-

The target distribution ig' (A1, A2|y1, . .., y20), thus the weights are
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F, A2lyn, -, y20)
(A1, A2) (3.6)
~ f(Myh.-.,ys)f(/\zlye,---,ylo)l'[fin T (il A1, A2)
Falyrs s ys) f(A2lys, - - -5 y10)
20 20 _ Yi _ Yi
=TI swilrro) = I (1exp( MAT | Lep(=h)A; )

) |
i=11 i=11 2 Yi: 2 Yi-

w(/\l, )\2) =

Thus we can draw a weighted sample of siZeom the distribution off (A1, A2|y1, . .., y20) by repeating the three
steps below: times:
1. Draw\; ~ Gamma (oz + Z?:l Yi, B+ 5)

2. Draw)\; ~ Gamma (a + de yi, 8+ 5)
3. Compute the weight(A1, A2) using equation (3.6).

From a simulation witth = 50, 000 | obtained4.4604 as posterior mean of; and14.5294 as posterior mean

of As. The posterior densities are shown in figure 3.7. <
Posterior density of A; Posterior density of Ap
— All data o — All data
--- Labelled data ™ --- Labelled data
T} o
-
Te)
N
o
<
o
o
N
S 4
2 @ 2
2 3 =
o a ©
N
° 3 |
o
| T}
o o |
o
o | 81 .
© o
I I I I I I I I
2 4 6 8 10 10 15 20
N =50000 Bandwidth = 0.1036 N =50000 Bandwidth = 0.1742

Figure 3.7. Posterior distributions ok; and ) in example 3.6. The dashed line is the posterior density obtained only fiem th
labelled data.
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Chapter 4

The Gibbs Sampler

4.1 Introduction

In section 3.3 we have seen that, using importance samplgan approximate an expectati@n(h (X)) without
having to sample directly fronf. However, finding an instrumental distribution which alkows toefficiently
estimatell s (h(X)) can be difficult, especially in large dimensions.

In this chapter and the following chapters we will use a sohrawdifferent approach. We will discuss methods
that allow obtaining ampproximatesample fromf without having to sample froni directly. More mathematically
speaking, we will discuss methods which generate a Markainalthose stationary distribution is the distribution
of interestf. Such methods are often referred to as Markov Chain Montl QdCMC) methods.

Example 4.1 (Poisson change point model). Assume the following Poisson model of two regimes forandom
variablesyy,...,Y,.!

Y; ~Poi(\;) for i=1,...,M
Y; ~Poi(\2) for i=M+1,...,n

A suitable (conjugate) prior distribution for; is theGamma(a;, 5;) distribution with density

1 a;—1 Ha;
p(%)/\j B exp(=5jA))-

The joint distribution ofYy, ..., Y}, A1, Ag, andM is

M Vi n o(— ui
f(y11~~~7yn,/\17>\2,M) = (Hw)< H ep()\2))\2>

] |
i=1 Yi: i=M+1 Yi:

fA) =

1 alfl (e 5] _
'm% B exp(—=FiA1)

If M is known, the posterior distribution of, has the density

1

Plag) & V7 o)

— M .
FOIYL, ., Yo M) oc A8 Y e (— (8 + M)Ay),

o)
M
M|Yi,... Y, M ~ Gamma (al—l-Zyi,ﬁl—&—M) (4.1)
=1
XlY1, ... Y, M ~ Gamma <a2+ Z yi,ﬂg—ﬁ—n—M). (4.2)
i=M+1

exp(—=A)A\Y
y! .

! The probability distribution function of thBoi(\) distribution isp(y) =
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Now assume that we do not know the change pdinand that we assume a uniform prior on the{set .., M —
1}. It is easy to compute the distribution 8f given the observation¥;,...Y,, and\; and),. It is a discrete
distribution with probability density function proportal to

Mo n s
PIMIY1, ..., Yo, A1y Ag) ox Aot ¥ \ZH=M1 Y e (Ag — Ay) - M) (4.3)

The conditional distributions in (4.1) to (4.3) are all eagysample from. It is however rather difficult to sample
from the joint posterior of\q, A2, M). N

The example above suggests the strategy of alternatelylisanfiom the (full) conditional distributions ((4.1)
to (4.3) in the example). This tentative strategy howevisesasome questions.

— Is the joint distribution uniquely specified by the conditéb distributions?

— Sampling alternately from the conditional distributionislgls a Markov chain: the newly proposed values only
depend on the present values, not the past values. Will fipsoach yield a Markov chain with the correct
invariant distribution? Will the Markov chain converge teetinvariant distribution?

As we will see in sections 4.3 and 4.4, the answer to both guresits — under certain conditions — yes. The
next section will however first of all state the Gibbs sangpkgorithm.

4.2 Algorithm

The Gibbs sampler was first proposed by Geman and Geman (&884yrther developed by Gelfand and Smith
(1990) Denote Wlth‘_7 = (Il, ey L1 T 1y e ,pr).
Algorithm 4.1 ((Systematic sweep) Gibbs sampler). Starting With(Xl(O), . ,XZ(,O)) iterate fort = 1,2, ...

1. Dranl(t) ~ fX1|X,1(-|X§t_1), o 7)(1()t—1))_

j Draw X9 ~ e, (X0, X0 X, )

p. Draw X" ~ prlep(-|X1(t), . ,X;tll).

Figure 4.1 illustrates the Gibbs sampler. The conditiomstrithutions as used in the Gibbs sampler are often
referred to agull conditionals Note that the Gibbs samplemstreversible. Liu et al. (1995) proposed the following
algorithm that yields a reversible chain.

Algorithm 4.2 (Random sweep Gibbs sampler).  Starting With(X{O), . ,XZ(,O)) iterate fort = 1,2, ...

1. Draw an index from a distribution on{1, ..., p} (e.g. uniform)
2. DrawX " ~ fy i CIXET XD XD X Y), and setx ) = XY forall e # 5.

4.3 The Hammersley-Clifford Theorem

An interesting property of the full conditionals, which t@&bs sampler is based on, is that they fully specify the
joint distribution, as Hammersley and Clifford proved in7D8. Note that the set of marginal distributions does
have this property.

2 Hammersley and Clifford actually never published this result, as they awatlééxtend the theorem to the case of non-
positivity.
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(12, %) (o IEE

(t)

2

x

Figure 4.1. lllustration of the Gibbs sampler for a two-dimensional distribution

Definition 4.1 (Positivity condition). A distribution with densityf (x1, ..., z,) and marginal densitiegx, (z;) is
said to satisfy the positivity condition ff, (z;) > 0 for all x4, ..., z, implies thatf(z1,...,z,) > 0.

The positivity condition thus implies that the support af thint densityf is the Cartesian product of the support
of the marginalsf, .

Theorem 4.2 (Hammersley-Clifford).  Let (X,...,X,) satisfy the positivity condition and have joint density
f(z1,...,xp). Thenforall(&, ..., &) € supgf)

f(xl H fX X _; m]|:c1, 'axj—lafj-‘rl?"'afp)
yeeay @

fXJ|X,J (&ilors s zjo1, a1y, 6p)

Proof. We have
flxy, o mpn,2p) = fx,x_, (@plzy, o mp 1) f(o1, 0 2p1) (4.4)

and by complete analogy

f($17 e 7xp—1u€p) = pr|X_p(€p|x17 .. 7$p—1)f(x17 e 7$p—1>7 (45)
thus
(4.4)
flxe,..mp) = flxy, .. mp1) Ixx_, (@plre, s zp1)
N——— —
(4§)f(x1,...7,xp,1,§p)/fxp‘X7P(§p|x1,.‘.,wp,1)
Ix |X_ (fﬂp|$1,~-79€p71)
= f.fL'l,...,.’E 7176 = &
( r1:6) Ixpx_, Eplzrs oy xp1)
i ¢ )fX1|X_1(m1|§2a~-7£p)  Ixlxo, (plar, ... 2p_1)
T ixx o (&lée &) Fxgix, (Gplrns e mpt)
The positivity condition guarantees that the conditioreigities are non-zero. O

Note that the Hammersley-Clifford theorem daex guarantee the existence of a joint probability distribmitio
for every choice of conditionals, as the following examgiews. In Bayesian modeling such problems mostly arise
when using improper prior distributions.
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Example 4.2. Consider the following “model”

Xi|X2 ~ Expo(AXz)
X2|X1 ~ EXF)O()\‘XH)7
for which it would be easy to design a Gibbs sampler. Tryinggdply the Hammersley-Clifford theorem, we obtain

. Fxi106 (@11€2) - oy x, (Tal71) A& exp(—Aa13) - Azy exp(—Az122)
Ixx. (E11€2) - fxoix, (G2lz1) Ao exp(—A&1e) - Awy exp(—Az1&2)

The integral[ [ exp(—Az122) dz1 dzo however is not finite, thus there is no two-dimensional philitg distri-

f(x1,22)

x exp(—Azi2)

bution with f(z1, z2) as its density. N

4.4 Convergence of the Gibbs sampler

First of all we have to analyse whether the joint distribntit(z1, ..., x,) is indeed the stationary distribution
of the Markov chain generated by the Gibbs san¥plEor this we first have to determine the transition kernel
corresponding to the Gibbs sampler.

Lemma 4.3. The transition kernel of the Gibbs sampler is

K(X(t—1)7x(t)) _ lelX?l(xgt)métfl)’ o 7x1()t—1)) . fX2|X,2(x§t)|x§t),xétil), o 7361()1&—1)) .
~pr‘X7p(xl(f)|x§t), . ,x;tll)

Proof. We have
IP(X(t) c X|X(t—1) _ X(t—l)) _ /Xf(xt\xu—l))(x(t)|X(t_1)) dx®

= /X le\Xfl(mgt) ‘Z‘gil), ey Z‘I(jt_l)) . fXQ‘X72($gt) ‘Z’gt), .’Eétil)’ . 7,7,‘1()15—1)) ..

corresponds to step 1. of the algorithm corresponds to step 2. of the algorithm
t)),.(t) (t) t
'pr|X,p($g(a)‘$1 7"'71:p—1) dx® 0

corresponds to step p. of the algorithm

3 All the results in this section will be derived for the systematic scan Gibbgleartalgorithm 4.1). Very similar results hold
for the random scan Gibbs sampler (algorithm 4.2).



Proposition 4.4.  The joint distributionf (z, .. ., z,,) is indeed the invariant distribution of the Markov chai(?), X(1)_ .. ) generated by the Gibbs sampler.
Proof.
/f(x(t_l))K(X(t_1)7X(t)) dx(t=1

— /.../f(xgt*”,...,ng—n) del' ™ frex o, @OV, a0 e @01, e DdelY L dalt)

=@y sy )

5oy Tp

@D 2D )

= / e /f(acgt),mg*l), .. ,:L‘;t_l)) d:z:(Qtfl) fX2|X_2(xét)|asgt), :Uét*l), .. ,:C;t_l)) e pr‘X_p(xz(fo(lt), ... ,:cl(fll)dxgt*l) .. dxz(f_l)

=f(ei" g™ )

t t t—1 t—1
e ) 2 )

- / Fat? ey daf = frx, @0l el )

=f(@{ )

=f({",...z)

= f(;v(lt), . ,xz(f))

Thus according to definition 1.2f7is indeed the invariant distribution.

Jaidwies sqqio ay) Jo aousbiaAuo)d i

Ly
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So far we have established thats indeed the invariant distribution of the Gibbs samplext\we have to analyse
under which conditions the Markov chain generated by thd&#ampler will converge té.

First of all we have to study under which conditions the riasgIMarkov chain is irreducibfe The following
example shows that this does not need to be the case.

Example 4.3 (Reducible Gibbs sampler). Consider Gibbs sampling from the uniform distribution@nu C5 with
Cy = {(z1,22) : [[(x1,22) — (1,1)|| < 1} andCy := {(x1,x2) : |[(x1, 22) — (=1, —-1)]] < 1}, i.e.

1
f($1»$2) = %HC1UCQ (mlva)

Figure 4.2 shows the density as well the first few samplesmdreby starting a Gibbs sampler wifhfo) < 0and
XQ(O) < 0. Itis easy to that when the Gibbs sampler is startedsiit will stay there and never reacty . The reason

2 -1 0 1 2
X9

Figure 4.2. lllustration of a Gibbs sampler failing to sample from a distribution with uncotetesupport (uniform distribution
on{(z1,x2) : [[(z1,22) — (L[| < 1} U {(21,22) : [[(21,22) — (=1, =1)[| < 1]})

for this is that the conditional distributiol>| X; (X1|X2) is for X; < 0 (X2 < 0) entirely concentrated ofi. <

The following proposition gives a sufficient condition foraducibility (and thus the recurrence) of the Markov
chain generated by the Gibbs sampler. There are less giriditons for the irreducibility and aperiodicity of the
Markov chain generated by the Gibbs sampler (see e.g. Rabéi€asella, 2004, Lemma 10.11).

Proposition 4.5.  If the joint distribution f(z1, ..., x,) satisfies the positivity condition, the Gibbs sampler ygeld
an irreducible, recurrent Markov chain.

Proof. Let X' C sup(f) be asetwithf,, f(z{",.... 20", ... 20)) > 0.

/ K(X(t_1)7 X(t))dx(t) = / fX1|X—1 (‘rgt)p:gt_l)a s ’x;gt_l)) e pr|X7p (mz(it) ng)’ s ’Il(fll) dx(t) >0,
X X

>0 (on a set of non-zero measure) >0 (on a set of non-zero measure)
where the conditional densities are non-zero by the pésitiondition. Thus the Markov ChaifX (")), is strongly
f-irreducible. Asf is the unique invariant distribution of the Markov chainjstas well recurrent (proposition
1.28). O

4 Here and in the following we understand by “irreducibilty” irreducibility witispect to the target distributioh



4.4 Convergence of the Gibbs sampler 49

If the transition kernel is absolutely continuous with resipto the dominating measure, then recurrence even
implies Harris recurrence (see e.g. Robert and Casella, 2@nma 10.9).

Now we have established all the necessary ingredientstmaeergodic theorem for the Gibbs sampler, which
is a direct consequence of theorem 1.30.

Theorem 4.6. If the Markov chain generated by the Gibbs sampler is irrélolecand recurrent (which is e.g. the
case when the positivity condition holds), then for anygrable functions : £ — R

lim L > nXW) — By (h(X))
n—oo N,
t=1

for almost every starting valu(?). If the chain is Harris recurrent, then the above result hofdr every starting
valueX(©,

Theorem 4.6 guarantees that we can approximate expectéijofh(X)) by their empirical counterparts using
a singleMarkov chain.

Example 4.4. Assume that we want to use a Gibbs sampler to estimate thalglitp P(X; > 0, X, > 0) for a
2
Ny << f > , ( o1 0122 >> distribution® The marginal distributions are

M2 012 03
Xy ~N(p1,07)  and  Xo ~ N(uz,03)

In order to construct a Gibbs sampler, we need the condltdistributions X | Xo = x5 and X5| X7 = 1. We

havé
) W 2 e\ m 1
s = () (2 5) () (2)
xp [ — (z1 — (1 + 012/035 (22 — p12)))?
x ep( 2(0%_(012)2/(7%) >7
i.e.

Xi1|Xo = @5 ~ N(u1 + 012/05 (22 — p12), 07 — (012)%/3)
Thus the Gibbs sampler for this problem consists of itegafom¢ = 1,2, ...
1. DrawX{? ~ N(uy + 012/02 (XS = 112), 0% — (012)%/02)

® A Gibbs sampler is of course not the optimal way to sample froiy @, ) distribution. A more efficient way is: draw
Zry.. Zy R N(0,1) and se( X1, ..., X,) = XYV Z1,..., Zy) +

5 We make use of
(-G Gl ) (()-()
X2 2 012 U% T2 H2
_ 1 €1 B [%51 / U% —012 T B 241
0}03 — (012)? T2 2 —012 o? T2 M2

1
= Pl (on)? (03 (1 — 1)? = 2012 (21 — ) (w2 — p2)) + const
1¥2

1 2 2 2
= m (0'2131 — 205x1p1 — 201221 (T2 — ug)) + const
o
ot — (012)?/03

1
7= (o "

x% — 22?1(/141 + 012/0'5(1'2 — MQ))) + const

2
1 +O’12/O'§({L‘2 — ,uz)) + const
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2. Draw X" ~ N(us + 012/03(X\" — 1), 03 — (012)? /o).

Now consider the special cage = 2 = 0, 02 = 03 = 1 andoy2 = 0.3. Figure 4.4 shows the sample paths of
this Gibbs sampler.
Using theorem 4.6 we can estimdéX; > 0, X, > 0) by the proportion of samplesy”, x{) with X > 0

andXét) > 0. Figure 4.3 shows this estimate. N

0.5

0.4

0.3
L

XD, X7 <, X7 > 0,x87 > 0}/
0.2
1

0.1

0 2000 4000 6000 8000 10000

t

Figure 4.3. Estimate of thdP(X; > 0, X» > 0) obtained using a Gibbs sampler. The area shaded in grey correspahés
range of 100 replications.

Note that the realisationsX(®), X (1)) form a Markov chain, and are thumt independent, but typically
positively correlated. The correlation between X&) is larger if the Markov chain moves only slowly (the chain
is then said to bslowly mixing. For the Gibbs sampler this is typically the case if thealslesX; are strongly
(positively or negatively) correlated, as the followingaexple shows.

Example 4.5 (Sampling from a highly correlated bivariate Gaussian). Figure 4.5 shows the results obtained when
sampling from a bivariate Normal distribution as in exanmh#, however withr5, = 0.99. This yields a correlation

of p(X1,X2) = 0.99. This Gibbs sampler is a lot slower mixing than the one careid in example 4.4 (and
displayed in figure 4.4): due to the strong correlation thiebSisampler can only perform very small movements.
This makes subsequent sampfég_l) andX]@ highly correlated and thus yields to a slower convergenséhea

plot of the estimated densities show (panels (b) and (c) afdig4.4 and 4.5). <
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Figure 4.4. Gibbs sampler for a bivariate standard normal distribution with correlatioh , X2) = 0.3.
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Figure 4.5. Gibbs sampler for a bivariate normal distribution with correlafgX ;, X») = 0.99.
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Chapter 5

The Metropolis-Hastings Algorithm

5.1 Algorithm

In the previous chapter we have studied the Gibbs samplpeaad case of a Monte Carlo Markov Chain (MCMC)
method: the target distribution is the invariant distribatof the Markov chain generated by the algorithm, to which
it (hopefully) converges.

This chapter will introduce another MCMC method: the MetiiggHastings algorithm, which goes back to
Metropolis et al. (1953) and Hastings (1970). Like the réggcsampling algorithm 3.1, the Metropolis-Hastings
algorithm is based on proposing values sampled from aruim&ntal distribution, which are then accepted with a
certain probability that reflects how likely it is that thenedrom the target distributiopf.

The main drawback of the rejection sampling algorithm 3.fhét it is often very difficult to come up with
a suitable proposal distribution that leads to an efficiéggpr@thm. One way around this problem is to allow for
“local updates”, i.e. let the proposed value depend on teedecepted value. This makes it easier to come up
with a suitable (conditional) proposal, however at the @€ yielding a Markov chain instead of a sequence of
independent realisations.

Algorithm 5.1 (Metropolis-Hastings).  Starting withX(?) .= (Xl(o), ce XZ(,O)) iterate fort = 1,2, ...

1. DrawX ~ q(-|X(*=1),
2. Compute

- . f(X) - a(X“V[X)
a(X|X( 1)) = min {1, f(X(t_l)) . q(X|X(t_1)) } . (5.1)

3. With probabilitya(X|X*~1) setX® = X, otherwise seK ) = X1,
Figure 5.1 illustrates the Metropolis-Hasting algorithxute that if the algorithm rejects the newly proposed

value (open disks joined by dotted lines in figure 5.1) it stayits current valu& *—1). The probability that the
Metropolis-Hastings algorithm accepts the newly propagateX given that it currently is in statX (*—1 is

a(xt) = /a(x|x(t_1))q(x\x(t_1)) dx. (5.2)

Just like the Gibbs sampler, the Metropolis-Hastings dtlgr generates a Markov chain, whose properties will be
discussed in the next section.

Remark 5.1. The probability of acceptance (5.1) does not depend on thealsation constant, i.e. if(x) =
C - 7(x), then

fx)-ax"Vx)  Cr(x)-gx"Vx) w(x)-g(x*Vx)
FO) - qxxt=0) - Cr(xE1) - gxxt=1) - r(x (D) - g(x[x (D)
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x®

Figure 5.1. lllustration of the Metropolis-Hastings algorithm. Filled dots denote accepételss open circles rejected values.

Thus f only needs to be known up to normalisation constant.

5.2 Convergence results

Lemma 5.2. The transition kernel of the Metropolis-Hastings algonitlis
KD x0) = a(xPxD)g(xOx) + (1= a(x"7)) e (x1), (5.3)
whered, -1 (-) denotes Dirac-mass ofx (!~ }.
Note that the transition kernel (5.3)nst continuous with respect to the Lebesgue measure.
Proof. We have
P(X® e x| XD = xt=D) = p(X® e X, new value acceptéd (1) = x(t=1))
+P(X® e X, new value rejectdX (=1 = x(*=1))

_ / (38 =1 g (x(8) [t =1 i)
X

+  Tx(x®"Y)  P(new value rejecteX *—1) = x(t=1)

:fX 5x(t—1)(dx(t)) =1—a(x(-1)

=[x (1=a(xt=1))5 (1) (dx*))

= / a(x® xE D) (x®x D) dx® + / (1 —a(x*"V))d -0 (dx®) O
X X

Proposition 5.3.  The Metropolis-Hastings kernel (5.3) satisfies the detidilalance condition
RK(x x®) p(xt0) = K(x®,x1) ()

and thusf(x) is the invariant distribution of the Markov chaifX(?), X(1) .. .) generated by the Metropolis-
Hastings sampler. Furthermore the Markov chain is revdesib

! On a similar note, it is enough to knay(x‘ ~")|x) up to a multiplicative constant independentf~") andx.
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Proof. We have that
F(x)q(xt~ D x(1))
FeED)g(x D

= min { £(x*7)g(x VD), £x?)g(xjx®) |

P g(x W x D) t—1) o (t t t—1) 1o (¢ t—1) ) (t t
= mln{ PO D) 1 q(x( )\x( ))f(x( )) = a(x( )|x( ))q(x( )|x( ))f(x( ))

et~ 7 = ain {1, JYCRECRE

and thus

KD, x0)f(x) = alelx)g(x 0 xD) f(x)
=a(x(t=D[x(0))q(xt=D |x(®) f(x(®)
(L= ax ) S (x0) ()
|

=0if x® #x(t=1

(1=a(x))5 (o) (x(t-1)

- K(X(t),x(t_l))f(x(t))
The other conclusions follow by theorem 1.22, which alsdiappn the continuous case (see page 21). O

Next we need to examine whether the Metropolis-Hastingsriilgn yields an irreducible chain. As with the
Gibbs sampler, this does not need to be the case, as theifujl@wample shows.

Example 5.1 (Reducible Metropolis-Hastings). Consider using a Metropolis-Hastings algorithm for sangpfrom
a uniform distribution o0, 1]U[2, 3] and al (z*~Y —¢, 2(*~1) 4-§) distribution as proposal distributiar:|=*~1)).
Figure 5.2 illustrates this example. It is easy to see thatrdisulting Markov chain isotirreducible if§ < 1:in
this case the chain either stayg@n1] or 2, 3]. q

]/(2(» T° . (7(".’1’“7”)

/24—

Figure 5.2. lllustration of example 5.1

Under mild assumptions on the propogélx‘—1)) one can however establish the irreducibility of the reaglti
Markov chain:

— If g(x®|x*=1) is positive for allx(*~1) x®) ¢ supgf), then it is easy to see that we can reach any set of
non-zero probability undef within a single step. The resulting Markov chain is thusregtg irreducible. Even
though this condition seems rather restrictive, many ppehoices ofy(-|x(*~1) like multivariate Gaussians or
t-distributions fulfil this condition.

— Roberts and Tweedie (1996) give a more general conditiothforrreducibility of the resulting Markov chain:
they only require that

Vedo: qx®xt) > eif |x*Y —xW| <4

together with the boundedness fobn any compact subset of its support.

The Markov chai{X(® X .. ) is further aperiodic, if there is positive probability thiae chain remains in
the current state, i.@(X® = X(*~1) > 0, which is the case if
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P (f(XED)g(XIXD) > f(X)g(XI[X)) > 0.

Note that this condition isot met if we use a “perfect” proposal which hfss invariant distribution: in this case
we accept every proposed value with probability

Proposition 5.4. The Markov chain generated by the Metropolis-Hastings @llgm is Harris-recurrent if it is
irreducible.

Proof. Recurrence follows from the irreducibility and the facttthfais the unique invariant distribution (using
proposition 1.28). For a proof of Harris recurrence seer(igg, 1994). O

As we have now established (Harris-)recurrence, we are padyrto state an ergodic theorem (using theorem
1.30).

Theorem 5.5. If the Markov chain generated by the Metropolis-Hastinggoaithm is irreducible, then for any
integrable functiom : £ — R

n
lim ~ > T h(X®) = Ef (h(X))
n—oo N,
t=1
for every starting valu& (®),

As with the Gibbs sampler the above ergodic theorem allowmference using a single Markov chain.

5.3 The random walk Metropolis algorithm

In this section we will focus on an important special casehefetropolis-Hastings algorithm: the random walk
Metropolis-Hastings algorithm. Assume that we generaengwly proposed stad® not using the fairly general

X~ g(-| X)), (5.4)

from algorithm 5.1, but rather
X=XtDye  en~g, (5.5)

with g being asymmetricdistribution. It is easy to see that (5.5) is a special casgs @) usingg(x|x(*—1) =
g(x —x*=1)). When using (5.5) the probability of acceptance simplifies to

min { 1 S(X) - gX*VIX) = min {1 JC(X)}
’f(X(tfl)).q()qX(t*l)) ’f(X(tfl)) ’

asq(X| Xt D) = (X — XtD) = ¢(XED — X) = ¢(X*D|X) using the symmetry of. This yields the
following algorithm which is a special case of algorithm Sahich is actually the original algorithm proposed by
Metropolis et al. (1953).

Algorithm 5.2 (Random walk Metropolis).  Starting withX(©) .= (Xl(o), e ,XZ()O)) and using a symmetric dis-
tributong, iterate fort = 1,2,. ..

1. Drawe ~ g and sefX = X(—1 4 ¢,
2. Compute

(XX D) = min {1, f(;;(()t(_)l))} . (5.6)

3. With probabilitya(X|X*—1) setX® = X, otherwise seK*) = X1,
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Example 5.2 (Bayesian probit model). In a medical study on infections resulting from birth by Gesa section
(taken from Fahrmeir and Tutz, 2001) three influence fadiax® been studied: an indicator whether the Cesarian
was planned or not(;), an indicator of whether additional risk factors were prasat the time of birth4-), and

an indicator of whether antibiotics were given as a propliglé&;s). The respons&; is the number of infections
that were observed amongst patients having the same influence factors (covariate®).dBta is given in table
5.1.

Number of births | planned| risk factors| antibiotics
with infection | total
Yi n; Zil Zi2 Zi3

11 98 1 1 1

1 18 0 1 1

0 2 0 0 1

23 26 1 1 0

28 58 0 1 0

0 9 1 0 0

8 40 0 0 0

Table 5.1. Data used in example 5.2

The data can be modeled by assuming that
}/i ~ Bin(n,-,m-), ™ = @(Z;,@),

wherez; = (1, zi1, zi2, zi3) and®(-) being the CDF of th&l(0, 1) distribution. Note tha®(¢) € [0, 1] forall t € R.
A suitable prior distribution for the parameter of inter8ss 3 ~ N(0,1/)). The posterior density ¢8 is

n 3
FBlyr, - yn) o <H D(z;B)" - (1~ ¢(Zéﬂ))”’i_yi> - exp —% > .6
i=1 =0

We can sample from the above posterior distribution usiedga@iowing random walk Metropolis algorithm. Start-
ing with any3”) iterate fort = 1,2, .. .:

1. Drawe ~ N (0, X) and se3 = 8~ +¢.
2. Compute

(t=1)y _ o f(BIY1,...,Yy)
a(,@‘ﬁt 1)—m1n{1, f(ﬁ(t_l)|Y1,-..,qu) .

3. With probabilitya(8|3% V) set3) = 3, otherwise seB') = g(t~1),

To keep things simple, we choose the covariabtef the proposal to b8.08 - 1.
Figure 5.3 and table 5.2 show the results obtained usindBGamples Note that the convergence of tﬁét)

Posterior meaﬂ 95% credible interval
intercept Bo -1.0952 | -1.4646 -0.7333
planned 51 0.6201| 0.2029 1.0413
risk factors 3, 1.2000| 0.7783 1.6296
antibiotics 33 -1.8993 | -2.3636 -1.471
Table 5.2. Parameter estimates obtained for the Bayesian probit model from &xar2p

is to a distribution, whereas the cumulative averaEs,fs:1 Bj(.T)/t converge, as the ergodic theorem implies, to a
value. For figure 5.3 and table 5.2 the first 10,000 samples begn discarded (“burn-in”). <

2 You might want to consider a longer chain in practise.
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Figure 5.3. Results obtained for the Bayesian probit model from example 5.2
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5.4 Choosing the proposal distribution

The efficiency of a Metropolis-Hastings sampler dependshenchoice of the proposal distributias-|x*—1)).
An ideal choice of proposal would lead to a small correlatidrsubsequent realisatiods*—") and X®). This
correlation has two sources:

— the correlation between the current st&té—1) and the newly proposed valde ~ ¢(-|X¢~1), and
— the correlation introduced by retaining a valié) = X(¢—1) because the newly generated vaKiehas been
rejected.

Thus we would ideally want a proposal distribution that ballbws for fast changes in th¥(*) and yields a high
probability of acceptance. Unfortunately these are twoeting goals. If we choose a proposal distribution with
a small variance, the probability of acceptance will be higbwever the resulting Markov chain will be highly
correlated, as th& () change only very slowly. If, on the other hand, we choose pgsal distribution with a large
variance, theX *) can potentially move very fast, however the probability efeptance will be rather low.

Example 5.3. Assume we want to sample fromM(0, 1) distribution using a random walk Metropolis-Hastings
algorithm withe ~ N(0,02). At first sight, we might think that setting® = 1 is the optimal choice, this is
however not the case. In this example we examine the chaiées: 0.1, 02 = 1, 02 = 2.38%, ando? = 102
Figure 5.4 shows the sample paths of a single run of the quneing random walk Metropolis-Hastings algorithm.
Rejected values are drawn as grey open circles. Table 5\@ssine average correlatigi X ‘—1, X®)) as well

as the average probability of acceptande(| X *~1)) averaged over 100 runs of the algorithm. Choosifdoo
small yields a very high probability of acceptance, howatehe price of a chain that is hardly moving. Choosing
o2 too large allows the chain to make large jumps, however miasteoproposed values are rejected, so the chain
remains for a long time at each accepted value. The resuitgestithair?> = 2.382 is the optimal choice. This

corresponds to the theoretical results of Gelman et al.5)199 <
Autocorrelationp(X *=, X®)) | Probability of acceptance(X, X *~Y)
Mean 95% CI Mean 95% ClI
0?2 =0.17 | 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)
o2 =1 0.7733 (0.7676,0.7791) 0.7038 (0.7014,0.7061)
02 =2.382 | 0.6225 (0.6162,0.6289) 0.4426  (0.4401,0.4452)
o? =102 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Table 5.3. Average correlatiop(X “~, X)) and average probability of acceptaneeX | X =) found in example 5.3 for
different choices of the proposal variang

Finding the ideal proposal distributigyf-|x(*~1)) is an art This is the price we have to pay for the generality
of the Metropolis-Hastings algorithm. Popular choicesrimmdom walk proposals are multivariate Gaussians or
t-distributions. The latter have heavier tails, makingnhe safer choice. The covariance structure of the proposal
distribution should ideally reflect the expected covar@ontthe (X3, ..., X, ). Gelman et al. (1997) propose to
adjust the proposal such that the acceptance rate is aig@rfdr one- or two dimensional target distributions, and
aroundl /4 for larger dimensions, which is in line with the results weadhed in the above simple example and the
guidelines which motivate them. Note however that thesguateough guidelines.

Example 5.4 (Bayesian probit model (continued)). In the Bayesian probit model we studied in example 5.2 we drew

3 The optimal proposal would be sampling directly from the target distribufibe very reason for using a Metropolis-Hastings
algorithm is however that we cannot sample directly from the target!
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Figure 5.4. Sample paths for example 5.3 for different choices of the propa@sances2. Open grey discs represent rejected
values.
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e ~ N(0,X)

with X' = 0.08 - I, i.e. we modeled the componentseofo be independent. The proportion of accepted values we
obtained in example 5.2 wds.9%. Table 5.4 (a) shows the corresponding autocorrelation.r€bulting Markov
chain can be made faster mixing by using a proposal distoibuhat represents the covariance structure of the
posterior distribution of3.

This can be done by resorting to the frequentist theory okegaised linear models (GLM): it suggests that the
asymptotic covariance of the maximum likelihood estimis (Z'DZ) !, whereZ is the matrix of the covariates,
andD is a suitable diagonal matrix. When usidy= 2-(Z’DZ) ! in the algorithm presented in section 5.2 we can
obtain better mixing performance: the autocorrelatioreuced (see table 5.4 (b)), and the proportion of accepted
values obtained increases to 20.0%. Note that the detentmifidoth choices o’ was chosen to be the same, so
the improvement of the mixing behaviour is entirely due tdafecence in the structure of the the covariance.<

(@) X =0.08 I

‘ Bo B 52 B3
Autocorrelationp(3Y ), 31") \ 0.9496 0.9503 0.9562 0.9532

by ¥ =2-(ZzDZ)™!

Bo 6t B2 B3
Autocorrelationp(3) ", 5{”) | 0.8726 0.8765 0.8741 0.8792

J

Table 5.4. Autocorrelationp(ﬂé“l) , ﬂ]@) between subsequent samples for the two choices of the covatance
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Chapter 6

Diagnosing convergence

6.1 Practical considerations

The theory of Markov chains we have seen in chapter 1 guasartat a Markov chain that is irreducible and
has invariant distributiory converges to the invariant distribution. The ergodic teew 4.6 and 5.5 allow for
approximating expectatioriS;(h(X)) by their the corresponding means

1

el

T
ST RXY) — B (h(X))
t=1

using theentirechain. In practise, however, often only a subset of the c{%i¥), is used:

Burn-in Depending on howX () is chosen, the distribution ofX (")), for small ¢ might still be far from the
stationary distributionf. Thus it might be beneficial to discard the first iteratid@s), ¢t = 1,...,Tp. This
early stage of the sampling process is often referred tbuas-in period. How larg€l has to be chosen
depends on how fast mixing the Markov ch&l(")), is. Figure 6.1 illustrates the idea of a burn-in period.

burn-in period (discarded)

Figure 6.1. lllustration of the idea of a burn-in period.

Thinning Markov chain Monte Carlo methods typically yield a Markovaahwith positive autocorrelation, i.e.
p(x\?, x ") is positive for small-. This suggests building a subchain by only keeping evesh value
(m > 1), i.e. we consider a Markov chaif ), with Y(*) = X(™*) instead of(X®)),. If the correlation
p(X® X (+7)) decreases monotonically in then

P YD) = p(x® x (M) < p(x®) x (),

i.e. the thinned chaifiY (*)), exhibits less autocorrelation than the original ch@n")),. Thus thinning can be
seen as atechnique for reducing the autocorrelation, hewvegthe price of yielding a cha(FY(”)t:L_“ \T/m]»
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whose length is reduced ta@/m)-th of the length of the original chaifX *));—; . Even though thinning is
very popular, it cannot be justified when the objective ignestingIE ¢ (7(X)), as the following lemma shows.

Lemma6.1. Let(X®),_; 1 be a sequence of random variables (e.g. from a Markov chath) ¥*) ~ f
and(Y®),_; 7/m asecond sequence definedBy) := X8 If Var;(h(X®)) < +oo, then

1 T 1 LT /m]
ar <T2h(x<t>)> < Var ] > n(y®y ).

Proof. To simplify the proof we assume th@tis divisible bym, i.e.T/m € N. Using

T m—1T/m
Zh(X(t)) — Z Z h(X(t~m+7-))
t=1 7=0 t=1

and

t=1

T/m /m
Var (Z h(x(t.er‘rl) ) Var (Z X(t m+‘r2 )

for 1,2 € {0,...,m — 1}, we obtain that

T m—1T/m
ar (Z h(X<t>)> = Var (Z > h(X<t'm+T>))

7=0 t=1

T/m T/m T/m
= m- Var (Z h(X ™) ) + Z Cov (Z h(XEmEn)y, Z X (tm+7)) )
t=1 t=1

n#7=0

g\/ar( T/m p(x m)))

IN
3
(v}
5
=
/
M3
3
=
o}

3
~
I
3

[\v}

5

=

o~
M3
3

=

<
C/

t=1 t=1
Thus
1 <& 1 T m? Tfm A
- X®Oy ) = — X ) = Y(t - = v©®
ar (T tz:; h( )) T3 Var <; h( ) T Z h( Var T/m ; h( )

The concept of thinning can be useful for other reasonselttimputer's memory cannot hold the entire chain
(X®),, thinning is a good choice. Further, it can be easier to astesconvergence of the thinned chain
(Y®), as opposed to entire chaiix (*)),.

6.2 Tools for monitoring convergence

Although the theory presented in the preceding chaptersagtees the convergence of the Markov chains to the
required distributions, this does not imply thdirate sample from such a chain yields a good approximation to the
target distribution. As with all approximating methodssthiust be confirmed in practise.

This section tries to give a brief overview over various agghes to diagnosing convergence. A more detailed
review with many practical examples can be diagnofound initf€nnec-Jouyaux et al., 1998) or (Robert and
Casella, 2004, chapter 12). There is an R pack&@§®A) that provides a vast selection of tools for diagnosing
convergence. Diagnosing convergence is an art. The tasbsigresented in the following are nothing other than
exploratory tools that help you judging whether the chais teached its stationary regime. This section contains
several cautionary examples where the different toolsifmgrtbsing convergence fail.

Broadly speaking, convergence assessment can be splihmtmllowing three tasks of diagnosing different
aspects of convergence:
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Convergence to the target distributioithe first, and most important, question is whet(Xf*)), yields a sample
from the target distribution? In order to answer this questie need to assess ...
— whether(X(®), has reached a stationary regime, and
— whether(X(®), covers the entire support of the target distribution.

Convergence of the averagel§oesth:1 h(X®)/T provide a good approximation to the expectation(h (X))
under the target distribution?

Comparison to i.i.d. samplingHow much information is contained in the sample from the Marghain compared
toi.i.d. sampling?

6.2.1 Basic plots

The most basic approach to diagnosing the output of a MarkairCMonte Carlo algorithm is to plot the sample
path (X)), as in figures 4.4 (b) (c), 4.5 (b) (c), 5.3 (a), and 5.4. Note tha convergence dfX(")), is in dis-
tribution, i.e. the sample path ot supposed to converge to a single value. Ideally, the plaglghze oscillating
very fast and show very little structure or trend (like fomexple figure 4.4). The smoother the plot seems (like for
example figure 4.5), the slower mixing the resulting chain is

Note however that this plot suffers from the “you’ve only s@e¢here you've been” problem. It is impossible to
see from a plot of the sample path whether the chain has edthe entire support of the distribution.

Example 6.1 (A simple mixture of two Gaussians). In this example we sample from a mixture of two well-sepatate

Gaussians
f(x) =0.4-¢_1,0.22)(7) + 0.6 - P(2,0.32)(7)

(see figure 6.2 (a) for a plot of the density) using a randonkWétropolis algorithm with proposed valug =
X1 4 ¢ with e ~ N(0, Var(e)). If we choose the proposal varian¥er(s) too small, we only sample from
one population instead of both. Figure 6.2 shows the sanmgifesgfor two choices oVar(¢): Var(e) = 0.4% and
Var(e) = 1.22. The first choice oWar(¢) is too small: the chain is very likely to remain in one of thetmodes of

the distribution. Note that it is impossible to tell from figu6.2 (b) alone that the chain has not explored the entire
support of the target. <

@
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(a) Densityf(x) (b) Sample path of a random wdl) Sample path of a random walk
Metropolis algorithm with proposal varfetropolis algorithm with proposal vari-
anceVar(e) = 0.47 anceVar(e) = 1.2?

Figure 6.2. Density of the mixture distribution with two random walk Metropolis samples usimgdifferent variance¥ar(¢)
of the proposal.

In order to diagnose the convergence of the averages, onéockrat a plot of the cumulative averages
(ijl h(X())/t);. Note that the convergence of the cumulative averages is theagrgodic theorems sug-
gest — to a valuel{;(h(X)). Figures 4.3, and 5.3 (b) show plots of the cumulative avesagdn alternative
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to plotting the cumulative means is using the so-called CMSL(B(XJ-) - 23:1 h(XP)/t) with h(X;) =
t

Zf:l h(X§T>)/T, which is nothing other than the difference between the dative averages and the estimate of
the limit E ¢ (h(X)).

Example 6.2 (A pathological generator for the Beta distribution). The following MCMC algorithm (for details, see
Robert and Casella, 2004, problem 7.5) yields a sample fraéta(«, 1) distribution. Starting with anyx (©)
iterate fort = 1,2, ...

1. With probabilityl — X*~1, setx® = x (-1,
2. Otherwise drawk ) ~ Beta(a + 1, 1).

This algorithm yields a very slowly converging Markov chaimwhich no central limit theorem applies. This slow
convergence can be seen in a plot of the cumulative meansg#g8 (b)). <
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Figure 6.3. Sample paths and cumulative means obtained for the pathological Betatpmn

Note that it is impossible to tell from a plot of the cumulatimeans whether the Markov chain has explored the
entire support of the target distribution.

6.2.2 Non-parametric tests of stationarity

This section presents the Kolmogorov-Smirnov test, whicAn example of how nonparametric tests can be used
as a tool for diagnosing whether a Markov chain has alreadyerged.

In its simplest version, it is based on splitting the chaintointhree parts: (X(t>)t:17,__7LT/3J,
(XD 17/3)41,...217/3), and (X®),_o 73,41, 7. The first block is considered to be the burn-in period. If
the Markov chain has reached its stationary regime afféi3] iterations, the second and third block should be
from the same distribution. Thus we should be able to tellthérethe chain has converged by comparing the distri-
bution of (X(t))f,:\_T/3J+1,...,2\_T/3J to the one of(X(t))tZQLT/SHL__,T using suitable nonparametric two-sample
tests. One such test is the Kolmogorov-Smirnov test.

As the Kolmogorov-Smirnov test is designed for i.i.d. saesplwe do not apply it to th€X(®), directly,
but to a thinned chaifY®), with Y®) = X(m1): the thinned chain is less correlated and thus closer to

being an i.i.d. sample. We can now compare the distribut'rbmb(t))t:LT/(g,,,,,,)J+1 2|7/(3m)) 10 the one of
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(YD), 217/ (3m))+1,..., | T/m) USINg the Kolmogorov-Smirnov statistic

As the thinned chain is not an i.i.d. sample, we cannot us&timogorov-Smirnov test as a formal statistical
test (besides we would run into problems of multiple testidpwever, we can use it as an informal tool by
monitoring the standardised statisti¢ &, as a function ot.? As long as a significant proportion of the values of
the standardised statistic are above the correspondingitpuaf the asymptotic distribution, it is safe to assume
that the chain has not yet reached its stationary regime.

Example 6.3 (Gibbs sampling from a bivariate Gaussian (continued)). In this example we consider sampling from a
bivariate Gaussian distribution, once withX;, X5) = 0.3 (as in example 4.4) and once witfi.X;, X5) = 0.99
(asin example 4.5). The former leads a fast mixing chainltter a very slowly mixing chain. Figure 6.4 shows the
plots of the standardised Kolmogorov-Smirnov statistisulggests that the sample size of 10,000 is large enough

for the low-correlation setting, but not large enough fa tigh-correlation setting. <
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Figure 6.4. Standardised Kolmogorov-Smirnov statistic ﬂsf“) from the Gibbs sampler from the bivariate Gaussian for two
different correlations.

Note that the Kolmogorov-Smirnov test suffers from the “yeuonly seen where you've been” problem,
as it is based on comparing ), 7/ @m)j+1,....217/Gm)) AN (YD), o7/ Gm)j41,....(7/m)- A plot of the
Kolmogorov-Smirnov statistic for the chain witfiar(¢) = 0.4 from example 6.1 would not reveal anything un-
usual.

! The two-sample Kolmogorov-Smirnov test for comparing two i.i.d. Se8\g1,1,..., 21, andZz 1, ..., Zs,, is based on
comparing their empirical CDFs

. 1
The Kolmogorov-Smirnov test statistic is the maximum difference betweetwth empirical CDFs:

K =sup |Fi(z) — Fa(2)].
z€R

Forn — oo the CDF ofy/n - K converges to the CDF

+oo
R(k) =1-= (=1)"""exp(-2i’k?).

i=1

2 K, is hereby the Kolmogorov-Smirnov statistic obtained from the sample ¢ompf the firstt observations only.
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6.2.3 Riemann sums and control variates

A simple tool for diagnosing convergence of a one-dimeradidfarkov chain can be based on the fact that

/Ef(x) do = 1.

We can estimate this integral by the Riemann sum

T
Z(X[t] — Xy p(x )y, (6.1)
t=2
whereX [l < . < X" s the ordered sample from the Markov chain. If the Markovicteas explored all the
support off, then (6.1) should be arourid Note that this method, often referred to as Riemann sunibggéand
Robert, 2001), requires that the densftis known inclusive of normalisation constants.

Example 6.4 (A simple mixture of two Gaussians (continued)). In example 6.1 we considered two random-walk
Metropolis algorithms: oneVar(¢) = 0.42) failed to explore the entire support of the target distiilny, whereas
the other oneVar(¢) = 1.22) managed to. The corresponding Riemann sum$.af8 and1.001, clearly indicat-
ing that the first algorithm does not explore the entire suppo <

Riemann sums can be seen as a special case of a techniquecoali®| variates The idea of control variates
is comparing several ways of estimating the same quantyloAg as the different estimates disagree, the chain
has not yet converged. Note that the technique of contridtes is only useful if the different estimators converge
about as fast as the quantity of interest — otherwise we woliidin an overly optimistic, or an overly conservative
estimate of whether the chain has converged. In the speasal af the Riemann sum we compare two quantities:
the constant and the Riemann sum (6.1).

6.2.4 Comparing multiple chains

A family of convergence diagnostics (see e.g. Gelman andriRdB92; Brooks and Gelman, 1998) is based on
running L > 1 chains — which we will denote bgX:9)), ... (X(1), — with overdispersetistarting values
X(®0) - X(L0) covering at least the support of the target distribution.

All L chains should converge to the same distribution, so comgadhie plots from section 6.2.1 for the
different chains should not reveal any difference. A morenfal approach to diagnosing whether thehains are
all from the same distribution can be based on comparingtiee-guantile distances.

We can estimate the inter-quantile distances in two ways. firfet consists of estimating the inter-quantile
distance for each of the chain and averaging over these results, i.e. our estimai'is 6&”/L7 wheres is the
distance between theand(1 — a) quantile of the-th chair( X (“:*)),. Alternatively, we can pool the data first, and
then compute the distance between ¢hand (1 — «) quantile of the pooled data. If all chains are a sample from
the same distribution, both estimates should be roughlgédinge, so their ratio

L <
Svimerval _ El:l 6&)/1’
can be used as a tool to diagnose whether all chains sampladtiie same distribution, in which case the ratio
should be around 1.
Alternatively, one could compare the variances within thehains to the pooled estimate of the variance (see

Brooks and Gelman, 1998, for more details).

3 i.e. the variance of the starting values should be larger than the varigitteetarget distribution.
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Example 6.5 (A simple mixture of two Gaussians (continued)). In the example of the mixture of two Gaussians we
will consider L = 8 chains initialised from &l(0, 102) distribution. Figure 6.5 shows the sample paths ofghe
chains for both choices dfar(¢). The corresponding values 8§ are:

0.9789992
Vi = (.42 gGinteval _ 7 77772 () 9696962
ar(e) = 0.05 3.630008
3.634382
V. = 1.2 Ginteval _ 22202 () 996687.
ar(e) = 005 = 3646463 :

., Iy H\ m

o “ "li“
‘W H ] .\ W ‘\l) \I\ ‘Y, I

sample pathsg (-9
sample paths( ()

I T T T T T I T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
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sample sample

(@) Var(e) = 0.4 (b) Var(e) = 1.22

Figure 6.5. Comparison of the sample paths for= 8 chains for the mixture of two Gaussians.

Note that this method depends crucially on the choice ofainialuesX (-9 ... X (L:0)

, and thus can easily
fail, as the following example shows.

Example 6.6 (Witch’s hat distribution). Consider a distribution with the following density:

@, 32) (1- 5)¢(”’0—2.I{) (x1,22) +0  if xq,29 € (0,1)
1,42
else

which is a mixture of a Gaussian and a uniform distributiasthitruncated td0, 1] x [0, 1]. Figure 6.6 illustrates

the density. For very sma#?, the Gaussian component is concentrated in a very smalbaoeady..
The conditional distribution ok | X5 is

1= 60,)n oy (21, 20) + 60y 0,1
Faa|s) = ( 22)D(p,021) (1, T2) + orz € (0,1)
0 else.

)
0+ (1= 0)b(uy,02) (22)”
Assume we want to estimaf®(0.49 < X, X, < 0.51) for § = 1073, u = (0.5,0.5)’, ando = 10~° using a
Gibbs sampler. Note that 99.9% of the mass of the distributiconcentrated in a very small area around, 0.5)
i.e.P(0.49 < X1, Xo < 0.51) = 0.999.

with 5, =

Nonetheless, it is very unlikely that the Gibbs samplertsithiis part of the distribution. This is due to the fact
that unlesse, (or z4) is very close tous (Or 1), 04, (Or é,,) is almost 1, i.e. the Gibbs sampler only samples
from the uniform component of the distribution. Figure 6h®ws the samples obtained from 15 runs of the Gibbs
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sampler (first 100 iterations only) all using different ialisations. On average only 0.04% of the sampled values
lie in (0.49,0.51) x (0.49,0.51) yielding an estimate o]f’(o.49 < X1,X5 < 0.51) = 0.0004 (as opposed to
P(0.49 < X1, X5 <0.51) = 0.999).

It is however close to impossible to detect this problem vaitly technique based on multiple initialisations.
The Gibbs sampler shows this behaviour for practicallytalit;g values. In figure 6.6 all 15 starting values yield
a Gibbs sampler that is stuck in the “brim” of the witch’s hatlahus misses 99.9% of the probability mass of the
target distribution. <

(b) First 100 values from 15 samples using different
starting values.

/ _
(0.5, 0.5) , ando = 0.05 (5 _ 10—3, W= (0.5’ 0.5)/’ ando = 10—5)

(@) Density foro = 0.2, u

Figure 6.6. Density and sample from the witch’s hat distribution.

6.2.5 Comparison to i.i.d. sampling and the effective sample size

MCMC algorithms typically yield a positively correlatedrsple (X®)),_; 7, which contains less information

.....

than an i.i.d. sample of siZE. If the (X(t))t:17.._7T are positively correlated, then the variance of the average

V: 1Thx<f> 6.2
ar f;( ) (6.2)

is larger than the variance we would obtain from an i.i.d. gmwhich isVar(h(X®)))/T.

The effective sample size (ESS) allows to quantify this laissformation caused by the positive correlation.
The effective sample size is the size an i.i.d. sample woale lto have in order to obtain the same variance (6.2)
as the estimate from the Markov chdX®),—; 7.

In order to compute the variance (6.2) we make the simplifyassumption tha(th(X(“))t:L__yT is from a
second-order stationary time series, Var(h(X ")) = o2, andp(h(X®), h(X**7))) = p(7). Then

1 a t 1 a t s t
Var (T ;hod >)> = ™ ;Var(h(X( ))) +2 1<Z Cov(h(X®), h(X®))
- - =02 Ss<t=T =o02p(t—s)
0_2 T—1 0_2 T—1 -
- = <T+2;(T—T)p(7)> == <1+2TZ_1 (1 - f) p(T)) .

If j;’j |p(T)| < 400, then we can obtain from the dominated convergence thédiean

1 see e.g. Brockwell and Davis (1991, theorem 7.1.1) for details.
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1 & ~—
T . Var (T ; h(X(O)) — 2 (1 + 2;1 p(T))

asT — oo. Note that the variance would b€ / Tiss if we were to use an i.i.d. sample of siZgss We can now
obtain the effective sample siZgssby equating these two variances and solvingfiegs, yielding

1
BT SV
If we assume thath(X(V)),—, 7 is afirst-order autoregressive time series (AR, i.e.p(7) = p(h(X®), (X1+7))) =
pl7!, then we obtain using + 237 p™ = (1 + p)/(1 — p) that
Tess= ﬁ :
Example 6.7 (Gibbs sampling from a bivariate Gaussian (continued)). In examples 4.4 and 4.5 we obtained for the
low-correlation setting thas( X", x{V) = 0.078, thus the effective sample size is

1-0.078
Teeg= ——— .1 = 8547.
ESS= 7 10078 0000 = 8547

For the high-correlation setting we obtainﬁd’(f‘l), Xft)) = 0.979, thus the effective sample size is considerably

smaller:
1—0.979
Tess= ————— - 10000 = 105.
BSS ™ 110979
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Chapter 7

State-space models and the Kalman filter

algorithm

7.1 Motivation

In many real-world applications, observations arrive seially in time, and interest lies in performing on-line
inference about unknown quantities from the given obsemat If prior knowledge about these quantities is avail-
able, then it is possible to formulate a Bayesian model thedbrporates this knowledge in the form of a prior
distribution on the unknown quantities, and relates theshe observations via a likelihood function. Inference
on the unknown quantities is then based on the posterioiliibn obtained from Bayes’ theorem. Examples
include tracking an aircraft using radar measurementgcpeecognition using noisy measurements of voice sig-
nals, or estimating the volatility of financial instrumentsng stock market data. In these examples, the unknown
quantities of interest might be the location and velocitytled aircraft, the words in the speech signal, and the
variance-covariance structure, respectively. In allefeeamples, the data is modelled dynamically in the sense tha
the underlying distribution evolves in time; these modets lkenown asdynamic modelsSequential Monte Carlo
(SMC) methods are a non-iterative, alternative class dfrilgms to MCMC, designed specifically for inference
in dynamic models. A comprehensive introduction to thesthows is the book by Doucet et al. (2001). We point
out that SMC methods are applicable in settings beyond dimarmdels, such as non-sequential Bayesian infer-
ence, rare events simulation, and global optimizationvides that it is possible to define an evolving sequence of
artificial distributions from which the distribution of ietest is obtained via marginalisation.

Letp;(x;) denote the distribution at time> 1, wherex; = (z1, ..., ;) typically increases in dimension with
t, but it is possible that the dimensionof be constantt > 1, or thatx; have one dimension less thap ;. The
particular feature of dynamic models is the evolving nanfréhe underlying distribution, wherg; (x;) changes
in time ¢ as new observations are generated. Note thatre the quantities of interest, not the observations; the
observations up to timedetermine the form of the distribution, and this is impligdthe subscript in p;(-). This
is in contrast to non-dynamic models where the distribuigoronstant as new observations are generated, denoted
by p(x). In the latter case, MCMC methods have proven highly effedti generating approximate samples from
low-dimensional distributions(x), when exact simulation is not possible. In the dynamic catseach time step
a different MCMC sampler with stationary distributippn(x;) is required, so the overall computational cost would
increase witht. Moreover, for large, designing the sampler and assessing its convergence Wwelittreasingly
difficult.

SMC methods are a non-iterative alternative to MCMC alfoni, based on the key idea thapif 1 (x;—1)
does not differ much from;(x;), then it is possible to reuse the samples from; (x;_1) to obtain samples from
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pt(x¢). In most applications of interest, it is not possible to ab&xact samples from these evolving distributions,
so the goal is to reuse an approximate sample, representdtjy _ (x;—1), to obtain a good representation of
pt(x¢). Moreover, since inference is to be performed in real timees observations arrive, it is necessary that
the computational cost be fixed inWe will see in the sequel that SMC methods are highly flexiaiel widely
applicable; we restrict our attention to a particular clafssdynamic models called thetate-space modéESM).

7.2 State-space models

SSMs are a class of dynamic models that consist of an undgrijiarkov process, usually called thte process
Xy, that is hidden, i.e., unobserved, and an observed progesally called thebservation procesd’;. Consider
the following notation for a state-space model:

observation: y; = a(x;,u) ~ g(-|z¢, ¢)

hidden state: z; = b(xt—1,v:) ~ f(-|z¢—1,6),

wherey; andx, are generated by functionrg-) andb(-) of the state and noise disturbances, denoted bgnd
vy, respectively. Assume andé to be known. Lefp(z;) denote the distribution of the initial statg. The state
process is a Markov chain, i.en(z¢|z1,...,21—1) = p(z|zi—1) = f(x¢|ze-1,0), @and the distribution of the
observationy,, conditional onx;, is independent of previous values of the state and obsenvptocesses, i.e.,
P(Yt|T1:t, Y1:6—1) = p(ye|ze) = g(yt|ae, ¢). See Figure 7.1 for illustration.

-’lIt|-’Bt 1Nf(-’vt|$t 1,

o8-8 88 0-s-
ORNOBOBOBIOBION G

yelze ~ g(ys|ze, B)

Figure 7.1. The conditional independence structure of the first few states andvalises in a hidden Markov Model.

Note that we use the notatian.; to denoter, ..., 2, and similarly fory,.,. For simplicity, we drop the explicit
dependence of the state transition and observation dessit) and¢, and writef (+|z;—1), andg(+|z;).

The literature sometimes distinguishes between stateespadels where the state process is given by a discrete
Markov chain, callechidden Markov model$HMM), as opposed to a continuous Markov chain. An extensive
monograph on inference for state-space models is the bodkapye et al. (2005), and a more recent overview
is Capie et al. (2007). In the present chapter and the following, meduce several algorithms for inference in
state-space models, and point out that the algorithms ip@h& apply more generally to dynamic models.

7.2.1 Inference problems in SSMs

Under the notation introduced above, we have the joint tfensi

t t

P, yie) = ple)g(lz) [ [ pas, vilzrio1, yiio1) = p(z)g@laen) [T £(ilzio)g(yila),

i=2 i=2

and, by Bayes’ theorem, the density of the distribution tériest

P(w1:|y1:4) < p(e1:elyr:e—1)g(elve) = p(r1e—1lyre—1) f(@e]we—1)g(yel o). (7.1)
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To connect this with the notation introduced for dynamic elsdwe can writep;(z1.:) = p(x1.¢|y1.¢), but we
believe that stating the dependence on the observatiotisidypeads to less confusion.

There exist several inference problems in state-space It involve computing the posterior distribution
of a collection of state variables conditional on a batchlifesvations:

— filtering: p(z¢|y1.+)

— fixed lag smoothingp(z;—;|y1.4), for0 <1<t —1

— fixed interval smoothingo(x;.k|y1.¢), forl <l < k <t
— prediction:p(zy.|y1.+), fork > tandl <1 < k.

The first three inference problems reduce to marginalisatiothe full smoothing distributiop(z1.¢|y1.¢), i.€.,
integrating over the state variables that are not of intevdsereas the fourth reduces to marginalisation of

k
P(fﬁ:k\yu):P($1:t|y1:t) H f(lz\wzq)
i=t+1

So far we assumed that the state transition and observagiwsitibs are completely characterised, i.e., that the
parameter® and¢ are known. If they are unknown, then Bayesian inference ieemed with the joint posterior
distribution of the hidden states and the parameters:

t

P14, 0, Blyre) < p(yrelzre, 0, 0)p(x1:410, 9)p(6, ¢) = (6, S)p(w1)g(yrl1, @) [ | £ (wilwio1, 0)g(uilzi, 6).

=2

If interest lies in the posterior distribution of the paraers, then the inference problem is called:
— static parameter estimationi(0, ¢|y;.;),

which reduces to integrating over the state variables ifdiné posterior distribution(x;.+, 0, ly.¢).

It is evident, then, that these inference problems dependhentractability of the posterior distribution
p(x1.¢|y1.¢), If the parameters are known, pfz1.¢, 0, |y1.+), otherwise. Notice that equation (7.1) gives the pos-
terior distribution up to a normalising constap(z1.|y1..—1)g(y¢|z¢)dz1., and it is oftentimes the case that the
posterior distribution is known only up to a constant. Intféltese posterior distributions can be computed in closed
form only in a few specific cases, such as the hidden Markowaiod., when the state process is a discrete Markov
chain, and the linear Gaussian model, i.e., when the fumeti§) andb() are linear, and the noise disturbanegs
andv; are Gaussian.

For HMMs with discrete state transition and observationriistions, the tutorial of Rabiner (1989) presents
recursive algorithms for the smoothing and static paranestmation problems. The Viterbi algorithm returns the
optimal sequence of hidden states, i.e., the sequence éxanises the smoothing distribution, and the Expectation-
Maximization (EM) algorithm returns parameter values fdiieh the likelihood function of the observations attains
a local maximum. If the observation distribution is contins, then it can be approximated by a finite mixture
of Gaussian distributions to insure that the EM algorithmligs to the problem of parameter estimation. These
recursive algorithms involve summations over all statehémodel, so they are impractical when the state space
is large.

For the linear Gaussian model, the normalising constant.ib) can be computed analytically, and thus the
posterior distribution of interest is known in closed forim;fact, it is the Gaussian distribution. Th&lman fil-
ter algorithm (Kalman, 1960) gives recursive expressions lierrnean and variance of the filtering distribution
p(x¢|y1.1), under the assumption that all parameters in the model aerkrKalman (1960) obtains recursive ex-
pressions for the optimal values of the mean and variana@npeters via a least-squares approach. The algorithm
alternates between two steps: a prediction step (i.e.jqtrie state at time conditional onyy.;_1), and an update
step (i.e., observg,, and update the prediction in light of the new observati@gction 7.3 presents a Bayesian
formulation of the Kalman filter algorithm following Meinksband Singpurwalla (1983).
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When an analytic solution is intractable, exact inferenaejgaced by inference based on an approximation to
the posterior distribution of interest. Grid-based methoesing discrete numerical approximations to these posteri
distributions are severely limited by parameter dimensiiternatively, sequential Monte Carlo methods are a
simulation-based approach that offer greater flexibilitgl #cale better with increasing dimensionality. The key
idea of SMC methods is to represent the posterior distobuby a weighted set of samples, calleatticles that
arefiltered in time as new observations arrive, through a combinatiosanfipling and resampling steps. Hence
SMC sampling algorithms are oftentimes callgatticle filters(Carpenter et al., 1999). Chapter 8 presents SMC
methods for the problems of filtering and smoothing.

7.3 The Kalman filter algorithm

From (7.1), the posterior distribution of the statg conditional on the observationg.; is proportional to
p(xi|ly1..—1)9(ye|x¢). The first term is the distribution of, conditional on the first — 1 observations; comput-
ing this distribution is known as thgredictionstep. The second term is the distribution of the new observat
y: conditional on the hidden state at timeUpdatingp(z¢|y1.:—1) in light of the new observation involves taking
the product of these two terms, and normalising; this is kmaw theupdatestep. The result is the distribution of
interest:

€T o X
p($t|y1:t):/p(x1:t|y1:t)dx1,,,dxt_l _ p(@dlyra—1)g(yelz) _
J p(zelyre—1)g(yelxe)day

We now show how the prediction and update stages can be pedioexactly for the linear Gaussian state-space
model, which is represented as follows:

observation: y; = A,z + up ~ N(A;zy, D?) (7.2)
hidden state: Ty — Bt:ct_l + v~ N(Btil't_l, 92), (73)

whereu; ~ N(0,®?%) andv; ~ N(0,©?) are independent noise sequences, and the paramgtes, 2, ando?

are known. It is also possible to let the noise variankgand©? vary with time; the derivation of the mean and
variance of the posterior distribution follows as detaitelow. We assume that both states and observations are
vectors, in which case the parameters are matrices of appt®gizes.

The Kalman filter algorithm proceeds as follows. Start withiaitial Gaussian distribution omy: z; ~
N(p1, X1). Attimet — 1, let u,—; andX;_; be the mean and variance of the Gaussian distributian_of condi-
tional ony;.;—1. Looking forward to time:, we begin by predicting the distribution of conditional ony;.¢—1.

Prediction step: From equation (7.3)z: = Bixi—1 + ve, Wherez;q|y1.—1 ~ N(pe—1, Xi—1), andv; ~
N(0,©2) independently. By results in multivariate statisticallgsis (Anderson, 2003), we have that

z|y14—1 ~ N(Bipe—1, B Sp—1 B] + 632), (7.4)

where the superscrigtindicates matrix transpose. This can be thought of as the gistribution onz;.
Update step:Upon observingy;, we are interested in

p($t|y1:t) 08 p(yt|$t,ylzt—1)p($t|y1:t—1)-

Following equation (7.2) and the result in (7.4), considedictingy; by §; = A;Bip:—1, whereB, pi;_ is the
prior mean onz;. The prediction error is; = v, — §: = y: — A Bype—1, Which is equivalent to observing. So
it follows thatp(w¢|y1.¢) o plet|zs, y1:e—1)p(@elyr:e—1). Finally, from (7.2),e; = A¢(vr — Byjug—1) + ug, where
ug ~ N(0,8%), soer|xs, y1.4—1 ~ N(Ar(z¢ — Brpig—1), D?).

We now use the following results from Anderson (2003). Ketan X, have a bivariate normal distribution:
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X X b))
. N M1 ’ 11 12 _ (7.5)
X5 142 Yo Yoo
If equation (7.5) holds, then the conditional distributmhnX; given Xy = x5 is given by

X1|X2 = X ~~ N (/,Ll + 21222_21(1‘2 — /LQ), 211 — 21222_21221) . (76)

Conversely, if (7.6) holds, anfls ~ N(us2, X22), then (7.5) is true.
Sinceet|xt,y1;t,1 ~ N(At(fl't — Btﬂtfl),dg) and:rt|y1;t,1 ~ N(Bt,ut,l, BtEtletT + 62), it follows that

(l‘t) <<Bt,ut_1> ( BtEt_lBtT + @2 (BtEt_lBtT + 92)14? >>
Yrie—1 o~ N )
€t

0 At(BtthlB?+92) At(BtthlB?+92)A;+§p2
Using the result above, the filtering distributiorpise, |y1..) = p(z¢|er, y1..—1) = N(ue, X¢), since observing; is

equivalent to observing;, where
pe = Byugq + (BtEtletT + 92)A?(At(BtEt71BtT + 92)‘4? + @2)_1615
Y, = BY Bl +0%— (B, Bl + ©)AT (Ay(B; 2, 1Bl + 02)AT + #*)7'A(B: X, _1 BT + 6?).

Algorithm 1 The Kalman filter algorithm.
1: Input:pq andXy.
» Sett = 2.
: Compute mean and variance of predictipn:= By 1, X = B X 1B + 02,
. Observey; and compute error in prediction; = y; — Ayfit.
: Compute variance of prediction errdt; = A, X, AT + &2
. Update the mean and variance of the posterior distribution:

o OB WN

o fir + i’tAzRflet
Et == ZA‘t - ﬁtA?RglAtZA‘t.

7: Sett =t + 1. Go to step 3.

Example 7.1 (First-order, linear autoregressive (AR(1)) model observed with noise). Consider the following AR(1)

model:

Ty = ¢xi_q +opus ~ N(pxi_1,02)
Yt = Tyt oyup o~ N(xt,o%,),

whereu; ~ N(0,1) andv, ~ N(0, 1) are independent, Gaussian white noise processes. The Wiaram{ X, };>1
is @ Gaussian random walk with transition kerB&lx; 1, ;) corresponding to thB(¢z;_1, o7 ) distribution.

A normal distributionN(y, 02) is stationary for{X;};>1 if X;—1 ~ N(u,02) and X;|X;— 1 = x;-1 ~
N(¢ai—1,02) imply that X, ~ N(u,o?). We require thals(X;) = ¢u = p andVar(X;) = ¢?0? + 0% = o2,
which are satisfied by = 0 ando? = o, /(1 — ¢?), provided|¢| < 1. Infact, theN (0,07 /(1 — ¢?)) distribution
is the unique stationary distribution of the chain.

Start the Kalman filter algorithm with; = 0 andX; = 07 /(1 — ¢?). Attimet — 1,¢ > 2, letu;—; and 2,4
denote the posterior mean and variance, respectively. fiireemean and variance of the prediction at tivege:
[y = dpg—1 andy, = X+ 012]. The prediction error is; = y; — fi; with variance); + a%/. Finally, update
the mean and variance of the posterior distribution:

e 1 N
pe = i+ Ly (g — fir)
Et + O'V

Il
/N
=

I
+ (M
Q
<N
~_—
;;>
L\Ej)
+ |
Q
<
g
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<

The Kalman filter algorithm (see Figure 1 for pseudo-cod@pisrobust to outlying observations, i.e., when
the prediction erroe, is large, because the mean is an unbounded function af;, and the variance’; does
not depend on the observed dgtaMeinhold and Singpurwalla (1989) let the distributiongttod error termsu,
andv, be Student; and show that the posterior distributionaaf giveny,., converges to the prior distribution of
p(z|y1..—1) Whene, is large. In this case, the posterior distribution is no Emgiown exactly, but is approximated.

The underlying assumptions of the Kalman filter algorithma #rat the state transition and observation equa-
tions are linear, and that the error terms are normally itigied. If the linearity assumption is violated, but the
state transition and observation equations are diffablgifunctions, then thextended Kalman filtealgorithm
propagates the mean and covariance via the Kalman filtetieqady linearizing the underlying non-linear model.
If this model is highly non-linear, then this approach wakult in very poor estimates of the mean and covariance.
An alternative is theinscented Kalman filtawhich takes a deterministic sampling approach, represgtiie state
transition distribution by a set of sample points that amppgated through the non-linear model. This approach
improves the accuracy of the posterior mean and covaridoicdetails, see Wan and van der Merwe (2000).



Chapter 8

Sequential Monte Carlo

In this chapter we introduce sequential Monte Carlo (SMCjhoés for sampling from dynamic models; these
methods are based on importance sampling and resamplimgigees. In particular, we present SMC methods the
filtering and smoothing problems in state-space models.

8.1 Importance Sampling revisited

In Section 3.3, importance sampling is introduced as a fgdenfor approximating a given integral =
J h(x)f(x)dz under a distributionf, by sampling from an instrumental distributignwith support satisfying
SUplg) D Suplf - k). This is based on the observation that

p=Es (b)) = [ ho)f)do = | hmﬁgg(xm — [ hepuigla)ds = By (h() - w(X), (@)
where the right-most expectation in (8.1) is approximatedhe empirical average df - w evaluated at i.i.d.
samples frony.
In practice, we want to selegtas close as possible fosuch that the estimator @f has finite variance. One
sufficient condition is thaff (z) < M - g(z) andVar;(h(X)) < oco. Under this condition, it is possible to use
rejection sampling to sample frorh and approximate.. We argue in the following subsection that importance

sampling is more efficient than rejection sampling, in teahgroducing weights with smaller variance.

8.1.1 Importance Sampling versus Rejection Sampling

Let E be the support of . Define the artificial target distributiofi(z, y) on E x [0, 1] as

flz,y) =

- Mg(x) for{(:c,y) RS IR TRS [0, J\;;ﬁ:)}}
0 otherwise

where o
_ Mg(z)
f(z) /f(x,y) Yy /O Mg(x)dy

Consider the instrumental distributigt, y) = g(x)Ujp,1)(y), for (z,y) € Ex|[0, 1], whereUyg ;;(-) is the uniform
distribution on[0, 1]. Then, performing importance sampling 8hx [0, 1] with weights

7 e f(z
w(a y)—f(x’y) B M for{(amy).zeE,yG [O,W&)}}
0 otherwise
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is equivalent to rejection sampling to sample frgiusing instrumental distributiog. In contrast, importance
sampling fromf using instrumental distributiom has weightsv(x) = f(z)/g(x).

We now show that the weights for rejection samplingy, v), have higher variance than those for importance
sampling,w(x). For this purpose, we introduce the following technical heanwhich relates the variance of a
random variable to its conditional variance and expeatatio the following, any expectation or variance with a
subscript corresponding to a random variable should bepregted as the expectation or variance with respect to
that random variable.

Lemma 8.1 (Law of Total Variance).  Given two random variables{ and B, on the same probability space, such
that Var (4) < oo, then the following decomposition exists:

Var (A) = Eg [Vara (A|B)] + Varp (IE4 [A]|B]) .
Proof. By definition, and the law of total probability, we have:
Var (4) = E [4%] - E[A? = Ep [E4 [4%B]] - Ep [Ea [AB]?.
Considering the definition of conditional variance, anchtliariance, it is clear that:

Var (A) = B [varA (A|B) + Ea [A|Bﬂ _Ep[E[AB]
= Ep [Vars (A|B)] + Ep [EA [A|B]2] By [E4 [A|B]]

= EB [VarA (A‘B)] + VELI"B (EA [A‘BD .

Returning to importance sampling versus rejection sargplire have by Lemma 8.1 that

Var (w(X,Y)) = Var (E (w(X,Y)|X)) + E (Var (w(X,Y)|X)) = Var (w(X)) + E (Var (w(X,Y)| X))
> Var (w(X)),

since

1 _ J;—X;
B w0 = [ e D0 ay = [T aray = L5 — i),

and the fact thaVar (w(X, Y)|X) is a non-negative function.
8.1.2 Empirical distributions

Consider a collection of i.i.d. pointse; }_; in E drawn fromf. We can approximatg by the followingempirical
measureassociated with these points,

where, for any: € E, d,, (z) is the Dirac measure which places all of its mass at painte.,d,, (z) = 1if v = z;
and0 otherwise. Similarly, we can define tleenpirical distributionfunction

F(x) = %ZH(% <),

wherel(z; < x) is the indicator of event; < .
If the collection of points has associated positive, redi+ed weightq z;, w; }I_;, then the empirical measure
is defined as follows
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For fixedz € E, f(z) and F(z), as functions of a random sample, are a random measure arituien,
respectively. The strong law of large numbers justifies axiprating the true density and distribution functions by
f(x) andF'(x) as the number of samplesincreases to infinity.

From these approximations, we can then estimate integiigtisrespect tof by integrals with respect to the
associated empirical measure. ket E — R be a measureable function. Then

Ef(h(X)) = /h(x)f(:c)dz ~ /h(x)f(a:)dx == Zh(xi),
or, if the random sample is weighted,

E/(h(X)) = [ ho)f(@)do =~ [ (o) (a)ds =

Sequential Importance Sampling exploits the idea of setplyrapproximating an intractable density function
f by the corresponding empirical measyrassociated with a random sample from an instrumental biigitoin g,
and properly weighted with weights; o f(x;)/g(z;).

8.2 Sequential Importance Sampling

Sequential Importance Sampling (SIS) performs importaasepling sequentially to sample from a distribution
pi(x¢) in a dynamic model. Le{xt , Wy )}‘ ) be a collection of samples, callgdrticles that target, (x;). At

timet+ 1, the target distribution evolves tg 1 (x;41);fori = 1,...,n, sample theét+1)st componerrt:erl from

an instrumental distribution, update the Weig}ﬁgl, and append:t+1 to xt . The desired result is a collection of

samples{xt+1,w§+)1} » that target®; 1 (x;4+1).

The idea is to choose an instrumental distribution suchithpbrtance sampling can proceed sequentially. Let
qr+1(x+4+1) denote the instrumental distribution, and suppose thatithe factored as follows:

t+1

Ge1(xe11) = q1(21) H qi(wilxi-1) = @ (Xe)qe1 (era[xe).
i=2

Then, the Welghlwt(Jrl can be computed incrementally fromgi) Attimet = 1, samplexgi) ~ qi(xy) for
i=1,...,n,and setu( D= p1(21)/qi(z1). Normalise the weights by dividing them By”'_, ng) Attimet > 1,

¢
(

@ pe(x”)
wt - ) )
q(x;")

A
so, at the following time step, we sampjgzl ~ @1 (Teg |x§i)), and update the weight

w(i) - pt+1(X§21) pt+1(><§21) w(i) pt+1(><§21) (8.2)
) — ! . .
G (x0) @) (@) 1x”) Pe(x$)ger (200 x5

t+1 —

Normalise the weights. The term _
Di41 (Xgl)

Pe(x$)ger (2 x50

is known as thencremental weightThe intuition is that if the weighted samp{ext ,wf )} is a good ap-
=1

proximation to the target distribution at tinte p;(x;), then, for appropriately chosen instrumental distributio
Gr+1(x41|x:), the weighted sampl%nggl,wt(ﬁl}l ) is also a good approximation @1 (x:,1). For details,
see Liu and Chen (1998). -
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8.2.1 Optimal instrumental distribution

Kong et al. (1994) and Doucet et al. (2000) prove that the nditimnal variance of the weights increases over
time. So in the long run, a few of the weights contain most efglobability mass, while most of the particles have
normalised weights with near zero values. This phenomenbkndw in the literature aseight degeneracyChopin
(2004) argues that the SIS algorithm suffers from the cufsneensionality, in the sense that weight degeneracy
grows exponentially in the dimensiaen

So it is natural to seek an instrumental distribution thatimises the variance of the weights. Doucet et al.
(2000) show that the optimal instrumental distributiom;is, (xt+1|x§i)) = pt+1(xt+1\x§i)), in the sense that the
variance ofwt(i)1 conditional upomii) is zero. This result appears in the following proposition.

Proposition 8.2. The instrumental distributioqtﬂ(a:tﬂ\xff)) = pt+1(xt+1|x§i)) minimises the variance of the

weightw.”, conditional uponx,”.

Proof. From (8.2),

N 2 (1)
(wﬁ”) Var pt+1(Xt ,$t+1) >

Tt xgi) i i
ar (b (pxxﬁ Narsr (@ |x)

N2 (i) 2 1 ONE
(wf(l)) /[pt+1(xt 7$t+1)] iy, - [Ptﬂ(x; )]
| DN el )

Pe(xy Tt+1 |XE')) pe(x;

, (4)
Varqtﬂ (@egr]x(?) (wt"’l)

= 0’
it g1 (@eialxi”) = peea(2ex”). 0
More intuitively, Liu and Chen (1998) rewrite the incremanteight as

pt+1(X§21) _ pt+1(X§i)) pt+1(mt+1lxy))
PN g1 (@ %) pe(x7) g (e ]x?)

)

and interpret the second ratio on the right hand side asatorgethe discrepancy betwe@ml(xt+1\x§i)) and
D1 (Tei1 |x§i)), when they are different. Hence the optimal instrumentstritiution isp; 1 (2441 \xgi)).

In practice, however, sampling from the optimal instruraémlistribution is usually not possible, so other
choices of instrumental distributions are consideredeifines it is possible to find good approximations to the
optimal instrumental distribution; in such instances, ¥thdance of the corresponding weights is low for small
but weight degeneracy still occurstahcreases.

Wheng;y1 (2411 |x§i)) = pi(x4a1 |x§i)), i.e., the distributiom; (x; ) is used to predict; , then the incremental
weight simplifies thHl(xEQl)/pt (xifﬁl). The resulting SIS algorithm is known as theotstrap filter It was first
introduced by Gordon et al. (1993) in the context of Bayediéering for non-linear, non-Gaussian state-space
models.

8.2.2 SIS for state-space models

Recall the state-space model introduced in Section 7.2siRwlicity, assume that all parameters are known.
observation: y; = a(x, us) ~ g(-|x¢)
hidden state: z; = b(zi—1,v¢) ~ f(:|z1—1).

We present the SIS algorithm to sample approximately frafittering distributionp; 1 (z++1) = p(@t41|y1:641)s
and the smoothing distributian 1 (x¢+1) = p(T1.041|Y1:441)-

The instrumental distribution i@tﬂ(:ctﬂ\xﬁ)t), where the subscrigt+ 1 indicates that the distribution may
incorporate all the data up to timtet+ 1: y;1.,1. For the bootstrap filteqt+1(xt+1|:c(13) = p(xt+1|xgl;1, Y1:t) =
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f(a:t+1|z§i)), i.e., the instrumental distribution does not incorpordie most recent observatian,, and the
weight is

(@)1 lyre1) o Py fa) |2 gy l2l) o)
) Wy G 0) = Wy g(yt+1‘xt+1)
t|y1 ) f ($t+1|5f ) p(x1 t|y1t) (xt+1|xt )

Z

p
ngzl - wgz) (i

p(ay,
by equation (7.1). In this case, the incremental weight dmgdepend on past trajectorieé’;), but only on the
likelihood function of the most recent observation.
Gordon et al. (1993) introduce the bootstrap filter in a vatyitive way, without reference to SIS, but rather as
a two-stage recursive process with a propagate step, fetldwy an update step (similar in spirit to the recursions
in the Kalman filter algorithm). Write the filtering density fadlows:

g(yt+1 \%H)P(l”tﬂ |y1:t)
p(yt+1|yl:t)

P($t+1|y1 t+1) X g(yt+1|$t+1)/P($t+17$t|y1:t)d$t

o g(yt+1|$t+1)/f($t+1|$t)19(5”t|y1:t)d$t- (8.3)

Now, Iet{x% ), w§ )}n be awe|ghted sample representing the filtering densityregt#ti such thag _ wy? @) 1.

Then, p(z¢|y1e) = >y w]’ 5I<1>(xt) is the empirical measure approximatipgr;|yi.;), andp(z;.1|y1..) =

S wl? f (w4 |2$7). Furthermore, by (8.3), we have the approximation

P(@es1|yrier1) = Zwgi)g(yt+l|$t+1)f($t+1)|$£i))a
and sampling proceeds in two steps:

Propagate step: far=1:n, sample:cgfgl ~ fg|z).

Update step:  foi=1:mn, we|ghgr;erl with welghtthrl = wt( )g(yt+1|xt+1) Normalise the weights.

In contrast to the instrumental distribution of the boatgtfilter, the optimal instrumental distribution incorpo-
rates the most recent observation:

Qt+1(3«”t+1|331 t) P($t+1|$1 s Y1it+1)
P(yt+1|$1;t7$t+17y1:t)P(9Ct+1|5C§2>yl:t)
N fp(yt+1|33§2,CCt+17y1;t)P($t+1\$@ayl:t)dwtﬂ
_ 9(Yr+1|Te01) f (@1 \xgi))
S 9@elwen) f (@ log?)dapr

where the normalising constant equals the predictiveibligton of y;, conditional onz;, i.e.,p(y:+1|x+). So the

weight function become@t(fﬁ1 x wt(i)p(ytﬂ\xt).

Example 8.1 (AR(1) model observed with noise (continued from example 7.1)). The optimal instrumental distribu-
tion is

Qt+1($t+1|$1:t) o8 g(yt+1\$t+1)f($t+1|$t)

1 1
e { 202, 202 W1 = xtH)Q} exp {_%‘Q(xt+1 - ¢l‘t)2}
U
1 1 T 2 2,2
=l d) om i 8) %)
9y Sl Oy %7, (%74 g

o {7}

implying that the distribution i$(u, o) with
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2 2
ooy (Y41 | Ox
h=52 +02 \ o2 * o2
v toy v U
2 9
2 9y9y
7= 0% + 02"
v toy

The normalising constant of this optimal instrumentalritisition is

oz \? (;53:
vy yt;l 4 P t »
+ ot oy ot

2
o202 @
_opOy (%;1 +¢2t>:| }dth
S ot +ol \ o} | o

P(Yey1|re) = /g(yt+1|ﬂ?t+1)f(33t+1|33t)d33t+1
1, 1/1 1
xXexp | —=—5 exp = | 5 + —=
Pl 202 Y01 )P 2 \02 T o
1 ( 1,1 )1/2 < 1
— |+ ex
Var \o7 o Y 7

17, 1 2gbo:t
x exp 2 Y+ U% + 0‘2, B O'U 2 Y+

0'
2
i

i.e.,yt+1‘$t ~ N(Qf).’L‘t,O'(Z]-f‘O"Q/). <

Let {xﬁ 1+1a wt(421} _ be a weighted sample, normalised such gt w,fi)l = 1, from p(z1.441|y1:041)-

Then the filtering and smoothmg densities are approximayettie corresponding empirical measures:

n n
(T |yre41) = 2w£216w521($t+1)7 Plrras1|yrass) = Zwt@l(sg@gfiﬂ(ml:tH)
1= 5

Algorithm 2 is the general SIS algorithm for state-space et&dThe computational complexity to generate
particles representing(z1.+|y1.:) is O(nt).

Algorithm 2 The SIS algorithm for state-space models
1: Sett = 1.

: Fori =1:n, samplex!” ~ gy (21).

(i) (i)

x p(z{)g(y1]2(”) /g1 (2$"). Normalise such tha} > w'? = 1.
J=1

. Fori =1 :n, setw;
: Attimet + 1, do:
Fori=1:n, samplergi1 ~ qt+1($t+1\ffgli)

: Fori =1:n, setw!’ +1 x wy)f(x,(ﬁl|m(’))g(yt+1|mt+1)/qt+1(xt+1|:v(z)) Normalise such tha} wifl =1.
j=1

N 9O uah W N

. The filtering and smoothing densities at time¢ 1 may be approximated by

P(Ter1lyrietr) Zwt+16 o (e11),  P(Tras1|yrier1) = Zwt+1 (T1:041)-
=1

8: Sett =t + 1. Goto step 4.

8.3 Sequential Importance Sampling with Resampling

One approach to limiting the weight degeneracy problem htmose an instrumental distribution that lowers the
variance of the weights; a second approach is to introduessanplingstep after drawing and weighing the particles
at timet + 1. This idea ofrejuvenatingthe particles by resampling was first suggested by Gordoh @t993).

The ideais as follows: Ie{xt ,wt(z) } be a weighted sample from(x), obtained by importance sampling,

and normalised such thg _ wtm =1L The empirical measure j§(z;) = > ., wf")éx(i) (x¢). Under suitable

regularity conditions, the law of large number states thuaitany fixed measurable functidn asn — oo,

/.h(xt)f)t(xt)dxt = Zwt(i)h(xy)) — /h(xt)pt(ozt)do:t.



8.3 Sequential Importance Sampling with Resampling 85
Suppose now that we draw a sample of siz&om p, (x;) with replacement, i.e., for=1,...,n, iﬁj) = .rgi) with
probabilitwa). The new particles have equal Weighﬁsg.") = 1/n’. Again, invoking the law of large numbers, as
n' — oo,
1 ~(j - i i
=S ThE) = 3w h?),
j=1 i=1

’

So, forn’ large, the integral of the functiomwith respect to the new empirical measure base{ﬁfﬁ), 1/n’} _

is a good approximation to the integral/ofvith respect tQ; ().

In the SIS algorithm, resampling is applied to the entirjenmrymgflﬂ, not simply to the last value,, ;; the
new algorithm is known as SIS with Resampling (SISR). Theaathge of resampling is that it eliminates particle
trajectories with low weights, and replicates those witigéaweights; all of the resampled particles then contribute
significantly to the importance sampling estimates.

On the other hand, replicating trajectories with large Wweigreduces diversity by depleting the number of
distinct particle values at any time step in the past. At tirae1, new valueslcgfﬁl are sampled and appended to
the particle trajectories; resampling then eliminatesesofithese trajectories. Since the values at ¢ + 1 are not
rejuvenated asincreases, their diversity decreases due to resamplirthelextreme case, the smoothing density
pi11(21.441) IS @approximated by a system of particle trajectories withngle common acestor. Figure 8.1 displays
this situation graphically.

In general, at the current time step 1, we can obtain a good approximation to the filtering density (x;1)
from the particles and their corresponding weights, predithe number of particles is large enough. However,
approximations to the smoothing densify ; (1.:11) and fixed interval smoothing densitigs, 1 (z1.+/), for ¢’ <
t, will be poor. Chopin (2004) argues that for smoothing thst fitatez, i.e., approximating;1(x1), the SIS
algorithm is more efficient than the SISR algorithm, but thatlatter can be expected to be more efficient in filtering
the states, i.e., approximatipg, 1 (x:11). In particular, if the instrumental distribution of the R&lgorithm has a
certain abilitiy to “forget the past” (i.e., to forget itsiiial condition), then the asymptotic variance of the estion
is bounded from above inh

particles
3
1

()

T

Figure 8.1. Plot of particle trajectories with a single common ancestor after resampling.
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Moreover, the resampled trajectories are no longer inddg@nso resampling has the additional effect of in-
creasing the Monte Carlo variance of an estimator at thentitime step (Chopin, 2004). However, it can reduce the
variance of estimators at later times. So, if one is intedst estimating the integrgl 2(z¢1)pes1 (i41)dwit1,
for some measurable functidn then the estimatoy ", thh(xtH) must be computed before resampling (as it
will have lower Monte Carlo error than if it were computedeaifthe resampling step). So far we discussed resam-
pling via multinomial sampling; other resampling schemdstehat introduce lower Monte Carlo variance, and no
additional bias, such estratified samplingCarpenter et al., 1999), amdsidual samplingLiu and Chen, 1998).
Chopin (2004) shows that residual sampling always outpe$omultinomial sampling: the resulting estimator
using the former sampling scheme has lower asymptoticvegia

8.3.1 Effective sample size

Resampling at every time step introduces unnecesary igarjado a trade-off is required between reducing the
Monte Carlo variance in the future, and increasing the wagaat the recent time step. Following Kong et al.
(1994), we define theffective sample siZ&SS), a measure of the efficiency of estimation based onea gNS
sample, compared to estimation based on a sample of i.adisdrom the target distributiopy 1 (2441).

Let h(x¢1+1) be a measurable function, and suppose that we're intereéstedtimating the meamn =
Ep, . (2sr) (R(Xi11)). Let {fﬁrl,wt(ﬁzl}ﬁ be a weighted sample approximatipg.; (x:1), obtained by SIS,

and Iet{ytjl}n_ be a sample of i.i.d. draws from 1 (x¢41).

The SIS estimator of; is

ﬂIS _ Z:I:l wt@lh(ﬂfgﬂ

Z;L 1 wéi)l

AR

Then the relative efficiency of SIS in estimatipgan be measured by the ratio

Var (AIS)
Var (aM€)’

which, in general, cannot be computed exactly. Kong et 804) propose the following approximation that has the

b

and the Monte Carlo estimator is

advantage of being independent of the function

Var (i19)
Var (ii0y S 1 Varg, ., (oeen) (@eg1),

where ¢;+1(z+1) is the instrumental distribution in SIS, angd,,; is the normalised version od;4, i.e.,

[ We1qi41 (24 41)dzi1 = 1. In general Varqm(mm)(wﬂrl) is impossible to obtain, but can be approximated

by the sample variance L{fth} WherethF)1 = wﬂrl/ ZJ 1 wt(i)l are the normalised weights.

In practice, the ESS is deflned as follows:

. 2
n n n (Zj:l wt(i—)1>
ESS = — = — B ~ 5 =

1+ Var(lt,+1(3?t,+1)(wt+1) eq+1(ﬂft+1)(wt+l) n Zn (,(1—}(7) ) Z” ( (1) ) ,

i=1 \ Wit1 i=1 \ Wef1

since the weights are normalised to sum to 1, and

n—1
B Wit 2 1 Z ( t+1)
EQt+1(5Et+1)(wt+1)2 = E%ﬂ(le) ( C ) - 2 eq+1(wt+1)(wt+1)2 ~ N2
n—2 (Z w(]) )
j=1 "t+1

whereC is the normalising constant. ESS is interpreted as the nuoflie.d. samples from the target distribution

pe+1(z41) that would be required to obtain an estimator with the samanee as the SIS estimator. SINE&'S <
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n (Kong etal., 1994), then an ESS value close tndicates that the SIS sample of sizés approximately as “good”
as an i.i.d. sample of sizefrom p; 1 (x:41). In practice, a fixed threshold is chosen (in general, halfiefsample
sizen), and if the ESS falls below that threshold, then a resargiep is performed.

A word of caution is required at this point. Via the ESS appigave’re using the importance sampling weights
to evaluate how well the weighted samp{leﬁf@l, wifﬁl}j_l approximates the target distributipp, { (z;41). It is
possible that the instrumental distribution matches yabe target distribution, but the weights are similar iruel
and thus have small variance. The ESS would then be largejrbarrectly indicating a good match between the
instrumental and target distributions. This, for examptayld happen if the target distribution places most of its
mass on a small region where the instrumental distribusdtat, and the target distribution is flat in the region of
the mode of the instrumental distribution. Hence, we expauntpling from this instrumental distribution to result in
weights that are similar in value. With small probabilitydrw would fall under the mode of the target distribution,
resulting in a strikingly different weight value. This expla highlights the importance of sampling a large enough
number of particles such that all modes of the target digfioh are explored via sampling from the instrumental
distribution. So choosing an appropriate sample sizepends on knowing the shape of the target distribution,
which, of course, is not known; in practice, we use as mantjghes as computationally feasible.

8.3.2 SISR for state-space models

Figure 3 presents the SISR algorithm with multinomial sangpfor state-space models.

Algorithm 3 The SISR algorithm for state-space models

: Sett = 1.

: Fori = 1:n, sampler!” ~ qi(z1).

: Fori = 1: n, setw™ o pu () g(y1]2(") /g1 (7). Normalise such thap w?) — 1.
j=1

: Attimet + 1, do:

: Resample step: compuieSS =1/ Z;‘:l(wﬁj))"’.

1 If ESS < threshold, then resample: for = 1 :
i=1:n,setz!) = 7" andw!” = 1/n.

7: Fori = 1:n, sampler'’, ~ ger1 (241 |2().

o g~ W N PR

n, setz{) = 2'7) with probabilityw!”’, j = 1,...,n. Finally, for

8: Fori =1:n, setwt(ﬂz1 % wtl)f($i21|$iz))g(yt+1‘xi:}l)/Qt+1(x§21|$§l)). Normalise such tha} " w§21 =
i=1

9: The filtering and smoothing densities at tim¢ 1 may be approximated by
. B - (i) - _ - (4)
P(Tep1lyries) = ;w"“émifﬁl(‘rt“)’ P(Tre41|Yrie+1) = ;wwﬁmgfiﬂ (T1541).

10: Sett =t + 1. Goto step 4.

For the SISR algorithm for state-space models, Crisan anat&q2002) prove that the empirical distributions
converge to their true values almost surelynas-> oo, under weak regularity conditions. Furthemore, they show
convergence of the mean square error for bounded, measutaidtions, provided that the weights are upper
bounded; moreover, the rate of convergence is proportimngln. However, only under restrictive assumptions
can they prove that approximation errors do not accumulaetome, so careful implementation and interpretation
is required when dealing with SMC methods. More generalgiin (2004) proves a Central Limit Theorem result
for the SISR algorithm under both multinomial sampling, aesidual sampling, not restricted to applications to
state-space models.

Example 8.2 (A nonlinear time series model (Cappé et al., 2007)). Consider the following nonlinear time series model:
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2

T
yoo= 55 tu~glule)
€Ts_ Ty
I = t2 L 251 —|—tx§_1 +8cos(1.2t) + ug ~ f(xe|wi—1),

wherev;, ~ N(0,02), u; ~ N(0,02), and parameters? = 1, 02 = 10. Letz; ~ p(z1) = N(0, 10). The densities
are

Tt—1

Ty = N - 25
flaer) = N(5 s

2
_ i
g(yt‘xt> - N (2071) N

+ 8cos(1.2t), 10)

Figure 8.2 shows 100 states and corresponding observatiopsgenerated from this model.

Using these 100 observations, we begin by running the SIg&igim untilt = 9, with n = 10000 par-
ticles and resampling whenevérSS < 0.6 x n. The instrumental distribution is the state transitiontrdis-
tion: gert (w1 |2$)) = f(aesq|2'?). Figure 8.3 shows the weighted samp{ezéi), wl? }n

7=

weights unnormalised), and thernel density estimatef the filtering distribution as a continuous line. Kernel

as small dots (with
1

density estimation is a non-parameteric approach to estighthe density of a random variable from a (possibly
weighted) sample of values. For details, see Silvermangjl38e use a Gaussian kernel with fixed width of 0.5.
The kernel density estimator takes into account both theevaf the weights, and the local density of the particles.

10 20
Il

x|
0
|

-20 -10

0 20 40 60 80 100

time(t)

y_t
0 5 10 15 20 25

0 20 40 60 80 100

time(t)

Figure 8.2. Plot of 100 observationg and hidden states, generated from the above state-space model.

To analyse the effect of resampling, we run the SISR algoritip to timet = 100 with n = 10000 and
resampling whenevet' S'S < 0.6 x n, and the SIS algorithm with = 10000. Figures 8.4 and 8.5 show the image
intensity plots of the kernel density estimates based ofiiltke outputs, with the true state sequence overlaid. In
general, the true state value falls in the high density regaf the density estimate in Figure 8.4, indicating good
performance of the SISR algorithm. Moreover, it is intaregto notice that there is clear evidence of multimodality
and non-Gaussianity. In Figure 8.5, however, we remarkttiggparticle distributions are highly degenerate, and do
not track the correct state sequence. Hence, resampliequsred for good performance of the SIS algorithm.
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Filtering density estimate at t=9 (n = 10000)

Density
0.20 0.25
1 1

0.10
Il

o
< A e} oo 0@ oao
[S)

T T T T T T
-30 -20 -10 0 10 20

particles x_9

Figure 8.3. Filtering density estimate at= 9 from SISR algorithm withn = 10000, and ESShreshold = 6000. Weighted

sample mé”, wé )} ~shown as small dots, and kernel density estimate as continuous line.

To make this last point more clear, we look at histograms etithse 10 logarithm of the normalised weights at
various time steps in the SIS algorithm. Figure 8.6 showsthieaweights quickly degenerate @isicreases; by =
5, we already observe weights on the ordet@f3°°. Recall that these weights are a measure of the adequagy of th
simulated trajectory, drawn from an instrumental distiifn, to the target distribution. In this particular exampl
the instrumental distribution is the state transitionréisttion, which is highly variableq? = 10) compared to the
observation distributiono? = 1). Hence, draws from the state transition distribution averglow weights under
the observation distribution, and, with no resampling im#late the particles with very low weights, there is a
quickly growing accumulation of very low weights.

8.4 Sequential Importance Sampling with Resampling and MCMC m oves

Gilks and Berzuini (2001) introduce the idea of using MCMCwvemto reduce sample impoverishment, and call
their proposed algorithmesample-movel he algorithm performs sequential importance resamplittyan MCMC
move after the resampling step that rejuvenates the pmirtlbbt{azl D wt(+)1} be a weighted set of particles
that targets the distributiony 1 (x1..4+1). Let g1 (x1..+1) denote the mstrumental distribution from which the par-
ticles are generated. During resampling, some particlbédeireplicated (possibly many times), to produce the set
{:cl IR 1/n} . LetK; 41 be ap;y1(x1.441)-invariant Markov kernel, i.ep; 11 K11 = piy+1. The MCMC move

is as follows: forz =1,...,n, draw,zgn)€+1 ~ KHl(xg%H, ). Then{z1 a1 l/n} " isa rejuvenated, weighted

set of particles that targets the distribution 1 (z1.¢+1). If {xl 1 l/n} is a good particle representation of

pi+1(21.441), then, provided that the kern®, ., is fast mixing, eacmﬂrl will tend to move to a distinct point
in a high density region of the target distribution, thus ioying the particle representation. In the words of Gilks
and Berzuini (2001), the MCMC step helps the particles tthekmoving target.

Just as in Section 8.1.1 we interpreted rejection sampbrighportance sampling on an enlarged space, so can
importance sampling with an MCMC move be interpreted as imameze sampling on an enlarged space with in-
strumental distribution; 1 (x1.441)Kit1(21.041, 21.4+1) @nd target distributiop; 11 (z1.¢41) K11 (1:641, 21:641),
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Kernel density estimates up to time t=100 (n = 10000)
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Figure 8.4. Image intensity plot of the kernel density estimates up to 100, with diamond symbol indicating the true state
sequence (SISR algorithm).

Kernel density estimates up to time t=100, no resampling (n = 10000)
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Figure 8.5. Image intensity plot of the kernel density estimates up te 100, with diamond symbol indicating the true state
sequence (SIS algorithm).
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Figure 8.6. Histogram of the base 10 logarithm of the normalised weights for the filteigtglitions (SIS algorithm).

where [ pii1(21:441)Kit1 (T1:041, 21:041)d21:041 = Prg1(21.441) Dy invariance ofK, ;. This explanation omits
the resampling step, but the latter does not alter the jeatidin of the algorithm. Gilks and Berzuini (2001) present
a Central Limit Theorem result in the number of particles an explicit formulation for the asymptotic variance as
the number of particles tends to infinity, fofixed. They argue that, in the extreme case, rejuvenatioa pexfectly
mixing kernel at step, i.e.,K;(x1.+, 21.+) = pt(21.¢|21.+), can reduce the asymptotic variance of estimators at later
time steps. This is similar to the idea from Section 8.3 tkaampling, although it introduces extra Monte Carlo
variation at the current time step, can reduce the varianlegea times.

Chopin (2004) states that MCMC moves may lead to more stédpdeitoms for the filtering problem in terms
of the asymptotic variance of estimators (although thémaktesults to support this are lacking); however, he is
not as hopeful regarding the smoothing problem. He suggesatstigating the degeneracy of a given particle filter
algorithm by runningn, saym = 10, independent particle filters in parallel, computing théneates from each
output, and monitoring the empirical variance of thesestimates asincreases.

8.4.1 SISR with MCMC moves for state-space models

Algorithm 4 is the SISR algorithm with MCMC moves for stajgase models. First, notice that except for the re-
quirement of invariance, there are no constraints on thieetod kernel; it can be a Gibbs sampling, or a Metropolis-
Hastings kernel. Second, only one MCMC step will suffice (ne burn-in period is required), since it is assumed
that the particle set at steéfhas “converged”, i.e., it is a good representatiop(@f; .+ |y1..). Third, notice that the
MCMC move is applied to the entire state trajectory up to tittéence, the dimension of the kernel increases with
t, thus increasing the computational cost of performing tlowem Also, as increases, it is increasingly difficult
to construct a fast-mixing Markov kernel of dimensiorn practice, the MCMC move is applied only to the last
componentr; 1 with kernelK;; that is invariant with respect t(z;+1|y1.141)-
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Algorithm 4 The SISR algorithm with MCMC moves for state-space models
1. Sett = 1.
: Fori = 1:n, samplezr(”) ~ qi(z1).
: Fori = 1: n, setw® o pr(2)g(y1[2$7) /g1 (=) Normalise such thap w) — 1.
j=1

: Attimet + 1, do:

: Resample step: compufeSS = 1/ Z;;l(wij))?

. If ESS < threshold, then resample: foi = 1 : n, set#!’) = z{) with probabilityw'”’, j = 1,...,n. Finally, for
i=1:n,setz!’) =7 andw!” = 1/n.

: MCMC step: fori = 1 : n, samplez\’) ~ K, (z!"),-). Then, fori = 1 : n, setz{") = 2{").

8: Fori = 1:n, sampler\”| ~ qoi1(ze41]2')).

9: Fori =1:n,setw’), oc w” f(a) ) g(yer1]2))) /g (20, |2”). Normalise such tha}~ w'?)| = 1.
1=1

o o0~ W DN

~

7

10: The filtering and smoothing densities at titme 1 may be approximated by

n n
f)(l?t+1|yl:t+1) = Zwi?l&fﬁ% ($t+1), ﬁ(ml:t+1‘y1:t+1) = Zwiiﬁx(ﬂ“ ($1:t+1)~
i=1 i=1 v

11: Sett =t + 1. Go to step 4.

8.5 Smoothing density estimation

As we have seen, the SISR algorithm is prone to suffer fronpaimpoverishment asgrows; hence the parti-
cle trajectories do not offer reliable approximations te #moothing density. This section presents a Monte Carlo
smoothing algorithm for state-space models that is cawigdn a forward-filtering, backward-smoothing proce-
dure, i.e., afiltering procedure such as SISR is applieddahin time, followed by a smoothing procedure applied
backward irt (Godsill et al., 2004).

Godsill et al. (2004) consider the joint smoothing density

T-1 T-1
p(zirlyrir) = plrrlyir) H p(ze|wi 1., yir) = p(rr|yir) H P(Te| i1, Y1)
t=1 t=1
T-1
< plzr|yir) H P(@e|yra) f(@eg1|ze).
t=1

Let {x,gi),wt(i)}l be a particle representation to the filtering dengity:;|y1.+), that is, p(z¢|y14) =

1=

Sy wt(i)éxm (z¢). Then, it is possible to approximapéx;|x:+1, y1.¢) by

Sy wt @ |2t”)d 0 (x0)
Sl f(welal”)

So the idea is to run the patrticle filter (e.g., the SISR atbor) forward in time, to obtain particle approximations

]5($t|$t+1> ylct) = (8.4)

to p(a¢|yr.e), fort = 1,...,T, and then to apply the backward smoothing recursion (8#4) fo T — 1 tot = 1.
The drawg 4, ..., Zr) form an approximate realization fropizy.7|y1.7)-

Algorithm 5 returns one realization fropiz1.7|y1.7) via this forward-filtering, backward-smoothing approach.
The computational complexity 8(nT"), for filtering density approximations with particles. So for realizations,
the computational complexity i©(n?T), i.e., it is quadratic im, compared to the computational complexity of
SISR, forn realizations, which is linear im. This smoothing algorithm has the advantage that it usetclear
approximations to the filtering densities (under the assiomphat good approximations can be obtained via SISR,
for example), as opposed to resampled particle trajestari¢ which suffer from sample impoverishment as
increases.

Example 8.3 (A nonlinear time series model (continued)). We continue the example of the nonlinear time series
model. We carry out smoothing via Algorithm 5, implementihg SISR algorithm as before, with = 10000
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Algorithm 5 The forward-filtering, backward-smoothing algorithm ftaite-space models

1:

: Choosei; = 2" with probability w
: Goto step 3.
: (Z1,...,Z7) is an approximate realization frop{z .7 |y1.7).

© O N O U N WN

Run a particle filter algorithm to obtain weighted particle approximati{mg)?wﬁ”}n to the filtering distributions
1=1
p(xelyre) fore =1,...,T.

» Sett =T.

: Chooserr = x(;) with probabilityw(Ti).
Sett =t — 1.
Att>1

Fori = 1:n, computew[,,, oc w(” f(#141]z;”). Normalise the weights.

(4)
t|t4+1"

particles. Figure 8.7 displays the 10000 smoothing trejées drawn fronp(z1.100|y1:100) With the true state se-

quence overlaid. Multimodality in the smoothing distrilomis is shown in Figure 8.8.
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Figure 8.7. 10000 smoothing trajectories drawn fr@rtic1.100|y1:100) With dimond symbol indicating the true sequence.

Finally, since the algorithm returns entire smoothingdcéjries, as opposed to simply returning smoothing

marginals, it is possible to visualize characteristicshefnultivariate smoothing distribution. Figure 8.9 shoes t

kernel density estimate f@(z11.12|y1:100)-
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Kernel density estimates up to time t=100 (n = 10000)
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Figure 8.8. Image intensity plot of the kernel density estimates of smoothing densitieslimittnd symbol indicating the true
state sequence.

Figure 8.9. Kernel density estimate fgr(z11:12|y1:100)-
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