
Single-Compartment Neural Models

BENG/BGGN 260 Neurodynamics

University of California, San Diego

Week 2

BENG/BGGN 260 Neurodynamics (UCSD) Single-Compartment Neural Models Week 2 1 / 18



Reading Materials

A.L. Hodgkin and A.F. Huxley, “A Quantitative Description of
Membrane Current and Its Application to Conduction and Excitation
in Nerve,” J. Physiol., vol. 117, pp. 500-544, 1952.

B. Hille, Ion Channels of Excitable Membranes, Sinauer, 2001, Ch. 2
and 3, pp. 25-92.

C. Koch, Biophysics of Computation, Oxford Univ. Press, 1999, Ch.
6 through 8, pp. 142-211.

P. Dayan and L. Abbott, Theoretical Neuroscience, MIT Press, 2001,
Ch. 5, pp. 173-177.

E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press,
2007, Ch. 2, pp. 32-49.

A.F. Strassberg and L.J. DeFelice, “Limitations of the Hodgkin-
Huxley formalism: Effects of single channel kinetics on
transmembrane voltage dynamics,” Neural Computation, vol. 5(6),
pp. 843-855, Nov. 1993.

BENG/BGGN 260 Neurodynamics (UCSD) Single-Compartment Neural Models Week 2 2 / 18



Channel Gate Dynamics

opening rate
αn(Vm)

1− n 
 n
βn(Vm)

fraction of closing rate fraction of
gates closed gates open
(“particles”) (“particles”)

dn
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= αn (Vm) (1− n)− βn (Vm) n =
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Voltage Gated Ion Channels

n: slow K+ activation; m: fast Na+ activation; h: slow Na+ inactivation

Figure 5.8 Gating of membrane channels. In both figures, the interior of the neuron is to the right of the membrane, and the
extracellular medium is to the left. (A) A cartoon of gating of a persistent conductance. A gate is opened and closed by a
sensor that responds to the membrane potential. The channel also has a region that selectively allows ions of a particular type
to pass through the channel, for example, K+ ions for a potassium channel. (B) A cartoon of the gating of a transient
conductance. The activation gat is coupled to a voltage sensor (denoted by a circled +) and acts like the gate in A. A second
gate, denoted by the ball, can block that channel once it is open. The top figure shows the channel in a deactivated (and
deinactivated) state. The middle panel shows an activated channel, and the bottom panel shows an inactivated channel. Only
the middle panel corresponds to an open, ion-conducting state. (A from Hille, 1992; B from Kandel et al., 1991.)

Dayan & Abbot 2001, pg. 169
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K+ Channel Gate Dynamics: 4 - Particle Model

4 “particles” (gates) model: channel active probability = n4 with:

4αn 3αn 2αn αn

n0 
 n1 
 n2 
 n3 
 n4
βn 2βn 3βn 4βn

####  ###   ##    #     
# ##  # #   # 
## #  ##  #  
### # # #   

##  
#  #

4 gates closed 3 gates closed 2 gates closed 1 gate closed 0 gates closed
0 gates open 1 gate open 2 gates open 3 gates open 4 gates open

CHANNEL ACTIVE︸ ︷︷ ︸
n0 + n1 + n2 + n3 + n4 = 1, and :

dn0
dt = −4αnn0 +βnn1
dn1
dt = 4αnn0 − (3αn + βn) n1 +2βnn2
dn2
dt = 3αnn1 − (2αn + 2βn) n2 +3βnn3
dn3
dt = 2αnn2 − (αn + 3βn) n3 +4βnn4
dn4
dt = αnn3 −4βnn4
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K+ Channel Gate Dynamics: Reduced Model

4αn 3αn 2αn αn

n0 
 n1 
 n2 
 n3 
 n4
βn 2βn 3βn 4βn

####  ###   ##    #     
# ##  # #   # 
## #  ##  #  
### # # #   

##  
#  #

4 gates closed 3 gates closed 2 gates closed 1 gate closed 0 gates closed
0 gates open 1 gate open 2 gates open 3 gates open 4 gates open

CHANNEL ACTIVE
⇓ ⇓ ⇓ ⇓ ⇓

-Reduced (equivalent) model: channel active probability = n4 with:

⇓ ⇓ ⇓ ⇓ ⇓
n0 = (1− n)4 n1 = 4n (1− n)3 n2 = 6n2 (1− n)2 n3 = 4n3 (1− n) n4 = n4

 αn

1− n 
 n
# βn  


4

︷ ︸︸ ︷
dn

dt
= αn (1− n)− βnn
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Na+ Channel Gate Dynamics: 4 - Particle Model

-4 “particles” (gates) model: channel active probability = s31

CHANNEL ACTIVE

s01 = (1−m)3 h s11 = 3m (1−m)2 h s21 = 3m2 (1−m) h s31 = m3h
 ##N   #N all gates open/
# #N  # N non − inactivated

###N ## N #  N    N
3αm 2αm αm

s01 
 s11 
 s21 
 s31
βm 2βm 3βm

αh �� βh αh �� βh αh �� βh αh �� βh
3αm 2αm αm

s00 
 s10 
 s20 
 s30
βm 2βm 3βm

###4  ##4   #4    4
# #4  # 4
## 4 #  4

s00 = (1−m)3 (1− h) s10 = 3m (1−m)2 (1− h) s20 = 3m2 (1−m) (1− h) s30 = m3 (1− h)

Koch, Ch. 8.2, pg. 200-202
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Na+ Channel Gate Dynamics: Reduced Model

CHANNEL ACTIVE

s01 = (1−m)3 h s11 = 3m (1−m)2 h s21 = 3m2 (1−m) h s31 = m3h
 ##N   #N all gates open/
# #N  # N non − inactivated

###N ## N #  N    N
3αm 2αm αm

s01 
 s11 
 s21 
 s31
βm 2βm 3βm

αh �� βh αh �� βh αh �� βh αh �� βh
3αm 2αm αm

s00 
 s10 
 s20 
 s30
βm 2βm 3βm

###4  ##4   #4    4
# #4  # 4
## 4 #  4

s00 = (1−m)3 (1− h) s10 = 3m (1−m)2 (1− h) s20 = 3m2 (1−m) (1− h) s30 = m3 (1− h)
⇓ ⇓ ⇓ ⇓

-Reduced (equivalent) model: channel active probability = m3h with:
FAST ACTIVATION

αm

1−m 
 m
# βm  

open



3
SLOW INACTIVATION
αh

1− h 
 h
4 βh N

non − inactivated


{

dm
dt = αm (1−m)− βmm
dh
dt = αh (1− h)− βhh
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HH Activation and Inactivation Functions

n: slow K+ activation
m: fast Na+ activation
h: slow Na+ inactivation

Figure 2.13

Steady-state (in)activation functions (left) and voltage-dependent time
constants (right) in the Hodgkin-Huxley model.

Izhikevich 2007, pg. 39
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Na+ and K+ Conductance Dynamics

Fig. 6.4 K+ and Na+ Conductances During a Voltage Step

Experimentally recorded (circles) and theoretically calculated (smooth curves) changes in GNa and GK in the squid giant axon at
6.3◦ C during depolarizing voltage steps away from the resting potential (which here, as throughout this chapter, is set to zero).
For large voltage changes, GNa briefly increases before it decays back to zero (due to inactivation), while GK remains activated.
Reprinted by permission from Hodgkin (1958).

n: slow K+ activation; m: fast Na+ activation; h: slow Na+ inactivation

Koch 1999, pg. 149
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Hodgkin-Huxley Model *

Squid axon:

Cm
dVm
dt = Iext − ḡKn

4 (Vm − EK )︸ ︷︷ ︸ − ḡNam
3h (Vm − ENa)︸ ︷︷ ︸ − gL (Vm − EL)︸ ︷︷ ︸

IK INa IL
Cm = 1µF/cm2 EK = −12mV ENa = 120mV EL = 10.6mV

ḡK = 36mS/cm2 ḡNa = 120mS/cm2 gL = 0.3mS/cm2

(mS = µA/mV )

dn
dt = αn (1− n)− βnn = n∞−n

τn
; αn (Vm) = 10−Vm

100(e1−Vm/10−1)
; βn (Vm) = 1

8e
−Vm/80

dm
dt = αm (1−m)− βmm = m∞−m

τm
; αm (Vm) = 25−Vm

100(e2.5−Vm/10−1)
; βm (Vm) = 4e−Vm/18

dh
dt = αh (1− h)− βhh = h∞−h

τh
; αh (Vm) = 7

100e
−Vm/20; βh (Vm) = 1

1+e3−Vm/10

αx and βx in units 1/ms; Vm in units mV
* Vm slightly shifted by 65mV so that Erest ≡ 0mV
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Hodgkin-Huxley Dynamics

Figure 2.15

Action potential in the
Hodgkin-Huxley model.

Izhikevich 2007, pg. 40
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From Hodgkin-Huxley to FitzHugh-Nagumo

Fig. 7.1 Reducing the Hodgkin-Huxley
Model to the FitzHugh-Nagumo System

Evolution of the space-clamped
Hodgkin-Huxley and the FitzHugh-Nagumo
equations in response to a current step of
amplitude 0.18 nA in A and B and of
amplitude I=0.35 in C and D. (A) Membrane
potential V (t) and sodium activation m(t)
(see also Fig. 6.8). Sodium activation closely
follows the dynamics of the membrane
potential. (B) Sodium inactivation 1-h and
potassium activation n of the Hodgkin-Huxley
system. (C) “Excitability” V (t) of the
two-dimensional FitzHugh-Nagumo equations
(Eqs. 7.1) with constant parameters has a
very similar time course to V and m of the
squid axon (notice the different scaling).
(D)The “accommodation” variable W shows
modulations similar to 1− h and n of the
Hodgkin-Huxley equations.

Koch 1999, pg. 174
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FitzHugh-Nagumo Model

Simplification of Hodgkin-Huxley, reduced to 2 dimensions:

Excitability : d
dtV = V − V 3

3 −W + Iext.

models fast dynamics of Vm and m activation

Accommodation : d
dtW = φ (V + α− βW )

models slow dynamics of n and 1− h inactivation

φ = 0.08 α = 0.7 β = 0.8

Facilitates theoretical analysis of stability & dynamics, at the expense of
accuracy.
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Morris-Lecar Model

Barnacle muscle fibers:

Cm
dVm
dt = Iext − ḡKw (Vm − EK )︸ ︷︷ ︸ − ḡCam∞ (Vm − ECa)︸ ︷︷ ︸ − gL (Vm − Erest)︸ ︷︷ ︸

IK ICa IL
Cm = 1µF/cm2 EK = −70mV ECa = 100mV Erest = −50mV

ḡK = 2.0mS/cm2 ḡCa = 1.1mS/cm2 gL = 0.5mS/cm2

τw (Vm) dw
dt = w∞ (Vm)− w ; w∞ (Vm) = 1

2

(
1 + tanhVm

30

)
; τw (Vm) = 5

cosh Vm
60

[units ms]

m∞ (Vm) = 1
2

(
1 + tanhVm+1

15

)
The simplifying assumption τm � τw leads to a 2-D dynamical model, like
Fitzhugh-Nagumo.
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Individual Channels and Stochastic Conductance

Koch 1999, pg. 203.

Fig. 8.6 Stochastic Openings of
Individual Sodium Channels

(A) Random opening and closing of a
handful of fast sodium channels in a
mouse muscle cell. The membrane
potential was stepped from −80 to −40
mV ; the first trial reveals the
simultaneous opening of two Na+
channels, while on all other trials, only a
single channel was open. (B) Averaging
over 352 such trials leads to a smoothly
varying current in accordance with the
m3h model of Hodgkin and Huxley.
Experiment carried out at 15◦ C.
Reprinted by permission from Patlak
and Ortiz (1986).
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Individual Channels and Stochastic Conductance

Fig. 8.7 Simulated Life History of Individual
Sodium Channels

The membrane potential in a simulated membrane
patch containing a variable number of Na+
channels was stepped from V0 = 0 to V1 = 50 mV
at 5 msec (arrow). The normalized conductance
associated with the eight-state Markov model
shown in Fig. 8.5 was evaluated numerically for
several trial runs (see Strassberg and DeFelice,
1993). As the number of channels is increased
from 6 to 600, the graded and deterministic nature
of the (normalized) sodium conductance emerges
from the binary and stochastic single-channel
behavior. The top trace shows the conductance
computed using the continuous time-course

(approximating
(
1− e−t/τm

)3
e−t/τh ) formalism

of Hodgkin and Huxley (1952). This figure should
be compared against the experimentally recorded
sodium current through a few channels in Fig.
8.6B. Reprinted in modified form by permission
from Strassberg and DeFelice (1993).

Koch 1999, pg. 206.
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Individual Channels and Action Potentials

Fig. 8.8 Action Potentials and Single Channels

Computed membrane potential (relative to Vrest indicated by horizontal lines) in different size patches of squid axon membrane
populated by a constant density of Na+ and K+ channels. The space-clamped membrane is responding to a current injection of
100 pA/µm2. The transitions of each all-or-none channel are described by its own probabilistic Markov model (the eight-state
model in Fig. 8.5 for the Na+ channel and the simplest possible five-state linear model for the K+ channel). For patches
containing dozens or fewer channels it becomes impossible to define action potentials unambiguously, since the opening of one
or two channels can rapidly depolarize the membrane (not shown). As the membrane potential acts on 1000 or more binary and
stochastic channels, the response becomes quite predictable, and merges int the behavior expected by a numberical integration
of the Hodgkin-Huxley equations for continuous and deterministic currents (top trace). The density is set to 60 Na+ channels
and 18 K+ channels per square micrometer, each with a single channel conductance γ of 20 pS. All other values are as specified
in the standard Hodgkin-Huxley model. Reprinted in modified form by permission from Strassberg and DeFelice (1993).

-Shot noise in action potentials due to stochastic individual channels
-Spontaneous, Poisson distributed action potentials even without input (Fig. 8.9, pg. 208)

Koch 1999, pg. 207
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