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Efficient Event-Driven Emulation of Spiking Networks
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Figure 1: Main structures of the ED-LUT simulator

Input spikes are stored in an input queue and are sequentially inserted into the spike heap. The network definition process produces
a neuron list and an interconnection list, which are consulted by the simulation engine. Event processing is done by accessing the
neuron characterization tables to retrieve updated neuronal states and forecast spike firing times.

Ros et al, 2006
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Efficient Event-Driven Emulation of Spiking Networks

While tsim < tend
{
Extract the event with a shortest latency in the spike heap

If it is a firing event
If it is still a valid event and the neuron is not under a refractory period

Update the neuron state: Vm , gexc , ginh to the postfiring state.
Prevent this neuron from firing during the refractory period.
(Once this is done, update the neuron time label to tsim + trefrac ).
Predict if the source neuron will fire again with the current neuron
state.
If the neuron will fire:

Insert a new firing event into the spike heap.
Insert the propagated event with the shortest latency (looking at
the output connection list).

If it is a propagated event
Update the target neuron state: Vm , gexc , ginh looking at the
characterization tables, before the event is computed.
Modify the conductances (gexc , ginh) using the connection weight
(Gexc,i , Ginh,i ) for the new spike.

Update the neuron time label to tsim .
Predict if the target neuron will fire.
If it fires:

Insert the firing event into the spike heap with the predicted time.
Insert only the next propagated event with the next shortest latency
(looking at the output connection delay table).

}

Figure 2: Simulation algorithm

This pseudocode describes the simulation engine. It processes all
the events of the spike heap in chronological order.

Cm

Eexc EinhErest 

gexc ginh grest Vm

Figure 3: Equivalent electrical circuit of a
model neuron

gexc and ginh are the excitatory and inhibitory synaptic
conductances, while grest is the resting conductance, which
returns the membrane potential to its resting state (Erest )
in the absence of input stimuli.

Ros et al, 2006
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Exponential Postsynaptic Conductance Model

Figure 4. A postsynaptic neuron receives two consecutive
input spikes

The evolution of the synaptic conductance is the middle plot. The two
excitatory postsynaptic potentials (EPSPs) caused by the two input
spikes are shown in the bottom plot. In the solid line plots, the synaptic
conductance transient is represented by a double-exponential expression
(one exponential for the rising phase, one for the decay phase). In
the dashed line plot, the synaptic conductance is approximated by a
single-exponential expression. The EPSPs produced with the different
conductance waveforms are almost identical.

gexc(t) =

{
0, t < t0

Gexc · e−(t−t0)/τexc , t ≥ t0

ginh(t) =

{
0, t < t0

Ginh · e−(t−t0)/τinh , t ≥ t0

(1)

Single decaying exponential
model for synaptic conductance

is adequate for accurate
emulation of postsynaptic

membrane dynamics.

Ros et al, 2006
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Event-Driven, Table-Based Estimation of Postsynaptic
Action Potential Timing

For single-exponential conductance dynamics, arrival of a new
excitatory presynaptic spiking ‘event’ at time t signifies a one-time
increment in the conductance:

gexc(t) = Gexc,j + e−(t−tpreviousspike)/τexcgexc(tpreviousspike) (2)

and similar for an inhibitory event.

Postsynaptic time-to-firing (in the absence of other ‘events’) is then
tabulated for different values of initial excitatory and inhibitory
conductance:

Cm
dVm

dt
= gexc(t0)e−(t−t0)/τexc (Eexc − Vm)

+ ginh(t0)e−(t−t0)/τinh(Einh − Vm) + Grest(Erest − Vm) (3)

In the event of an earlier other ‘event’, the conductance values are
updated according to (2). Ros et al, 2006
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Accuracy of Event-Driven, Table-Based Emulation

Figure 9: Single neuron simulation

Excitatory and inhibitory spikes are indicated on the upper plots. Excitatory and inhibitory conductance transients are plotted
in the middle plots. The bottom plot is a comparison between the neural model simulated with iterative numerical calculation
(continuous trace) and the event-driven scheme, in which the membrane potential is updated only when an input spike is received
(marked with an x). Ros et al, 2006
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Notes on the Event-Driven Approach

The table-based, event-driven approach can be extended to multiple
excitatory and inhibitory synapse types with different synaptic
strengths, time constants, and reversal potentials.

– Each additional and distinct time constant requires an additional
variable dimension in the table lookup. Additional synapse types
with time constant identical to another existing synapse type do
not incur additional variable dimensions, independent of synaptic
strength or reversal potential.

– The complexity of table lookup is exponential in the number of
variable dimensions, and hence does not scale to large numbers
of different time constants in the synaptic dynamics.

In the case of a single synaptic time constant, a simple and exact
closed-form expression for the postsynaptic time-to-firing replaces the
table lookup for efficient implementation [Rudolph and Destexhe,
2006].
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