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Abstract 
Markov kinetic models were used to synthesize a complete description of synaptic transmission, including open- 
ing of voltage-dependent channels in the presynaptic terminal, release of neurotransmitter, gating of postsynaptic 
receptors, and activation of second-messenger systems. These kinetic schemes provide a more general framework 
for modeling ion channels than the Hodgkin-Huxley formalism, supporting a continuous spectrum of descriptions 
ranging from the very simple and computationally efficient to the highly complex and biophysically precise. 
Examples are given of simple kinetic schemes based on fits to experimental data that capture the essential prop- 
erties of voltage-gated, synaptic and neuromodulatory currents. The Markov formalism allows the dynamics of 
ionic currents to be considered naturally in the larger context of biochemical signal transduction. This frame, work 
can facilitate the integration of a wide range of experimental data and promote consistent theoretical analysis of 
neural mechanisms from molecular interactions to network computations. 

1 Introduction 

More than forty years ago, Hodgkin and Huxley 
(1952) introduced an extremely influential descrip- 
tion of voltage-dependent ionic currents. Their model 
accurately described the macroscopic currents under- 
lying action potentials in the squid giant axon and 
postulated an explanation for the voltage-sensitivity 
of the currents based on independent gating parti- 
cles. The Hodgkin-Huxley paradigm has been ex- 
tended subsequently to describe a large range of other 
voltage-dependent channels, and is widely used today 
in most neuronal models that use ion channels. 

The biophysical properties of single channels 
have been studied in depth using patch record- 
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ing techniques (Sakmann and Neher, 1983). Single- 
channel recordings have shown that the channels un- 
dergo rapid transitions between conducting and non- 
conducting states. It is now known that conforma- 
tional changes of the channel protein, rather than 
movement of gating particles per se, give rise to the 
voltage-sensitivity of ion currents. ConformalJonal 
changes can be described by a state diagram that is 
analogous to the equations used to describe chemical 
reactions. 

Markov models are a class of kinetic scheme 
based on state diagrams in which the probabilities 
of state transitions are time-independent. These mod- 
els have been used for well over a decade to model 
the gating characteristics of many voltage-dependent 
ion channels and ligand-gated receptors. In partic- 
ular, Markov models can account for many details 
of single-channel data, including open time distribu- 
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tions and bursts of openings (Colquhoun and Hawkes, 
1981). When reevaluated in light of single channel 
data, the Hodgkin-Huxley description has remained 
accurate in some respects but in many detailed ways 
has been superseded (Armstrong, 1992). The vast ma- 
jority of biophysical studies now make use of Markov 
models to describe ionic conductances. 

Synaptic currents in computational models are 
usually described using alpha functions or related 
double-exponential waveforms fit to recordings of 
postsynaptic currents (PSCs). These waveforms are 
convenient and computationally efficient, but have 
several deficiencies. First, alpha functions can ap- 
proximate only a limited class of synaptic potentials, 
and correspond to a simple first-order linear biophys- 
ical scheme (see Appendix B): for central synapses, 
the rise time is usually much faster than the decay 
time constant whereas there is only a single time con- 
stant for an alpha function. Second, alpha functions 
do not provide naturally for the summation or satu- 
ration of postsynaptic currents, which may be critical 
for models involving high-frequency bursting neurons 
(see Destexhe et al., 1993b, 1994a). Finally, the use 
of a fixed conductance template such as the alpha 
function complicates the analysis of the neuron as a 
dynamical system. 

The first quantitative descriptions of currents at 
the neuromuscular junction used kinetic equations 
of a simple Markovian form (Katz, 1966; Magleby 
and Stevens, 1972). Subsequent application of single- 
channel recordings to the study of synaptic trans- 
mission (Neher, 1992; Sakmann, 1992) has provided 
many increasingly detailed models which continue to 
use Markov kinetic schemes, yet alpha functions re- 
main the favored description for PSCs among com- 
putational modelers (Koch and Segev, 1989). 

Although the Hodgkin-I-Iuxley formalism for 
voltage-dependent channels and alpha functions for 
synaptic currents have been useful for many purposes, 
there are many advantages to replacing both with a 
uniform approach based on Markov kinetics. First, 
years of biophysical studies have shown that Markov 
models provide descriptions sufficiently general and 
powerful to capture the behavior of channels even 
when revealed directly through single-channel record- 
ings. Second, kinetic models in general are compre- 
hensive enough to describe not only ion channels but 
the entire array of enzymes and molecular interac- 
tions that underlie signalling in nerve ceUs. Finally, 
the state diagrams of Markov models can be related 

directly to the structure of the underlying molecules 
and therefore adapted as our molecular understanding 
progresses. 

In this paper, we show that the kinetic approach 
is a comprehensive tool for biophysical and molecu- 
lar studies as well as a flexible enough framework to 
produce useful computational neural models. We syn- 
thesize a model of synaptic transmission from inva- 
sion of the presynaptic terminal by action potentials, 
through calcium-dependent release, to action of both 
fast and slow (modulatory) postsynaptic currents. 
Both detailed and simplified Markov models are ex- 
amined, and simulated synaptic currents are compared 
to whole-cell voltage-clamp recordings. The essential 
properties of voltage-dependent channels, transmitter- 
gated channels and second messenger-activated chan- 
nels are well-captured by even relatively simple ki- 
netic schemes that are computationally efficient and 
amenable to analysis. 

2 M e t h o d s  

All ionic currents considered in this paper were 
given by models of ion channels described by a ki- 
netic formalism for the transitions between their con- 
formational states. All simulations were performed 
with the NEURON compartmental simulation pro- 
gram (Hines, 1989, 1993). The kinetic equations were 
written and solved directly using KINETIC methods 
of the NMODL language of NEURON, which is a 
derivative of the MODL description language of the 
SCoP package (Kohn, 1989). In some cases, ana- 
lytic expressions were obtained and compared with 
the simulations. 

2.1 Kinetic Description of Ion Channel Gating 

The description of gating kinetics at the single- 
channel level makes use of state diagrams that have 
the same significance as the reaction diagrams in 
chemical kinetics 

S l  , , $2  , �9 . . . . .  . Sn .  ( 1 )  

The various states, $1 . . .  Sn, are meant to represent a 
sequence of protein conformations that underlies the 
gating of a channel. Define P(Si, t) as the probability 
of being in a state Si at time t and P(Si --~ Sj) as 



the transition probability from state Si to state Sj. 
The time evolution of the probability of state Si is 
then described by the Master equation (Colquhoun 
and Hawkes, 1977): 

dP(Si,  t) t l  

dt = '}-~j=l P(Sj,  t) P(Sj  ---+ Si) (2) 
n - ~ j : l  P(Si, t) P(Si --+ Sj). 

The left term represents the "source" contribution of 
all transitions entering state St, and the right term rep- 
resents the "sink" contribution of all transition leaving 
state Si. In this equation, the time evolution depends 
only on the present state of the system, and is defined 
entirely by knowledge of the set of transition proba- 
bilities. Such systems are called Markovian systems. 

In the case of a large number of identical channels 
or other proteins, the quantities given in the master 
equation can be reinterpreted. The probability of be- 
ing in a state St becomes the fraction of channels in 
state St, noted st, and the transition probabilities from 
state Si to state Sj becomes the rate constants, rij, of 
the reactions 

ri) 
s i  , - s t .  ( 3 )  

rji 

In this case, one can rewrite the master equation as: 

d---[ = sj rji - si rij (4) 
/=1 /=1 

which is a conventional kinetic equation for the vari- 
ous states of the system. We will refer to this type of 
system as Markov kinetics. 

2.2 Voltage-Dependent Channel Gating 

Voltage-dependent ion channels can be described us- 
ing Markov kinetic schemes in which transition rates 
between some pairs of states, i and j ,  vary as a func- 
tion of the membrane potential, V: 

rij (V) 
s t  , , s j .  ( 5 )  

rj~(v) 

Because the physical basis of the gating process is 
not well understood, a variety of forms for the volt- 
age dependence are possible. According the theory 
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of reaction rates (Johnson, Eyring and Stover, 1974), 
the rate of transition between two states depends ex- 
ponentially on the free energy barrier between them. 
Thus 

rij(V) = e x p - U i j ( V ) / R T ,  (6) 

where R is the gas constant and T is the absolute 
temperature. The function Uij(V) is in general very 
difficult to ascertain, and may involve both linear and 
nonlinear components arising from interactions be- 
tween the channel protein and the membrane electri- 
cal field. This dependence can be expressed without 
assumptions about underlying molecular mechanisms 
by a Taylor series expansion of the form 

U(V) = Co + c l V  +czV  2 + . . .  (7) 

giving a general transition rate function 

r(V) = exp [-(Co + cl V + c2 v2 @ . . . ) / R T ] ,  (8) 

(Stevens, 1978), where co, c~, c2 . . . .  are constants 
which are specific for each transition. The constant 
co corresponds to energy differences that are inde- 
pendent of the applied field, the linear term ClV to 
the translation of isolated charges or the rotation of 
rigid dipoles, and the higher order terms to effects 
such as electronic polarization and pressure induced 
by V (Andersen, 1992). In the "low field limit" (dur- 
ing relatively small applied voltages), the contribution 
of the higher order terms may be negligible (Stevens, 
1978; Andersen, 1992). Thus, a simple, commonly- 
used voltage dependence takes the form 

rij(V) = aij e x p ( - V / b i j ) ,  (9) 

where aij and bij are constants. 

Hodgkin-Huxtey Formalism. The most elementary 
Markov model for a voltage-gated channel is the first 
order scheme 

ri (V) 
C ~ O, (10) 

r2(V) 

with voltage-gated rates ri(V) and r2(V) between 
a single open or conducting state, O, and a single 
closed state C. 
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In the method of t-Iodgkin and Huxley (1952), sev- 
eral gates must open in order to activate a channel. 
Each gate has two states with the first order kinetics 
of Eq. 10, and each behaves entirely independently 
the others. 

Gates are divided into two types, usually several 
gates for activation, m, and a single gate for inac- 
tivation, h. All activation gates are assumed to be 
identical to one another, reducing the number of state 
transitions that must be calculated to two 

~ ( v )  
m , , m *  ( 1 1 )  

~,,,(v) 

~h(V) 
h , , h*. (12) 

~h(V) 

The channel conductance is simply calculated as the 
product of the open fractions of each gate 

o = m M h (13) 

where M is the number of identical m gates. 
The Hodgkin-Huxley formalism is a subclass of 

the more general Markov representation. An equiva- 
lent Markov model can be written for any Hodgkin- 
Huxley scheme, but the translation of a system with 
multiple independent particles into a single-particle 
description results in a combinatorial explosion of 
states. Thus, the Markov model corresponding to the 
Hodgkin-Huxley sodium channel is 

3~m 2~tm Urn 

C3 , '  - C2 ,,, " C1 , , 0 
tim 2tim 3,8,, 

3C~m 2Cem Oem 
13 - �9 /2 , ' 11 , , I 

~m 2tim 3tim 

(14) 

(FitzHugh, 1965). The states represent the channel 
with the inactivation gate in the open state (top) or 
closed state (bottom) and (from left to right) three, 
two, one or none of the activation gates closed. To 
reproduce the m 3 formulation, the rates must have the 
3:2:1 ratio in the forward direction and the 1:2:3 ratio 

in the backward direction. Only the O state is con- 
ducting. The squid delayed rectifier potassium current 
modeled by Hodgkin and Huxley (1952) with 4 acti- 
vation gates and no inactivation can be treated anal- 
ogously (Fitzhugh, 1965; Armstrong, 1965) giving 

4am 3~m 2am am 
C4 ~ C3 , " C 2 , * C 1 , * O. 

tim 2tim 3~m 4tim 

(15) 

Markov Models of Voltage-Dependent Channels. In 
more general models using Markov kinetics, indepen- 
dent and identical gates are not assumed. Rather, a 
state diagram is written to represent the configuration 
of the entire channel protein. This relaxes the con- 
stralnts on the form of the diagram and the ratios of 
rate constants imposed by the Hodgkin-Huxley for- 
mulation. One may begin with the elementary two- 
state scheme (Eq. 10) augmented by a single inacti- 
vated state, giving 

rl  
C , , O 

r2 

r6 r4 (16) 

F5 r3 

All six possible transitions between the three states 
are allowed, giving this kinetic scheme a looped form. 
The transition rates may follow voltage-dependent 
equations in the general form of Eq. (8) or some 
of these rates may be taken as either zero or inde- 
pendent of voltage to yield more simple models (see 
Results). 

To fit more accurately the time course of chan- 
nel openings or gating currents, additional closed and 
inactivated states may be necessary. As an example 
of a biophysically-derived multi-state Markov model, 
the squid sodium channel model of Vandenberg and 
Bezanilla (1991) was considered. The authors fit by 
least squares a combination of single channel, macro- 
scopic ionic, and gating currents using a variety of 
Markov schemes. The nine state diagram 



C 

0 

roli 

r5 

- " C 1  

r6 

t" 5 

r6 

/'4 r2 
�9 C 4  ii  41 

r3 rl 

r7 
F1 F3 

. . . . .  14 . " 

/'2 /'4 

C2 

r iI ro 
C3 

rlotl r8 

I3 

(17) 

was found to be optimal by maximum likelihood cri- 
teria. The voltage-dependence of the transition rates 
was assumed to be a simple exponential function of 
voltage (Eq. 9). To complement the detailed sodium 
model of Vandenberg and Bezanilla, we also exam- 
ined the six state scheme for the squid delayed recti- 
fier used by Perozo and Bezanilla (1990, 1992) 

C 

0 

rl r3 
-" C1 ,I  q 

r2 r4 

r6 r4 

C4 
r5 r3 

C2 

r311 r4 

' C3 

(18) 

where again rates were described by a simple expo- 
nential function of voltage (Eq. 9). 

Magnesium Block. In the case of the N-methyl-D- 
aspartate (NMDA) receptor-gated channel there is a 
marked voltage-dependency in the presence of ex- 
tracellular magnesium (Mayer et al., 1984; Nowak 
et al., 1984). Magnesium acts by a direct block 
of the channel's ion pore, rather than by introduc- 
ing a new voltage-dependent conformational change 
(Jahr and Stevens, 1990a, b). Consequently, the 
model for this channel can be simplified by assuming 
magnesium- and voltage-independent gating proper- 
ties of the channel may be treated independently of 
the magnesium block. Furthermore, since the kinet- 
ics of the magnesium block are extremely rapid, the 
gating by magnesium can be considered to be at 
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equilibrium. Thus, Jahr and Stevens (1990b) found 
that for physiological magnesium concentrations, the 
NMDA receptor-mediated current can be described 
by a voltage- and magnesium-independent kinetics of 
the receptor, whereas the dependence in voltage can 
be integrated in a gating function that multiplies the 
conductance. This gating function is 

V, M 2+x fNMDA( g ) =  

1/[i + exp(-0.062 V)([Mg2+]o/3.57)] 
(19) 

where [Mg2+]o is the extracellular Mg 2+ concentra- 
tion, and the constants were determined empirically 
based on single-channel studies. The total NMDA 
conductance is then proportional to the product of 
this expression and the fraction of channels in the 
open state. 

2.3 Models of Ligand-Gated Channels 

The presence of one or more receptor sites on a 
channel confers a second important class of .gating 
properties, that of ligand-gating. A principle class of 
ligand-gated channels is those activated directly by 
neurotransmitter. Ligand gating also commonty oc- 
curs through secondary agonists, such as the glycine 
activation of the NMDA receptor, or through second- 
messengers, such as calcium, G-proteins, or cyclic 
nucleotides. 

For a ligand-gated channel, transition rates be- 
tween unbound and bound states of the channel de- 
pend on the concentration of ligand 

rij 
L + s~ .~ . sj (20) 

rji 

where L is the ligand, Si is the unbound state, Sj is 
the bound state (sometimes written SiL), rij and rii 
are rate constants as defined before. 

The same reaction can be rewritten as: 

rq([L]) 
si , ~ s j  (21)  

rji 

where rij([L]) = [L] rq and [L] is the concentration 
of ligand. Written in this form, (21) is equivalent to 
(5). Ligand-gating schemes are generally equivalent 
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to voltage-gating schemes, although the functional de- 
pendence of the rate on [L] is simple compared to the 
voltage-dependence discussed in the preceding sec- 
tion. 

Alpha Functions. A very simple function which has 
been used to describe transmitter-gated responses 
is the alpha function, originally introduced by Rall 
(1967) 

(t - to) 
r(t - to) = ~ exp [ - ( t  - t0)/rl] . (22) 

The function gives a stereotyped waveform for the 
time course of the postsynaptic current following a 
presynaptic spike occurring at time t = to. rl is 
the time constant of the alpha function. Alpha func- 
tions often provide approximate fits for many synaptic 
currents, and have been widely used for computing 
synaptic currents in neural models (see e.g. Koch and 
Segev, 1989). 

Markov Models of Ligand-Gated Channels. Al- 
though it was originally chosen empirically, without 
an underlying microscopic interpretation, it is also 
possible to derive the alpha function from a particu- 
lar transmitter gating scheme under several restricted 
assumptions (Appendix B). We outline here detailed 
and elementary kinetic schemes that can be used more 
generally to describe postsynaptic currents. State di- 
agrams are written to represent the conformational 
changes of the synaptic channel. The most elemen- 
tary state diagram for a ligand-gated channel is 

rl ([L]) 
C , , O 

r6([L]) r2 r4 ,,,',, / /  
F5 /'3 

D 

(24) 

Here D represents the desensitized state of the chan- 
nel and r l . . .  r6 are the associated rate constants. 
Slightly simpler 3-state models result when some 
transitions are excluded. 

Detailed, multi-state kinetic schemes have been 
derived for a wide range of transmitter-gated recep- 
tors, including the nicotinic acetylcholine receptor 
(e.g. Sakmann, 1992), the non-NMDA (e.g. Raman 
and Trussell, 1992; Standley et al., 1993) and NMDA 
subtypes of glutamate receptor (e.g. Clements and 
Westbrook, 1991; Lester and Jahr, 1992) and the y-  
aminobutyric acid (GABAA) receptor (e.g. MacDon- 
ald and Twyman, 1992). As an example of such a de- 
tailed model, we considered a fast, non-NMDA glu- 
tamate receptor (we do not distinguish here between 
the various types of non-NMDA glutamate receptors, 
which we refer to as ce-amino-3-hydroxy-5-methyl-4- 
isoxazoleproprionic acid/kainate or AMPA/kainate). 
The AMPA/kainate glutamate receptor of the locust 
muscle was characterized by Standley et al. (1993) 
using single-channel recording techniques, and sev- 
eral models were tested to account for the observed 
gating kinetics. They found that their data was fit by 
the six-state scheme 

rl([L]) 
C , . ,  O (23) I~ 

r2 rv([L]) ~[ r8 

where C and O represent the closed and open states 
of the channel and rl([L]) and r2 are the associated 
rate constants. 

In some cases, the presence of one or several de- 
sensitized states must be introduced to account for 
the time-dependent properties of the channel. Desen- 
sitized states, as they are called in the receptor kinetic 
literature, are equivalent to the inactivated states of 
voltage-dependent channels. The addition of a single 
desensitized state to the elementary scheme gives: 

r l ( [ L ] )  r 3 ( [ L ] )  r5 
C , , CI , ~ C2 , , O 

/'2 /'4 /'6 

r9([L]) 
D1 , ' D2 

F10 

(25) 

where C is the unbound closed state, C1 and C2 
are respectively the singly- and doubly-bound closed 
states, O is the open state, and D1 and D2 are re- 
spectively the desensitized singly- and doubly-bound 
states. 



Pulse Models and Exact Expression for the Postsynap- 
tic CurrenL A Markov kinetic scheme describes the 
movement between different conformational states 
($1 . . .  Sn+l) of a protein by a set of n first-order dif- 
ferential equations. Generally, such a system admits 
an exact solution if atl rates, r i j ,  are constant. The 
solution for a Markov system with (n + 1) states is a 
sum of n exponentials: 

si(t) = s ~  + 2_~ Kij e x p ( - t / r j )  
j=l 

(26) 

where the coefficients sot,, Kij and the time constants 
rj are functions of the rate constants rij and the co- 
efficients Kij also depend on the initial conditions. 

As described above, channel gating by either lig- 
and or voltage leads to transition rates that vary as 
the electrical or chemical environment of the channel 
changes over time. Therefore, in order to apply an 
analytic solution, conditions must be found in which 
these dynamic variables can be considered constant. 

In a previous paper (Destexhe et al., 1994b), we 
gave an analytic expression for a postsynaptic cur- 
rent from a two-state ligand-gated channel (see also 
Staubuli et al., 1992). The analysis was based on 
the assumption that the channel experienced trans- 
mitter concentrations that were piecewise constant, 
such as during a brief pulse. There are separate so- 
lutions during the pulse, when the concentration of 
the transmitter is high, and after the pulse, when the 
concentration of the transmitter returns to zero. The 
use of a pulse-shaped transmitter concentration was 
justified in reference to experiments using the "liquid 
filament" technique, which showed that 1 ms pulses 
of 1 m M  glutamate reproduced PSC's in membrane 
patches that were quite similar as those recorded in 
the intact synapse (Hestrin, 1992; Colquhoun et al., 
1992; Standley et al., 1993). The same considera- 
tions were applied more generally here. In addition to 
the two-state model, we examined pulse-based ana- 
lytic solutions for three-state channel models (Eq. 24). 
These expressions are given in Appendix A. 

Pulse models were based on the delivery of trans- 
mitter using a procedure identical to the one described 
before (Destexhe et al., 1994b). Following the arrival 
of an action potential in the presynaptic compartment, 
a rectangular pulse of transmitter is triggered in the 
synaptic cleft. The pulse is started when the presynap- 
tic voltage crosses 0 rnV and the postsynaptic con- 
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ductance is calculated using the analytic expressions 
given in Appendix A. 

Analytic solutions are also applicable for calcu- 
lating the time course of a voltage-dependent chan- 
nel following a voltage clamp. A similar approach 
was followed by Goldman and Hahin (1979) for 
the sodium current. Although we give the general 
solution for voltage-dependent and ligand-dependent 
cases in Appendix A, they were not used explicitly 
for the voltage-dependent solutions here. They can 
be applied in principle for estimating the parameters 
of first- and second-order models from voltage-clamp 
data (Goldman and Hahin, 1979). 

During a numerical simulation, one can make the 
approximation that voltage and ligand concentration 
are constant during any small time step, dr. Transition 
rates can then be calculated at t = to as functions of 
V(to) and [L](t0). The state at t = to + dt is cal- 
culated with these constant rates using the equations 
described in Appendix A. 

Second Messenger Gating. Some neurotransmitters 
do not bind directly to the ion channel, but modu- 
late the channel through an intracellular messenger, 
which links the activated receptor to the opening or 
closing of an ion channel. We developed such a ki- 
netic model for a class of neurotransmitters linked 
to the activation of a G-protein pathway involved in 
the gating of a K + channel (see Results). We com- 
pared this model with a much simplified model for 
such a response. The simple model assumed that fol- 
lowing transmitter binding to postsynaptic receptors, 
a G-protein was activated in a pulse-like fashion for 
a fairly long duration (50-100 ms). In this case, the 
model of G-protein-mediated postsynaptic response 
reduced to the same functional expression as Eq. (20) 
and the considerations applied to transmitter-gated 
channels also applied to the G-protein model. 

2.4 Integration of Kinetic Models into Neural 
Models 

Kinetic models of ion channels and other proteins are 
coupled through various types of interactions, which 
can be expressed by equations governing the electri- 
cal and chemical states of the cell. 

Electric Interactions. Using the equivalent circuit 
approach, the general equation for the membrane 
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potential of a single isopotential "compartment" is: 

dV k Ik, (27) 
Cm dt -- 

k=l 

where V is the membrane potential, Cm is capaci- 
tance of the membrane, and Ik are the contributions 
of all channels of one type to the current across a par- 
ticular area of membrane. Only single compartments 
were simulated, but the same approach could be ex- 
tended to multiple compartments using the method of 
equivalent electrical circuits (Koch and Segev, 1989). 
In this case, a compartment may represent a small 
cylinder of dendritic or axonal process. We assumed 
that (a) the membrane compartment contained a suf- 
ficiently large number of channels of each type k for 
Eq. (4) to hold, and (b) there was a single open or 
conducting state, Ok, for each channel type with max- 
imum single-channel conductance, 1/k. Then, to first 
approximation, each lk can be calculated assuming a 
linear I - V relationship, giving the familiar Ohmic 
form 

Ik = ~k ok (V -- Ek) (28) 

where ok is the fraction of open channels, gk is the 
maximum conductance and Ek is the apparent equi- 
librium (reversal) potential, g'k is the product of the 
single-channel conductance and the channel density, 

gk = yk pk. 

The assumption of an ohmic I - V relation breaks 
down when an extreme concentration gradient ex- 
ists for a permeable ion. The Goldman-Hodgkin-Katz 
current equation is more appropriate to model non- 
equilibrium situations for which this breakdown can 
occur (Hille, 1992). This equation was used to de- 
scribe Ca 2+ currents, namely 

Vz2F  2 
Pk O k ~  

RT 
[Ca2+]i - [Ca2+]o e x p ( - z F V / R T )  

1 - e x p ( - z F V / R T )  

(29) 

where ffk is maximum permeability, z = 2 is the va- 
lence of Ca 2+, and [Ca2+ ]i and [Ca2+ ]o are calcium 
concentrations on the inside and outside of the mem- 
brane respectively, and F is Faraday's constant, R is 
the gas constant, and T is the absolute temperature. 

Influx and Efflux of Ions. Calcium acts as ligands for 
many channels and proteins. In order to track the con- 
centration of ions such this, standard chemical kinet- 
ics can be used. The contribution of calcium channels 
to the free Ca 2+ inside the cell was calculated as 

d[Ca2+]i -Ic~ 
- ( 3 0 )  

dt zFAd  

where A is the membrane area, d = 0.1 /,m is the 
depth of an imaginary submembrane shell, and the 
other constants are as given for Eq. (29). Removal 
of intracellular Ca 2+ was driven by an active pump 
obeying Michaelis-Menten kinetics (see Destexhe et 
al., 1993a): 

Cl C3 

Ca~ + + P , ~ CaP ~ e + Ca2o + 
c2 

(31) 

where P represents the Ca 2+ pump, CaP is an in- 
termediate state, Ca2o + is the extracellular Ca 2+ and 
cl, c2, and c3 are rate constants as indicated. Ca 2+ 
ions have a high affinity for the pump P, whereas ex- 
trusion of Ca 2+ follows a slower process (Blaustein, 
1988). The extrusion process was assumed to be fast 
(milliseconds). Diffusion was not calculated. 

2.5 Fit of Models to Whole-Cell Recordings 

Postsynaptic currents resulting from a presynaptic ac- 
tion potential were fit to PSC's obtained by whole-cell 
voltage-clamp recordings in hippocampal slices. For 
AMPA/kainate receptors, averaged PSC's recorded 
from mossy fiber synapses in CA3 pyramidal cells 
were provided by Z. Xiang and T. Brown (see Xiang 
et al., 1992). Averaged PSC's of NMDA receptors 
were provided by N.A. Hessler and R. Malinow (see 
Hessler et al., 1993). For GABA receptors, GABAA 
and GABAs PSC's recorded from dentate granule 
cells were provided by T. Otis and I. Mody (see Otis 
and Mody, 1992; Otis et al., 1993). 

Models were fit to the experimental waveforms 
using a simplex least squares fitting algorithm (see 
Press et al., 1986). In the case of first- or second- 
order models, the time course of the PSC could be 
obtained as an analytical expression using the proce- 
dure described above (see also Appendix A). This ex- 
pression was fit to the data using the standard version 
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Fig. 1. Schematic diagram of the kinetic schemes used for modeling synaptic transmission. The voltage-gated channels depolarize the 
presynaptic terminal; Ca 2+ enters the cytosol via a high-threshold Ca 2+ current activated during the action potential; Ca 2+ ions bind to a 
calcium-binding protein (X) and produces an active form (X*); X* promotes the exocytosis of synaptic vesicles and release of transmitter 
molecules (triangles) into the synaptic cleft. The transmitter can bind to a postsynaptic receptor-ionophore complex (left), or to a second- 
messenger-linked postsynaptic receptor (right), In the latter case, the receptor catalyzes the formation of an activated G-protein alpha subunit 
(G*), which directly gates the opening of a potassium channel. All of the steps in this process are described by simple kinetic models in 
the text. 

of the simplex algorithm. In the case of higher-order 
models, a direct fit of the kinetic model was more effi- 
cient. In this case, the kinetic equations of the model 
were solved numerically using an Euler integration 
scheme for each iteration of the simplex procedure. 
All possible first- and second-order kinetic schemes 
were considered when fitting models to these data. 

3 Results 

The kinetic models outlined in the Methods allow 
voltage- and ligand-gated ion channels to be de- 
scribed within the same framework as that for the 
molecular interactions underlying signal transduction 
and cellular biochemistry. Here, we use this com- 
mon kinetic framework to construct a simple model 

of synaptic transmission. The different processes in- 
corporated into the model are illustrated in Fig. 1. 

We begin with both detailed and simple kinetic 
models of voltage-dependent ion channels, using the 
generation of a classical sodium-potassium action po- 
tential as an example. We then present a kinetic model 
of transmitter release incorporating calcium entry and 
efflux and a simplified calcium-triggered signal cas- 
cade leading to vesicle fusion. The outcome of the 
release process is the time-varying concentration of 
neurotransmitter in the synaptic cleft, which in turn 
gates postsynaptic channels. Both traditional "fast" 
transmitter-gated ion channels and "slow," modula- 
tory, conductances are considered. For both fast and 
slow synaptic responses, we compare elementary and 
detailed kinetic schemes to experimental recordings, 
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Fig. 2. Three kinetic models of a squid axon sodium channel produce qualitatively similar conductance time courses. A voltage-clamp step 
from rest, V = - 7 5  mV, to V = - 2 0  mV was simulated. The fraction of channels in the open state (O, solid lines), closed states (C, dashed 
lines), and inactivated states (I, dotted lines) are shown for the Hodgkin-Huxley model, a detailed markov model, and a simple Markov 
model. A. An equivalent Markov scheme for the Hodgkin-Huxley model is shown (right insert, Eq. 14). Three identical and independent 
activation gates (m, thin solid line) gives a form with 3 closed states (corresponding to 0, 1, and 2 activated gates) and one open state (3 
activated gates). The independent inactivation gate, (h, thin dotted line) adds 4 corresponding inactivated states. Voltage-dependent transitions 
were calculated using the original equations and constants of Hodgkin and Huxley (1952). B. The detailed Markov model of Vandenberg 
and Bezanilla (1991) (Eq. 17; at = 11490 s - l ,  bl ----- 59.19 mV, a2 = 8641 s -1, b2 = -5860  mV, a3 = 31310 s -1, b3 = 17.18 mV, 
a4 ~-- 2719 s -1, b4 = -51 .54  rnV, a5 = 33350 s - l ,  b5 = 74.58 mV, a6 = 1940 s -1, b 6 = -21 .03 mV, a7 = 863.1 s -1, b7 --.= 27050 mY, 
as = 1538 s -1, bs ----- 27050 mV, a9 = 7.992 s -1, b9 = -27 .07  mV, rl0 = r8 r9 / r7). Individual dosed and inactivated states are shown 
(thin lines) as well as the sum of all 5 closed and all 3 inactivated states (thick lines). C. A simple three-state Markov model fit to approximate 
the detailed model (Eq. 32; al = 1500 s -1, a2 = 200 s -1, a4 = 150 s -1, b = 5 mV, cl = c2 ---- - 2 7  mV, c4 = - 6 5  mV, r3 = 3000 s - l ) .  
D. Comparison of the time course of open channels for the three models on a faster time scale shows differences immediately following 
a voltage step. The Hodgkin-Huxley model (dashed line) and detailed Markov modeled (solid line) give smooth, multi-exponential rising 
phases, while the simple Markov model (dotted line) gives a single exponential rise with a discontinuity in the slope at the beginning of the 
pulse. 

and provide analytic expressions for PSC's based on 
further simplifying assumptions. 

3.1 Voltage-Gated lon Channels 

Voltage-dependent channels can be modeled compre- 
hensively using kinetic schemes in which some of the 
transition rates vary with membrane potential. The 
minimal kinetic model for a voltage-dependent chan- 
nel is the first order scheme consisting of just one 
closed or non-conducting state and one open or con- 
ducting state. The two-state description is adequate to 
fit the behavior of some channels (see e.g., Labarca et 

al., 1980; Yamada et al., 1989; Borg-Graham, 1991), 
but for most channels more complex models must 
be considered. Many models of sufficient complexity 
are capable of fitting any limited set of experimental 
data. To demonstrate this, we compared three alter- 
native models of the fast sodium channel of the squid 
axon (Fig. 2). 

First, the original quantitative description of 
the squid giant axon sodium conductance given 
by Hodgkin and Huxley (1952) was reproduced 
(Fig. 2A). The Hodgkin-Huxley model (H-H model) 
had four independent gates each undergoing transi- 
tions between two states with first-order kinetics as 



described by Eq. (12). Three identical gates, m, rep- 
resent activation and one, h, inactivation, leading to 
the familiar form for the conductance, gNa (X m3h 
(Eq. 13). 

Since the work of Hodgkin and Huxley, the behav- 
ior of the sodium channel of the squid axon has subse- 
quently been better described in studies using Markov 
kinetic models. To illustrate the nature of these stud- 
ies, we simulated the detailed sodium channel model 
of Vandenberg and Bezanilla (1991) (Eq. 17, Fig. 2B). 
This particular nine-state model was selected to fit not 
only the measurements of macroscopic ionic currents 
available to Hodgkin and Huxley, but also recordings 
of single channel events and measurements of cur- 
rents resulting directly from the movement of charge 
during conformational changes of the protein (so- 
called gating currents). 

Finally, we created a very simple Markovian 
sodium channel model (Fig. 2C). The scheme was 
chosen to have the fewest possible number of states 
(three) and transitions (four) while still being capa- 
ble of reproducing the essential behavior of the more 
complex models. The form of the state diagram was 
based on the looped three-state model (Eq. 16) with 
several transitions eliminated to give an irreversible 
loop (Bush and Sejnowski, 1991) 

C 
rz(V) 

r2(V) 

\ , /  
r4(V) r3 

O 

(32) 

The model incorporated voltage-dependent open- 
ing, closing, and recovery from inactivation, while 
inactivation was voltage-independent. For simplicity, 
neither opening from the inactivated state nor inacti- 
vation from the closed state were permitted. Although 
there is clear evidence for occurrence of the latter 
(Horn et al., 1983) it was unnecessary under the con- 
ditions of our simulations. 

It is common for detailed Markov models of 
voltage-gated channels to assume that the voltage- 
dependence of all rates takes a simple exponen- 
tial form (Eq. 9; e.g. Chabala, 1984; Vandenberg 
and Bezanilla, 1991; Perozo and Bezanilla, 1990; 
Harris et al., 1981). However, as discussed in 
the Methods, the interactions of a channel pro- 
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tein with the membrane field might be expected to 
yield a rather more complex dependency (Stevens, 
1978; Neher and Stevens, 1978; Andersen and 
Koeppe, 1992; Clay, 1989). Significantly, it has 
been shown that the number of states needed by 
a model to reproduce the voltage-dependent be- 
havior of a channel may be reduced by adopt- 
ing functions that saturate at extreme voltages 
(Keller et al., 1986; Clay, 1989; Chert and Hess, 
1990; Borg-Graham, I991). Therefore, we described 
the voltage-dependent transition rates of the sim- 
ple sodium channel model by the sigmoidal func- 
tion 

ai 
ri(V) = (33) 

1 -t- exp [ - ( V  - ci)/bi] 

which can be obtained from Eel. (8) by considering 
nonlinear as well as linear components of the voIt- 
age dependence of the free energy barrier between 
states. The constant ai sets the maximum transition 
rate, b sets the steepness of the voltage-dependence, 
and ci sets the voltage at which the half-maximal rate 
is reached. Through explicit saturation, Eq. (33) ef- 
fectively incorporates voltage-independent transitions 
that become rate-limiting at extreme voltage ranges 
(Keller et al., 1986, Vandenberg and Bezanilla, 1990, 
Chen and Hess, 1990), eliminating the need for addi- 
tional closed or inactivated states (see discussion by 
Chen and Hess, 1990). We constrained all bi = b 
and ci = c2 to yield a model consisting of nine total 
parameters. 

The response of the three sodium channel mod- 
els to a voltage-clamp step from rest ( -75  mV) 
was simulated (Fig. 2). For all three models, closed 
states were favored at hyperpolarized potentials. 
Upon depolarization, forward (opening) rates sharply 
increased while closing (backward) rates decreased, 
causing a migration of channels in the forward direc- 
tion toward the open state. The three closed states in 
the Hodgkin-Huxley model and the five closed states 
in the detailed (Vandenberg-Bezanilla) model gave 
rise to the characteristic sigmoidal shape of the ris- 
ing phase of the sodium current (Fig. 2D). In contrast, 
the simple model, with a single closed state, produced 
a first-order exponential response to the voltage step. 
As expected, the addition of one or more closed states 
to the simple model led to a progressively more sig- 
moidal rising phase (not shown). 



206 Destexhe, Mainen and Sejnowski 

Even though the steady-state behavior of the 
Hodgkin-Huxley model of the macroscopic sodium 
current is remarkably similar to that of the micro- 
scopic Markov models (Martin and Abbott, 1994), 
the relationship between activation and inactivation 
is different. First, in the Hodgkin-Huxley model, 
activation and inactivation are kinetically indepen- 
dent. This independence has been shown to be un- 
tenable on the basis of gating and ion current mea- 
surements in the squid giant axon (Armstrong, 1981; 
Bezanilla, 1985). Consequently, Markov models that 
are required to reproduce gating currents, such as 
the Vandenberg-Bezanilla model examined here, re- 
quire schemes with coupled activation and inactiva- 
tion. Likewise, in the simple model, activation and 
inactivation were strongly coupled due to the unidi- 
rectional looped scheme (Eq. 32), so that channels 
were required to open before inactivating and could 
not reopen from the inactivated state before clos- 
ing. 

Second, in the Hodgkin-Huxley and Vandenberg- 
Bezanilla models, inactivation rates are slow and ac- 
tivation rates fast. In the simple Markov model, the 
situation was reversed, with fast inactivation and slow 
activation. At the macroscopic level modeled here, 
these two relationships gave rise to similar times 
course for open channels (Fig. 2A-C; see Ander- 
sen and Koeppe, 1992). However, the two classes 
of models make distinct predictions when interpreted 
at the microscopic (single-channel) level. Whereas 
the Hodgkin-Huxley and Vandenberg-Bezanilla mod- 
els predict the latency to first channel opening to 
be short and channel open times to be compara- 
ble to the time course of the macroscopic current, 
the simplified Markov model predicts a large por- 
tion of first channel openings to occur after the peak 
of the macroscopic current and to have open times 
much shorter than its duration. Single channel record- 
ings have confirmed the latter prediction (Sigworth 
and Neher, 1980; Aldrich et al., 1983; Aldrich and 
Stevens, 1987). 

Despite the significant differences in their com- 
plexity and formulation, the three models of the 
sodium channel that we investigated all produced 
very comparable action potentials and repetitive fir- 
ing when combined with appropriate delayed-rectifier 
potassium channel models (Fig. 3). None of the potas- 
sium channel models had inactivation. The main dif- 
ference was in the number of closed states, from 
six for the detailed Markov model of Perozo and 

Bezanilla (1989; Eq. 18), to four for the original 
(Hodgkin and Huxley, 1952) description of the potas- 
sium current, to just one for a minimal model (Eq. 10) 
with rates of sigmoidal voltage dependence (Eq. 33). 

3.2 Model  o f  Transmitter Release 

The goal of this section was to model the link be- 
tween presynaptic action potentials and the release of 
transmitter onto postsynaptic receptors. We modeled 
calcium-induced release along the lines of the model 
introduced recently by Yamada and Zucker (1992). 
There is ongoing debate concerning the exact mecha- 
nisms whereby Ca 2+ enters the presynaptic terminal, 
the specific proteins with which Ca 2+ interacts, and 
the detailed mechanisms leading to exocytosis. For 
the purposes of our simple model, we assumed that: 
(a) upon invasion by an action potential, Ca :+ en- 
ters the presynaptic terminal clue to the presence of 
a high-threshold Ca 2+ current; (b) Ca 2+ activates a 
calcium-binding protein which promotes release by 
binding to the transmitter-containing vesicles; (c) an 
inexhaustible supply of "docked" vesicles are avail- 
able in the presynaptic terminal, ready to release; 
(d) the binding of the activated calcium-binding pro- 
tein to the docked vesicles leads to the release of n 
molecules of transmitter in the synaptic cleft. This 
process is modeled here as a first-order process with 
a stoechiometry coefficient of n. 

The sodium and potassium channels underlying the 
action potential were described by the simple (three 
and two state, respectively) Markov models described 
in the preceding section. Calcium entry into the presy- 
naptic terminal was modeled by a high-threshold 
Ca 2+ current, using the same two-state Markov 
scheme and voltage-dependent rate functions as the 
potassium current (Eqs. 10 and 33). The parameters 
of the rate functions were chosen to approximate the 
L-type calcium channels described in McCormick and 
Huguenard (1992). Removal of intracellular Ca 2+ 
was driven by an active pump (see Methods). 

The calcium-induced cascade leading to the release 
of transmitter (Fig. 1) was described by the following 
kinetic scheme: 

kb 
4 Ca ~+ + X , , X* (34) 

ku 
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Fig. 3. Similar action potentials produced using three different kinetic models of squid fast sodium and delayed rectifying potassium channels. 
A. Single action potentials in response to 0.2 ms, 2 nA current pulse are elicited at similar thresholds and produce similar waveforms using 
three different pairs of kinetic models: Hodgkin-Huxley (dashed line; Hodgkin and Huxley, 1952), detailed Markov (dotted line; Vanderberg 
and Bezanilla, 1991; Perozo and Bezanilla, 1989), and simple Markov (solid line). B. Repetitive trains of action potentials elicited in response 
to sustained current injection (0.2 nA) have slightly different frequencies. Sodium channels were modeled as described in Fig. 2. The detailed 
Markov potassium channel model had 6 states (Perozo and Bezanilla, 1989) (Eq. 18; al = 484.5 s -1, bl = 112 mV, a2 = 19.23 s - l ,  
b 2 = -8 .471  mV, a3 = 1757 s - l ,  b3 = 25.83 mV, a4 = 569 s -1, b4 = -491 .0  mV, a5 = 672.9 s - l ,  b5 = 212 mV, a6 = 784.4, b6 = 0). 
The simple Markov potassium channel had 2 states (Eq. 10 with rates given by the sigmoid function of Eq. 33; al = 100 s -1 , a2 = 2.40 s -1 , 
b = 5 m V ,  Cl = c 2 - - - - 2 7 m V ) .  
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kl k3 
x * + v ,  . , v 2 , n L .  ( 3 5 )  

k2 

Calcium ions bind to a calcium-binding protein, X, 
with a cooperativity factor of 4 (see Augustine and 
Charlton, 1986; and references therein), leading to an 
activated calcium-binding protein, X* (Eq. 34). The 
associated forward and backward rate constants are 
k9 and ku. X* then reversibly binds to transmitter- 
containing vesicles, V~, with corresponding rate con- 
stants kl and k2 (Eq. 35). The last step of this re- 
action, governed by rate constant t:3, represents the 
(irreversible) release of n molecules of transmitter, 
L, from the activated vesicles into the synaptic cleft. 
The values of the parameters in this reaction scheme 
were based on previous models and measurements 
(Yamada and Zucker, 1992). 

The concentration of the liberated transmitter in 
the synaptic cleft, [L], was assumed to be uniform and 
cleared by processes of diffusion, uptake or degrada- 
tion. These contributions were modeled by the first 
order reaction: 

kC 
L . . . .  (36) 

where ke is the rate constant for clearance of L. 

Figure 4 shows a simulation of transmitter release 
triggered by a presynaptic action potential. Injection 
of a short current pulse into the presynaptic terminal 
elicited a single action potential (Fig. 4A). The de- 
polarization of the action potential activated L-type 
calcium channels, producing a rapid influx of cal- 
cium. The elevation of intracellular [Ca 2+] (Fig. 4B) 
was transient due to clearance by the active pump. 
The time-course of activated calcium-binding pro- 
teins and vesicles followed closely the time-course 
of the transient calcium rise (Fig. 4C). This resulted 
in a brief (~  1 ms) rise in transmitter concentration 
the synaptic cleft (Fig. 4D). The rate of transmitter 
clearance was adjusted to match the time course of 
transmitter release estimated from patch clamp ex- 
periments (Clements et al., 1992). Transmitter in the 
cleft could then bind and activate postsynaptic ligand- 
gated channels producing a postsynaptic current and 
potential (Fig. 4E,F). The kinetics of the postsynaptic 
response are described below. 

Simplification of the Release Process. Scrutiny of 
the time course of variables in the model of presynap- 
tic release (Fig. 4) showed that the time course of the 
transmitter concentration ([L]) followed grossly that 
of the presynaptic voltage. This was due to the fact 
that all intervening reactions occurred at relatively 
fast rates. Under the assumption that all species in- 
volved were near their equilibrium values, we were 
able to derive an expression for [L] as a function of 
presynaptic voltage. 

The stationary relationship between [L] and pre- 
synaptic voltage was evaluated by simulating a 
voltage-clamp protocol. Figure 5 shows such a pro- 
tocol in which the stationary concentration of L is 
represented as a function of the value at which the 
presynaptic membrane is clamped. The critical step 
in this process was the activation of the presynap- 
tic high-threshold Ca 2+ current. This current begins 
to activate for depolarized values of the presynaptic 
membrane potential, around - 4 5  inV. For more de- 
polarized potentials, the form of the pulse function 
depends on how the calcium current is obtained from 
the channel conductance (see Methods). When us- 
ing the Goldman-Hodgkin-Katz equations, there was 
a bell-shaped relation, whereas using the standard 
Nernst equation for calculating the reversal potential, 
this function took the form of a sigmoid. The sig- 
moid form shown in Fig. 5 is actually much steeper 
than the activation function of the presynaptic high- 
threshold Ca a+ current. Taking this activation func- 
tion to the 4th power (due to the cooperativity factor 
of the calcium-binding protein) gives a sigmoid func- 
tion which is much closer to that of Fig. 5. 

We fitted the steady-state values of transmitter con- 
centration in Fig. 5 by a bell-shaped curve for the 
Goldman-Hodgkin-Katz model and a sigmoid func- 
tion for the Nernst model. Both produced acceptable 
approximations, but in the following we present only 
the results from fitting the sigmoid form to the Nernst 
model: 

Zmax 
[L](Vpre) = (37) 

1 + exp[-(Vpr~ - Vp)/Kp) 

where Lmax is the maximal concentration of trans- 
mitter in the synaptic cleft, Vpr e is the presynap- 
tic voltage, Kp = 5 mV gives the steepness and 
V e = 2 m V sets the the value at which the func- 
tion is half-activated. 
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Fig. 4. Kinetic models of presynaptic release of glutamate and binding to transmitter-gated ion channels (AMPA/kainate receptors). A. 
A presynaptic action potential was elicited by injection of a 0.1 nA current pulse lasting 2 ms. Action potentials parameters for the 
simple kinetic models of  sodium and potassium in Fig 3. B. Intracellular Ca 2+ concentration in the presynaptic terminal. A kigh-threshold 
calcium current was also present and provided a transient calcium influx during the action potential. Removal was provided by an active 
calcium pump (see Eq. (31): c2/cl ---= 10 -5 raM, c3 = 1 s - l ) .  C. Relative concentration of activated calcium-binding protein X* (solid 
line; kb = 105 s-lrnM -4, ku = 100 s - l )  and activated vesicles V* (dashed line; kl = 106 s-traM -1, k2 = i00 s - l ,  k3 = 4000 s - t ,  
Ve = 0.01 mM). The maximal concentration of calcium-binding proteins was of 0.001 mM and the number of transmitter molecules per 
vesicle was n = 10000. D. Concentration of transmitter in the synaptic cleft (kc = 104 s - l ) .  The transmitter binds to AMPA/kainate 
receptors and opens the associated ion channel. E. Postsynaptic current produced by the gating of AMPA/kalnate receptors according to 
kinetic scheme in Eq. (25) (rl -= 2 �9 104 s-traM -l,  r2 = 1300 s -1, r3 = 104 s - ImM -l, r4 = 2600 s - l ,  r5 = 900 s - t ,  r6 = 500 s -1, 
r7 = 104 s - tmM -1, r8 = 0.2 s -1, r9 = 2 s - lmM -1, rl0 = 0.1 s - t ,  Erev = 0 mV, fi, AMPA = 1 nS). F. Excitatory postsynaptic potential 
in response to transmitter release (leakage conductance was 0.2 mS/cm 2 and leakage reversal potential was - 7 0  m V). 
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Fig. 5. Sigmoid relationship between transmitter concentration and 
presynaptic voltage. The kinetic model of presynaptic release was 
used with identical conditions as in Fig. 4. The presynaptic voltage 
was clamped at different values from - 5 0  to +50 inV. For each 
value, the model reached a steady state and the transmitter con- 
centration was measured and represented here. The high-threshold 
calcium current was modeled as indicated in the text using either 
Goldman-Hodgkin-Katz equations (open circles) or the Nernst re- 
lation (filled circles)�9 The sigmoid-like relationship observed for 
Nernst relation was fit using a least squares algorithm, leading to 
Eq. (37) with Lmax = 2.84 raM, Vp = 2 mV and Kp = 5 inV. 

As expected, this pulse function produced a trans- 
mitter time course very close to a pulse when the 
presynaptic terminal experienced transient depolar- 
ization by an action potential�9 We verified the effi- 
ciency of the pulse function by substituting it in a 
model in which synaptic interactions had been repre- 
sented originally as conditionally-triggered pulses of 
transmitter (Destexhe et al., 1993b). This study de- 
scribed spindle oscillations in networks of cells with 
complex oscillatory properties. Although synaptic in- 
teractions were critical to the results of this model 
(Destexhe et al., 1993b), the same spindle oscilla- 
tions were also found using expression (37) without 
adjusting the original values for any other parameters 
(data not shown)�9 

One of the main advantages of using expres- 
sion (37) is that it provides a very simple and 
smooth transformation between presynaptic voltage 
and transmitter concentration. This form, in conjunc- 
tion with simple kinetic models of postsynaptic chan- 
nels, provides a model of synaptic interaction based 

on autonomous differential equations with only one 
or two variables. 

3.3 Transmitter-Gated Ion Channels 

Postsynaptic transmitter-gated channels are a class of 
ligand-gated channel that can be represented using 
Markov kinetics, as outlined in the Methods section. 
A complete model for a postsynaptic response using 
Markov kinetics requires both the determination of a 
kinetic scheme for the channel and also specification 
of the time course of transmitter drives the response. 

It would be very useful to have models that accu- 
rately captured the behavior of postsynaptic currents 
while remaining efficient to compute and/or amenable 
to analysis. There are many indications that the ex- 
act time course of transmitter in the synaptic cleft is 
not, under physiological conditions, a main determi- 
nant of the kinetics of postsynaptic responses at many 
synapses (e.g. Magelby and Stevens, 1972; Lester et 
al., 1990; Colquhoun et al., 1992; Clements et al., 
1992). Thus, we explored two highly simplified mod- 
els for transmitter time course. The first, described in 
the preceding section, was a function giving transmit- 
ter concentration directly as a function of presynap- 
tic voltage�9 The use of this expression mimicked the 
behavior of the more elaborate release model while 
being much less expensive to calculate. 

The second simplified description of transmitter 
time course was to consider transmitter concentra- 
tions occurring as a pulse. The chief advantage of 
the pulse method is that it allows the kinetic equa- 
tions for a ligand-gated channel to be solved analyti- 
cally (see Methods). In a previous paper (Destexhe et 
al., 1994b) we demonstrated that pulse-based meth- 
ods could provide reasonable models of postsynaptic 
responses and gave solutions for a first-order kinetic 
scheme. Here, we extend these results to three-state 
models (solutions given in Appendix A). We com- 
pared the behavior of two and three-state models to 
both more detailed models and to postsynaptic cur- 
rents recorded using whole-cell voltage-clamp meth- 
ods. 

We began by simulating a detailed, six-state model 
for the AMPA/kainate receptor derived by Standley et 
al. (1993; Eq. 25), based on single channel recordings 
from locust muscle. Fig. 4E shows the time course 
of the AMPA/kainate PSC producted by the Stand- 
ley model in conjunction with the detailed model of 
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Fig. 6. Best fits for several simple kinetic schemes to averaged postsynaptic current mediated by AMPA/kainate receptors. The kinetic 
schemes were based on a 1 m M  rectangular pulse of  transmitter lasting 1 ms using the parameters listed in Table I. The kinetic equations 
were solved exactly, leading to an analytic expression for the postsynapfic current. The best fit obtained with each model (continuous 
traces) is compared with AMPA/kainate -receptor-mediated postsynaptic currents (noisy traces - negative upwards). Averaged recording of 
AMPA/kainate-receptor-mediated postsynaptic currents were obtained by whole-cell recordings at about 31 ~ in mossy fiber synapses in 
CA3 pyramidal cells (Xiang et al., 1992). 

transmitter release described above. The postsynaptic 
response showed a fast time to peak of about 1 ms 

and a decay phase lasting 5-10 ms,  in agreement with 
Standley et al. (1993). 

In experiments using a fast-perfusion technique, 
Colquhoun et al. (1992) and Hestrin (1992) found that 
1 ms pulses of glutamate applied to patches contain- 
ing AMPA/kainate receptor-gated channels produced 
responses that closely matched the time course of 
synaptic currents. We therefore had reason to believe 

that 1 ms pulses of transmitter applied to Markov 
models of AMPA/kainate channels could yield rea- 
sonable postsynaptic responses. 

We found that two and three-state kinetic schemes 
with 1 ms transmitter pulses fit well the average 
AMPA/kainate PSC's obtained by whole-cell record- 
ings (Fig. 6), in this case recorded from mossy-fiber 
synapses onto CA3 neurons in the hippocampal slice. 
Although the second-order model fit was better, the 
first-order model is reasonably accurate. Several corn- 
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Table 1. Elementary kinetic schemes and rate constants for transmitter-gated ion channels. Optimal values of the rate constants obtained by 
fitting elementary gating kinetic schemes to averaged recordings of synaptic currents for various transmitter-gated receptors (see Fig. 6). An 
analytic expression obtained for the time course of the current (see Appendix A) was fit to recordings using a simplex algorithm. First- and 
second-order kinetic schemes were used assuming a pulse of transmitter of 1 ms duration and 1 mM amplitude. AMPA/kainate-mediated 
currents (31~ were provided by Z. Xiang and T. Brown; NMDA-mediated currents (22-25~ were provided by N.A. Hessler and 
R. Malinow; GABAA-mediated currents (33-35 ~ were provided from T. Otis and I. Mody. The symbols for the rate constants correspond 
to the kinetic scheme in Eq. (24). 

rl r2 r3 r4 r5 r6 
Receptor Scheme (s-lrnM -1) (s -1) (s - I )  (s -1) (s -1) (s-lmM -1) 

AMPA/kainate C 4 , O 1100 190 . . . .  
C O 

~xx~ ~)~/r 0 0 5 7 0 2 4 0 0 1 4 0 0  540 

D 
C , �9 O 

960 190 20 15 0 0 

D 
C , , O 

\ /  lOOO 1o 0 0 

D 
C.,_._._~" O 

"~"'X ~ / / /  720 140 80 29 l l 0  210 

D 

NMDA 

GABAA 

C q " O 72 6.6 
C O 

o ~  

D 

C , " O 530 180 
C , , O 

/ / ~  2300 170 

D 
C.,._.__~, O 

~ /  150 200 

D 

0 160 4.7 190 

45 67 0 0 

22 11 34 190 

binations of the rate constants for different versions of 
the second-order model were found to provide equally 
good fits of the single averaged PSC (see Table 1). 

The detailed release model and the six-state 
AMPA/kainate model were simulated and a series of 
presynaptic action potentials were elicited at a rate of 
approximately 20Hz by injection of current (Fig. 7). 
Under these conditions there was a progressive desen- 
sitization of the response due to the increase of the 
fraction of desensitized channels (states D1 and D2). 
A similar behavior was also found with another model 

of the AMPA/kainate current (Raman and Trussell, 
1992; not shown). 

Again, the simple two and three-state kinetic 
schemes triggered by transmitter pulses were com- 
pared to the detailed model. The three-state model 

C 

\ 
r5 

rl([L]) 
, 0 q 

r2 (38) 

D 

/ 
r3 
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B Transmitter concentration 
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Fig. Z Comparison of models for AMPA/kainate receptors. A. Presynaptic train of four action potentials elicited by injection of a 20 ms 
current pulse of 0.1 nA. B. Corresponding volley of glutamate release in the synaptic cleft obtained using the kinetic model of transmitter 
release. C. Postsynaptic current from AMPA/kainate receptors modeled by kinetic scheme in Eq. (25) (all parameters used in A - C  were 
identical to those in Fig. 4). The progressive decrease of the amplitude of the successive excitatory postsynaptic currents is characteristic 
of the presence of desensitized states. D. Same simulation with AMPA/kainate receptors modeled by an elementary kinetic scheme (Eq. 38 
with rl = 1000 s - l m M  -1, r2 = 10 s - l ,  r3 = 180 s -1, r4 = 0, r5 = 0.63 s -1, r6 = 0, ~ = 0.4 nS, Erev = 0 mV) .  For this case, the 
transmitter time course was approximated by a series of 1 m M  pulses lasting 1 ms (indicated above the current trace). E. Same simulation 
as in D, but the postsynaptic current was modeled by a series of summated alpha functions (rl = 1.6 ms, ~ = 0.1 nS,  Erev = 0 mV).  In 
all cases the peak depolarization did not exceed - 6 0  inV. 
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was found to be the best approximation for 
AMPA/kainate current. The time course of the PSCs 
in this simple model reproduced the progressive de- 
sensitizing responses (Fig. 7D) as well as the time 
course of the AMPA/kainate current observed in the 
more accurate model (25). 

Figure 7 also illustrates the summation of post- 
synaptic currents obtained using alpha functions 
(Eq. 22). In this case (Fig. 7E), there was no desensi- 
tization, and the fit of alpha functions to the the time 
course of the AMPA/kainate PSC's was poor (the rise 
time was too slow compared to the decay time). The 
two-state model (Eq. 23) provided good fits of single 
PSC's (see Fig. 6), but was also unable to account 
for desensitization. 

Similar procedures were followed for two other 
types of synaptic currents, namely those gated by 
the NMDA subtype of glutamate receptor and the 
GABAA receptor. First- and second-order schemes 
were also fit to an averaged PSC obtained by whole- 
cell recording (see Methods). The optimal values 
of the kinetic constants obtained from these fits are 
shown in Table 1. 

3.4 Second Messenger-Gated Ion Channels 

A variety of neurotransmitters lead to the opening 
or the closing of postsynaptic channels through a 
second messenger. For a large class of receptors, a 
G-protein subunit might directly gate an associated 
potassium channel (see reviews by North, 1989; Hille, 
1992; Brown and Birnbaumer, 1992). Single channel 
recordings have demonstrated that a variety of potas- 
sium channels are gated by application of purified 
G-protein subunits (VanDongen et al., 1988). Various 
neurotransmitter receptors have been shown to act 
through this pathway and are summarized in Table 2. 
To demonstrate the scope of the kinetic formalism, 
we investigated the application of Markov kinetics to 
models of this class of slow or modulatory synap- 
tic action. We followed the same general approach as 
for fast synapses, examining both detailed and simple 
kinetic models. 

We considered a kinetic model for the gating of 
K + channels through the G-protein subunit G~. The 
actions of the G~v subunit, which include phospho- 
rylation of other receptors (Clapham and Neer, 1993), 
were left for a future extension of the model. We 
made the following assumptions: (a) all receptors 

Table 2. G-protein gating of neuronal K § channels. Direct G 
protein-mediated activation of a potassium channel is a general 
mechanism of transmitter action in the central nervous system. 
The neurotransmitters listed here, acting through the correspond- 
ing receptor subtypes are likely to have a direct G-protein mediated 
pathway to the activation of K + channels. Other pathways involv- 
ing G-proteins have been found but are not listed here, and channels 
other than K + channels are regulated by G-proteins (see reviews 
by Neer and Clapham, 1988; Nicoll, 1988; North, 1989; Ross, 
1989; Brown, 1990; Brown and Birnbaumer, 1990; Birnbaumer, 
1992; Clapham and Neer, 1993). 

Transmitter Receptor Reference 

GABA GABA8 Andrade et al., 1986 
Serotonin 5HT - 1 Williams et al., 1988 
Acetylcholine muscarinic M2 Sasaki and Sato, 1987 
Noradrenaline ~2 Surprenant and North, 1988 
Dopamine D2 Innis and Aghajanian, 1987 
Adenosine A1 Trussell and Jackson, 1987 
Histamine Sasaki and Sato, 1987 
Opioids 3,/z North et al., 1987 
Somatostatin Inoue et al., 1988 

considered (Table 2) share a common G-protein path- 
way with the same kinetics; (b) the differences be- 
tween individual receptor actions are due to particu- 
lar properties of the associated K + channel; (c) the 
K + channel is voltage-independent; (d) G-proteins 
obey conventional enzyme kinetics, ie the effects of 
the diffusion of G-proteins within the membrane are 
negligible (but see Lamb and Pugh, 1992). 

G-protein gating of the K + channel was modeled 
by the following kinetics scheme (see Fig. 1): 

gl 
L + R ~ R* (39) 

g2 

R*+G 
g3 g5 

, , R G  . R * + G * + G ~ v  (40) 
g4 

~cat 
G~ , G~ (41) 

g6 
G~-bG~e , , G (42) 

g7 



G ~ + C  ~ . . .  , , O (43) 

The transmitter binds to receptor (R) leading to an 
activated receptor (R*) with rate constants gl and g2 
(Eq. 39). R* then catalyzes the fission of the "rest- 
ing" G-protein (G) into activated G* and G~r sub- 
units, with rate constants g3, g4 and g5 (Eq. 40). The 
"activated" alpha subunit G* is hydrolyzed into the 
"inactivated" form G,~ (Eq. 41) which binds to G~• 
to reconstitute G (Eq. 42), with respective rate con- 
stants kcat, g6 and g7. Finally, the G* subunit acts 
as the ligand of a K + channel according to Markov 
kinetic schemes (Eq. 43 and see Methods). 

Here, G represents the GDP-bouncl, "resting," 
form of the G-protein. In Eq. (40), GDP is re- 
leased from G and replaced by GTP, leading to 
a GTP-bound G-protein form that spontaneously 
beaks into the Gt3 ~, and the GTP-bound G* subunit 
(Breitweiser and Szabo, 1988; Ross, 1989; Lopez, 
1992). This complex process of G-protein activation 
by GDP/GTP exchange is represented implicitly in 
Eq. (40). The activated (GTP-bound) form G* is then 
hydrolyzed into the inactive (GDP-bound) form G~ 
by GTPase (Eq. 41). 

Three components are essential to the kinetics 
of G-protein linked responses (see review by Ross, 
1989): (a) The release of GDP from G, correspond- 
ing to rate g5, is the rate-limiting step in the activation 
process. The release of GDP has been shown to be 
proportional to the concentration of agonist in cardiac 
myocytes in vivo (Breitweiser and Szabo, 1988). (b) 
The decay of activated protein is dominated by the 
hydrolysis reaction (kcat in Eq. 41). The lower bound 
on this rate has been estimated to be on the order 
of 2-3 s -1 (Breitweiser and Szabo, 1988). (c) The 
response is highly amplified. For one molecule of ac- 
tivated receptor (R*), about 20 to 1000 molecules of 
G-protein are activated. G-proteins are also present in 
much higher concentration than receptors in the mem- 
brane and a significant fraction of the total locally- 
available pool of G-proteins is activated during the 
stimulation of the pathway (see Ross, 1989). 

Figure 8 shows an implementation of the G-protein 
kinetic scheme, with the time course of the differ- 
ent protein species during the release of transmitter. 
The case of the GABA~-mediated current was cho- 
sen here because its kinetics have been characterized 
(Otis et al., 1993) and there is strong evidence that 
direct G-protein binding mediates the gating process 
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(Andrade et al., 1986; Thalmann, 1988; Brown and 
Birnbaumer, 1990). In the model illustrated in Fig. 8, 
a very brief increase in transmitter concentration gave 
rise to a much longer duration intracellular response, 
with rise and decay times comparable to that esti- 
mated by pharmacological manipulations and record- 
ings in vivo (Breitweiser and Szabo, 1988; Szabo and 
Otero, 1989). In this simulation, the release was ob- 
tained according to the release model of the preced- 
ing section, and the K + channel was gated by G* 
using a three-state Markov scheme (Eq. 38). The rate 
constants were fit to the time course of GABAB cur- 
rents measured by wl~ole-cell voltage clamp in den- 
tate granule cells (Otis et al., 1993). 

Figure 9 shows another type of G protein-linked 
response, that mediated by a2 noradrenergic recep- 
tors. In this example, the time course of the', PSC 
was quite different than the K + current activated by 
GABA~ receptors (see North, 1989). We assumed 
that the time course of the intracellular G-protein 
pathway was identical, but that the kinetics of the K + 
channel activated by ce2 noradrenergic receptors dif- 
fered. Figure 9A-C shows the slow hyperpolarizing 
current and voltage in response to a single presynaptic 
spike. The longer lasting effect of a train of presynap- 
tic spikes is shown in Fig. 9D-E. In this case, tonic 
but low frequency presynaptic firing, generated a sus- 
tained hyperpolarization in the postsynaptic celI. 

Simplified models for G-protein-gated channels 
were also considered. We assumed that the concen- 
tration of the Gg subunit could be approximated by 
a pulse a few tens of ms long (see Fig. 8). With such 
a pulse, two and three-state Markov models were fit 
(see Methods) to the averaged GABAB PSC's (Otis 
et al., 1993; Fig. 10). The two-state model agreed 
with the overall time course of the current. "I]~ree- 
state schemes were able to fit either the rise or the 
decay of the GABAB PSC, but not both. Ultimately, 
the four-state scheme 

C1 

D 

1"1 

4 

r2 

1" 6 
-----,- 

1"5 

C2 

O 

t" 4 
(44) 
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E ~ synaptic current 
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Fig. 8. Kinetic models of presynaptic release and binding to GABAB receptors, a second-messenger-gated ion channel. A. Presynaptic 
action potential elicited by current injection. B. Time course of the transmitter, GABA, in the synaptic cleft using the same model for 
transmitter release as in Fig. 4A-D. C. Activated form R* of the GABAB receptors after binding with GABA (the concentration was 
renormalized to 1; gl = 400 s-traM - l ,  gz = 500 s-l) .  D. G~, the activated G-protein subunit, catalyzed by R* The concentration of G~ 

was renormalized and was 10 times in excess with respect to other proteins (g3 = 2000 s -1, g4 = 100 s - l ,  g5 = 1000 s -1, g6 = 1000 s -1 , 
g7 = 0.1 s -1, kcat = 10 s - l ) .  The activated G-protein subunit G~ gates a postsynaptic ion channel according to Markov kinetics. E. 
Postsynaptic current produced by the gating of a K + channel by the activated G-protein subunit G~ according to the kinetic scheme in 
Eq. (24) (rl = 18 s - l m M  -1, r2 = 50 s -1, r3 = 10 s - t ,  r4 = 2 s -1, r5 = 0, r6 = 0, gaABa = 0.1 nS). F. Inhibitory postsynaptic potential 
(leakage conductance was 0.2 mS/cm 2 and leakage reversal potential was - 7 0  mV). 
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Fig. 9. Kinetic model of neuromodulation via noradrenergic oe2 receptors. A. Presynaptic spike obtained by current injection. B. G-protein- 
mediated opening of K + channels according to first-order kinetics (rl = 0.002, r2 = 0.007; other parameters as in Fig. 8). C. Slow inhibitory 
postsynaptic potential following the presynaptic spike. D. Tonic presynaptic activity obtained by injection of a sustained current of 0.1 hA. 
E. Presynaptic drive elicited a sustained hyperpolarization of the postsynaptic membrane. 
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Fig. 10. Best fits for several simple kinetic schemes to averaged postsynaptic current mediated by GABAB receptors. 1 ~zM pulses of 
activated G-protein lasting 60 to 100 ms were used in the kinetic model (parameters as listed in Table 1). The best fit obtained with each 
model (continuous trace) is compared to experimental measurements of GABAB-mediated postsynaptic currents (noisy traces). Averaged 
recordings of GABAB-mediated postsynaptic currents were obtained by whole-cell recordings in dentate granule cells at 33-35 ~ (Otis et 
al., 1993). 

was found to be the minimal model which combined 
the kinetic features necessary to fit both the rise and 
decay phases, though the number of free parameters 
for this scheme was no more than for the three-state 
model. 

Table 3 gives estimated values of rate constants for 
Markov models of a number of G-protein mediated 
conductances, including as GABA. ,  5 H T  - 1 (sero- 
tonin), muscarinic M2 (acetylcholine), a2  (norepi- 
nephrine), D2 (dopamine), histamine, ~ and tt (opi- 
oids) and somatostatin. 

4 Discussion 

In this paper, we have explored models for a variety 
of cellular processes, including the gating of channels 
by voltage, the calcium-dependent enzyme cascade 
implicated in transmitter release, the gating of chan- 
nels by neurotransmitter, and the G-protein cascade 
underlying the action of a number of neuromodulators 
on a class of potassium channels. We have illustrated 
that the same formalism can be used to describe all 
these mechanisms and generated simplified models 
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Table 3. Elementary kinetic schemes and rate constants for G-protein gated potassium channels. Optimal values of the rate constants obtained 
by fitting elementary gating kinetic schemes to direct G protein-gated synaptic currents. The same procedure was used as described in Table 1 
for first- and second- order kinetic schemes, assuming a pulse of G-protein of 1 /xM amplitude. For higher-order kinetics, direct fit of  the 
kinetic model to the data was performed (see Methods). The rate constants of G-protein mediated currents were estimated from published 
recordings (Breitweiser and Szabo, 1988; North 1989; see also references in Table 2); the parameters of GABAa receptor-mediated currents 
were estimated from recordings provided by T. Otis and I. Mody (see Fig. 10). The duration of the pulse is given in the last column. The 
symbols for the rate constants correspond to the kinetic scheme in Eq. (24). (*): units of s -1 . 

rl r2 r3 r4 r5 r 6 pulse 
Receptor Scheme ( s - I / zM -1 ) (s -1 ) (s -1 ) (s - I  ) (s -1 ) (s-1/~M -1 ) (ms)  

GABAB C �9 '- O 16 4.7 . . . .  84 
C O 

~NN~k/~/// 0 0 19 17 l0 36 60 

D 
C , . O 

18 4.4 1.4 1.7 0 0 97.5 

D 
C .,____~, 0 

~'x.  / f / /  18 4.4 1.5 1 . 5 0 . 1 2  0.28 97 

D 
C . , C 

/ /  

T/ 
D ~ O 

Serotonin ( 5 H T  - 1) C ~ O 
Acetylcholine (M2) C . "- O 
Noradrenaline (ee2) C �9 ~ O 
Dopamine (D2), C ~ ~ O 
Adenosine (A1), 
Histamine, 
and peptides 

2.4 1.1 . . . .  I00 
2.0 7.5 . . . .  i00 
1.7 2.4 . . . .  100 
2.0 1.5 . . . .  100 

that are computationally efficient. Here we wilt dis- 
cuss the assumptions as well as the advantages and 
drawbacks of this approach and indicate directions 
for further applications. 

4.1 Assumptions of Markov Kinetics 

Finite-state modeIs of ion channels rely in general 
on the assumption that the configuration of a channel 
protein in the membrane can be operationally grouped 
into a set of distinct states separated by large energy 
barriers (Hille, 1992). Because the flux of ions though 
single channels can be directly measured, it has been 
possible to observe directly the predicted rapid and 
stochastic transitions between conducting or open and 
non-conducting closed states (Neher, 1992). Channels 
can be treated as finite-state Markov systems if one 

further assumption is made, namely that the probabil- 
ity of state transitions is dependent only of the present 
state occupied. 

The assumption that channels function through a 
succession of conformational changes does not lead 
inevitably to a finite-state Markov description, and 
alternative treatments have been given. Diffusional 
(Millhauser et al., 1988) or continuum gating mod- 
els (Levitt, 1989), are Markovian but posit an infinite 
number of states. FractaI (Liebovitch and Sullivan, 
1987), or deterministically chaotic (Liebovitcl~ and 
Toth, 1991) models assume a finite number of ,;tares, 
but allow time-dependent transition rates. Differen- 
tiation between discrete multistate Markov models 
and any of these alternatives hinges on high time- 
resolution studies of channel openings. Analysis of 
single-channel openings and closings has been consis- 
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tent with the suitability of finite-state Markov models 
(McManus et al., 1988; Sansom et al., 1989). 

In this paper, we have concentrated exclusively on 
macroscopic ionic currents rather than their discrete 
and stochastic counterparts at the microscopic level. 
In order to arrive at equations for such macroscopic 
kinetics it was necessary to assume that in all cases 
the number of channels contributing to an ionic cur- 
rent would be sufficiently large to wash out variabil- 
ity from single channel events. This assumption will 
break down in cases in which extremely low chan- 
nel density or minute membrane areas are considered, 
having possible consequences on electrical signalling 
(Clay and DeFelice, 1983; Strassberg and DeFelice, 
1993). Thus channel noise might be relevant at small 
structures such as the dendritic spines at which most 
central excitatory synapses are made (Strassberg and 
DeFelice, 1993; also see below). 

4.2 Models of Voltage-Gated Channels 

The model of the fast sodium current and the delayed 
rectifier potassium current introduced by Hodgkin 
and Huxley (1952) was remarkably forward looking. 
The general framework, based on four independent 
gating particles, is echoed in the multiple subunit 
channel structure revealed by molecular techniques. 
The Hodgkin-Huxley description not only accounts 
very well for the conductances of the squid giant 
axon, but has been widely applied, with very mi- 
nor alterations, to describe nearly the entire scope 
of voltage-dependent currents (see e.g. Yamada et 
al., 1989; Borg-Graham, 1991; Lytton and Sejnowski, 
1991). Nevertheless, there is considerable physio- 
logical and molecular evidence that channel gating 
is organized differently from what is suggested by 
Hodgkin-Huxley kinetics (reviewed in Armstrong, 
1992). Activation and inactivation are clearly cou- 
pled in a multi-state sequence rather than operating 
independently. 

The Markov kinetic formalism advocated here was 
adopted by many of the recent biophysical mod- 
els of the kinetics of voltage-gated channels, such 
as sodium channels (Aldrich et al., 1983; Chabala, 
1984; Horn and Vandenberg, 1984; Keller et al., 1986; 
Aldrich and Stevens, 1987; Clay, 1989 Vandenberg 
and Bezanilla, 1991), potassium channels (Labarca 
et al., 1985; Hoshi and Aldrich, 1988; Perozo and 

Bezanilla, 1990), calcium channels (Chen and Hess, 
1990), chloride channels (Labarca et al., 1980), and 
voltage-dependent gap junctions (Harris et al., 1981; 
Chanson et al., 1993). The kinetic formalism is more 
general than the Hodgkin-Huxley framework, includ- 
ing it as a special case, and is more flexible and ex- 
tensible. Within the kinetic framework it is possible 
to include more states, making the model more bio- 
physically accurate, or fewer states, providing a spec- 
trum of models from which to chose depending on 
the nature of the idealization. A model that focussed 
on the network level, for example, might choose a 
simpler version that captured the primary properties 
of the channel. We have provided examples of how 
this can be accomplished for the sodium channel and 
have shown that the approximations of the minimal 
model is very reasonable. A three-state irreversible 
loop model was found by Bush and Sejnowski (1991) 
to reproduce well a number of voltage-dependent 
channels in Purkinje cells. In the other direction, im- 
provements in our biophysical knowledge of channels 
can be seamlessly folded into models without having 
to enter an entirely new framework. 

We used two-state (first-order) and three state 
(second-order) kinetic schemes as simple models 
of voltage-dependent currents. These basic schemes 
have been analyzed in general by Kienker (1989). 
We considered rates given by a saturating, sigmoidal 
function of voltage rather than a simple exponential as 
is commonly assumed in Markov models (e.g. Cha- 
bala, 1984; Vandenberg and Bezanilla, 1991; Perozo 
and Bezanilla, 1990; Harris et al., 1981). The in- 
crease in complexity of the voltage-dependence al- 
lows a model with fewer states to reproduce more 
complex voltage-dependent channel behavior (Keller 
et al., 1986; Clay, 1989; Chert and Hess, 1990). We 
have found that the two-state model captures the fea- 
tures of the delayed rectifier potassium current, a non- 
inactivating current, and a three-state model is the 
minimal representation of the fast sodium current, an 
inactivating current. 

We suggest that this approach can be extended 
by considering these models as prototypes of simpli- 
fied models of most of voltage-dependent currents. 
One strategy would be to begin, as we did, with 
detailed models, such as those derived from single- 
channel recordings, and take steps to reduce the num- 
ber of states required. Alternatively, the availability of 
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analytic solutions for time constants and equilib- 
rium values (Appendix A) would facilitate fitting of 
two- and three-state models directly to voltage-clamp 
recordings. 

4.3 Models of Transmitter-Gated Cl~annels 

Our understanding of the action of neurotransmitters 
began with studies of endplate currents at the neu- 
romuscular junction (Katz, 1966). Early quantitative 
descriptions of these currents made use of simple ki- 
netic models (e.g. Katz, 1966; Magleby and Stevens, 
1972). The advent of single-channel recording saw 
the application of Markov models to the behavior 
of individual ligand-gated channels (Colquhoun and 
Hawkes, 1977; Sakmann and Neher, 1983). As im- 
proved physiological, pharmacological, and molecu- 
lar techniques have revealed additional complexities, 
the complexity of the models has increased, but a new 
formalism has not been necessary. Currently, rigor- 
ous quantitative accounts of synaptic channels may 
easily dictate a Markov scheme of well over a half 
dozen states (Raman and Trussel, 1992; Standley et 
al., 1993) without even taking into account allosteric 
effects. 

In the present study, we have shown that when 
efficiency and speed are concerns, simple two- and 
three-state kinetic schemes can capture both the time 
course of the postsynaptic currents and the interaction 
of successive events. This contrasts with the standard 
alpha function approach, which, while simple and in- 
expensive to compute, has no natural provision for 
summation or saturation of consecutive events. We 
have given general analytic solutions for the two- and 
three-state kinetic schemes (Appendix A) that can be 
applied under conditions of constant agonist concen- 
tration. 

A useful approximation that allows the analytical 
solution to be exploited is to model the time-course 
of transmitter in the synaptic cleft as a discrete pulse 
(Staubli et al., 1992; Destexhe et al., 1994b). In this 
way, the transmitter is always constant at either high 
or low concentration (during or between pulses, re- 
spectively). The computation involved is compara- 
ble to that for a properly-implemented alpha function 
(see Srinivasan and Chiel, 1993), with no more than 
one exponential calculation required for the two-state 
model or two for the three-state model. 

We have generally assumed that the time-course 
of postsynaptic responses are dominated by the re- 
ceptor kinetics rather than the availability of trans- 
mitter (e.g. Lester et al., 1990). There is reason to 
believe that the approximation of a 1 ms pulse is 
an acceptable representation. Experimental measure- 
ments of the time-course of glutamate at a hippocam- 
pal synapse have indicated a near instantaneous rise 
in concentration followed by a decay with a time con- 
stant of around 1 ms (Clements et al., 1992). Further- 
more, one millisecond pulses of glutamate applied to 
outside-out patches of hippocampal and cortical neu- 
rons produce AMPA/kainate receptor-mediated cur- 
rents with time-courses very close to that recorded in 
the intact synapse (Colquhoun et al., 1992; Hestrin, 
1992). 

Analytic solutions based on kinetic models have 
been obtained by considering the time-course of 
transmitter as a delta-function (e.g. Perkel et al,, 1981; 
Holmes and Levy, 1992). We considered pulses of 
transmitter, which produced a model that was still an- 
alytically tractable, but somewhat more flexible than 
the delta-function. Most importantly, by increasing 
the length of the pulse, we were able to mimic the 
extended time course of second-messenger activation 
in order to reproduce the behavior of G-protein-linked 
potassium channels. 

Kinetic equations involving concentrations, frac- 
tions of channels, and rate constants rely on ensem- 
ble averages over the activity of a large populations of 
channels or other proteins. These assumptions break 
clown when a single synapse is considered. First, 
the release of transmitter-containing vesicles upon 
spike invasion is a probabilistic process (Katz, 1966). 
Whereas our kinetic release model gives reliably the 
same amount of transmitter following each action po- 
tential, probabilities of transmitter release of less than 
0.1 have been measured at central synapses (Posen- 
round et al., 1993; Hessler et al., 1993). One could 
take into account this stochasticity by replacing the 
kinetic equations for release with a pulse-based model 
in which the pulse was triggered following a presyn- 
@tic action potential conditional on a random vari- 
able. 

A second problem in the application of kinetic 
equations to individual synapses arises when the rel- 
atively small number of postsynaptic receptors at a 
release site is taken into account. The liberation of 
a quantum of neurotransmitter at cen~al synapses 
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is currently thought to open only about 5-50 post- 
synaptic receptors (Edwards et al., 1990; Hestrin, 
1992; Traynelis et al., 1993). Consequently, individ- 
ual synaptic currents may have significant variability 
due to probabilistic channel openings (see e.g. Silver 
et al., 1992). In situations in which this variability 
is of interest, stochastic rather than kinetic models 
would be appropriate. A model incorporating Markov 
kinetics could in such cases be reimplemented using 
Monte-Carlo methods in order to simulate the be- 
havior of individual channels rather than population 
averages (see e.g. Wathey et al., 1979; Bartol et al., 
1991). 

4.4 Models of Second Messenger-Gated Channels 

Generally, G protein-linked receptors mediate a wide 
range of physiological responses, many of which 
involve the modulation of ion channels. We have 
presented a relatively simple model for a class of 
potassium channels gated directly by G-proteins. In 
contrast to voltage-dependent channels or transmitter- 
gated channels, relatively little single-channel data is 
available for second messenger-gated channels. This 
is primarily due to technical obstacles. The gating 
of these channels requires a collection of proteins 
and chemical reactants located either intracellularly 
or in the membrane, and therefore recordings from 
isolated patches of membrane require the presence of 
these chemical and protein species in the solutions 
(see VanDongen et al., 1988). 

A model of another G protein-mediated pathway 
was proposed recently for photoreceptor activation 
(Lamb and Pugh, 1992). However in this case the 
G-protein does not directly activate the ion channels, 
but acts via a second messenger, namely, cyclic GMP. 
Another difference is that the kinetics in phototrans- 
duction are substantially faster than those of neuro- 
modulatory pathways (Ross et al., 1992). Neverthe- 
less, it could be shown that the kinetics of photo- 
transduction could be accounted for in a quantitative 
fashion by using a detailed model based on standard 
chemical kinetics (Lamb and Pugh, 1992). 

Another example of a G-protein pathway in- 
volving second messengers is the regulation of the 
hyperpolarization-activated current, I h. This current is 
the common target of a number of neuromodulators, 
such as histamine, adenosine, noradrenaline and sero- 

tonin (reviewed in McCormick, 1992). In this case, 
several different receptors catalyze the formation of 
the same second messenger, cyclic AMP, which reg- 
ulates the voltage-dependence of lh (see DiFrancesco 
and Matteo, 1994). It would make sense to model 
such an interplay of modulatory actions using a ki- 
netic approach similar to the one we have presented 
here. 

Finally, many G-protein pathways are known to 
play a role in biochemical processes beyond ion chan- 
nel modulation. An important example is the involve- 
ment of G-proteins in synaptic vesicle cycling (Hess 
et al., 1993). As many G protein-linked receptors, 
such as the GABA~ receptor, are also found presyn- 
aptically, a range of interactions leading to the reg- 
ulation of the release process are possible. A natural 
extension of the models presented here would be to 
combine the synaptic release and G-protein cascades 
to examine these interactions. 

4.5 Methods of Simplification 

We provided several examples of how reduced ki- 
netic descriptions can reproduce the dynamics of ion 
channel behavior. There are more systematic ways to 
identify such reduced models. For example, Kienker 
(1989) showed how to establish the equivalence of 
different models and to reduce the number of their 
parameters, by a procedure similar to that used in 
classical mechanics. A particular transformation can 
be shown to reorganize the states and rates of the 
system, leading in some cases to uncoupled variables, 
thereby reducing the number of independent variables 
of the system. Such a procedure can be used to obtain 
a reduced model which is formally equivalent to the 
initial model. However, a similar method could also 
be applied to reduce the system using various approx- 
imations for obtaining uncoupled variables (Kepler et 
al., 1992). A significant advantage of following such 
a procedure is that it automatically produces the rate 
constants for the simplified model. 

Other ways to simplify the Hodgkin-Huxley equa- 
tions have been proposed (e.g. Fitzhugh, 1961; Krin- 
skii and Kokoz, 1973; Hindmarsh and Rose, 1982; 
Rinzel, 1985; Keppler et a1.,1992). A common sim- 
plification is to assume that fast reactions are always 
close to their equilibrium values. This is generally ap- 
plicable to multi-state kinetic schemes if some rates 



are orders of magnitude faster than others. For exam- 
ple, if the binding step in the activation of a ligand- 
activated receptor is sufficiently rapid compared to 
subsequent conformational changes leading to chan- 
nel opening, then the initial two states may cease to 
be kinetically distinguishable and can be effectively 
collapsed into one (Colquhoun and Hawkes, 1977). 
As another example, the interaction of magnesium 
ions with the NMDA receptor has been simplified 
by assuming (a) the kinetics of the magnesium block 
are fast compared to the kinetics of the channel, so 
that the amount of block can be considered at steady- 
state; and (b) the block acts directly at the channel 
pore without influencing the intrinsic gating of the 
channel (Jahr and Stevens, 1990b; and see Methods). 

The assumption that the transmitter concentration 
in the synaptic cleft is given by a function of the 
presynaptic voltage leads to a simplified description 
of synaptic interaction. A relatively steep sigmoid re- 
lationship emerged, roughly corresponding to the ac- 
tivation function of the presynaptic calcium current, 
raised to the fourth power. A similar sigmoid func- 
tion was used by Wang and Rinzel (1992) to repre- 
sent synaptic interactions in a kinetics-based model 
that uses graded potentials rather than fast spikes. 

4.6 Application to Interacting Neurons 

An important theoretical application of the kinetic de- 
scription presented here is to the analysis of neural in- 
teractions. A general kinetic approach allows an entire 
network of neurons to be described by autonomous 
equations, even if individual cells contain voltage- 
dependent currents or if they interact via second- 
messenger pathways. The coupling between pre- and 
post-synaptic cells can be accomplished either by ki- 
netic models, such as the presynaptic release mech- 
anism we described, or more simply through func- 
tions which approximate the release process, such as 
Eq. (37). The set of equations describing a network 
of neurons might be extremely complex, but there are 
several possible applications. 

The full set of equations describing the network 
could constitute the starting point of a theoretical 
treatment, with an aim to eventually derive greatly 
simplified representations. The simplified equations 
obtained could be the basis for abstract neural net- 
work models, perhaps yielding novel algorithms for 
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cellular or synaptic function. This "bottom-up" strat- 
egy contrasts with the more common tactic of neural 
network models in which the properties of single cells 
are simplified in ad hoc manner. 

In addition, the set of autonomous equations de- 
scribing the network could be used to study the 
global dynamics of neural populations. A consider- 
able amount of experimental data is available from 
measurements of the average activity of populations 
of brain cells: recordings of electroencephalogram, lo- 
cal field potentials, magnetoencephalograms, optical 
recordings, magnetic resonance images, etc. It would 
be interesting to attempt to establish a relationship 
between such global measurements and dynamics at 
the molecular level, which might be clone through an 
approach analogous to statistical mechanics. 

A final important application is toward understand- 
ing the role of specific intrinsic properties of neurons 
in the organization of the collective dynamics of neu- 
ral populations. In central neurons, the presence of in- 
trinsic currents can confer to the cell extremely com- 
plex responsiveness (Llin~is, 1988). As these complex 
intrinsic properties are often combined with connec- 
tivity involving many different types of receptors, the 
dynamics of interconnected populations of such neu- 
rons becomes extremely difficult to comprehend in- 
tuitively (see Destexhe et ai., 1993b, 1994a). In ad- 
dition, the activity of various transmitters can modu- 
late the intrinsic properties of the cells (McCormick, 
1992; Lopez and Brown, 1992), thereby modifying 
collective properties of the network. For example, dif- 
fuse ascending neurotransmitter systems control the 
shift of the thalamocortical system from fast process- 
ing during arousal to slow wave activity during sleep 
(Steriade and McCarley, I990; Steriade et al., 1993). 
We expect that the kinetic formalism will prove useful 
in modeling the influences of these neuromodulatory 
systems. 

4.7 Molecular and Biochemical Applications 

Although we have mainly addressed the utility of em- 
ploying simple Markov models for the description 
of voltage-dependent and synaptic currents, it is also 
important to stress the benefits of constructing ion 
channel models in a language that is compatible with 
molecular and biochemical descriptions. 
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Significant progress has been made in recent years 
in relating the function of ion channels to specific el- 
ements of their molecular structure (reviewed in Un- 
win, 1989; Catterall, 1992; Andersen and Koeppe, 
1992; Armstrong, 1992; Jan and Jan, 1992; Sakmann, 
1992). Markov models, because they are subject to 
direct physical interpretation, are well-suited to in- 
corporating the insights from such a level of anal- 
ysis. In this respect, the Markov kinetic approach 
is significantly more general than other approaches, 
such as the Hodgkin-Huxley model for voltage-gated 
channels or the alpha-function model for synaptic re- 
sponses. As the physiological significance of protein 
regulation is further elucidated, a compatible func- 
tional description will become increasingly valuable. 

In the present paper, we have given only a few 
examples of the wide range of biological phenom- 
ena that can be addressed by models that consider 
ion channels in a molecular and biochemical context 
as well as an electrical one. Computational models 
have already begun to address a number of these in- 
stances. As a prominent example, the gating of chan- 
nels by second-messengers is a ubiquitous and critical 
phenomenon (Partidge and Swandulla, 1988; Latorre 
et al., 1989; Toro and Stefani, 1991) and calcium- 
dependent gating of potassium channels has already 
been widely utilized in neural models (e.g. Yamada 
et al., 1989; Lytton and Sejnowski, 1991; Destexhe 
et al., 1993b). 

Relatively direct interactions between second- 
messengers, G-proteins and receptors mark only the 
initial stages in the integration of biochemical and 
physiological models that can be accomplished in 
a kinetic framework such as the one we have out- 
lined. Protein phosphorylation, one of the most im- 
portant mechanisms in the short and long-term reg- 
ulation of neural function (reviewed by Walaas and 
Greengard, 1991) represents an important target for 
quantitative description. The detailed potassium chan- 
nel model that was illustrated here was formulated by 
Perozzo and Bezanilla (1989) to provide a biophysical 
account of the effect of phosphorylation on the chan- 
nel's voltage-gating properties, indicating the effec- 
tiveness of a Markov formalism in addressing these 
problems. 

The regulation of synaptic efficacy has been per- 
haps the most intensely studied arena of such bio- 
chemical interactions, and in this domain, both sim- 
ple and detailed kinetic models (Lisman, 1989; Skene, 

1990; Holmes and Levy, 1990; Zador et al., 1990; 
Ambros-Ingerson and Lynch, 1993; Migliore and Ay- 
ala, 1993) have already begun to provide insight. 
Activity-dependent regulation of channel properties 
has likewise begun to be investigated in such a fash- 
ion (Bell, 1992; LeMasson et al., 1993). In large part, 
the intricate web of second-messengers, protein phos- 
phorylation systems, and the deeper machinery of sig- 
nal transduction and gene regulation still await inte- 
gration into computational models of neural activity. 
The kinetic framework provides a natural way of inte- 
grating electrophysiology with cellular biochemistry, 
in which ion channels are considered as a special 
and important class of enzymes rather than as a com- 
pletely distinct subject. 
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Appendix A Analytic Expressions of the 
Current for Elementary Kinetic Schemes 

4.8 First-Order Kinetics 

A general scheme for a ligand- or voltage-gated chan- 
nel obeying first-order kinetics is: 

rl(V, [L]) 
C , , O (45) 

r2(V) 

where the symbols are as defined before for Eq. (23). 
The current resulting from a population of such chan- 
nels is obtained by Eq. (28). 

Assume that kinetic rates are constant, or subject 
to a step transition. In the case of ligand-gated post- 



synaptic currents, this corresponds to a pulse of  trans- 
mitter. In the case of  voltage-dependent currents, this 
corresponds to a voltage clamp, and the solution given 
below is the time course of the current following a 
voltage jump. 

The kinetic equation is: 

d y  
d-'-[ = r l ( V , [ L ] )  ( 1 - y ) - r 2 ( V )  y (46) 

where y is the fraction of open channels. 
Let the system be in an initial state y = Yo with 

V = Vo and [L] = [L]0 for t < to. At t = to, a 
change in [L] and V occurs such as V = V1 and 
[L] = [L]I for t > to. It is then straightforward to 
solve Eq. (46), giving: 

y ( t  - to) = yoo + K1 e x p [ - ( t  - to)/vl]  (47) 

where 

K1 = Yo - Yoo 

yo0 
rl(V1,  [L]I) 

rl(V1, [L]I) § r2(Vi) 

ri(V1,  [L]I) + r2(V1) 

4 .9  Second-Order  Kinet ics  

A general kinetic scheme for ion channels gated by 
second-order kinetics is: 

r l(V, [L]) 
C . , 0 

r2(V) 

r 6 ( V,~[ L ] ) r~/~)/.// 

r5 (V) r3 (V) 
D 

(48) 

where the symbols are as defined before for Eq. (24). 
The corresponding kinetic equations are: 

d y  
d-T = r l ( V ,  [L]) ( 1 - y - z ) -  

[ r2 (V)  + r3(V) ] y + r4(V) z 
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dz 
- -  = r6(V,  [L]) (1 - y - z) - 
dt  

[ r4(V) + r s ( V )  ] z + r3(V) y (49) 

where y is the fraction of  open channels ( 0 )  and z 
is the fraction of  desensitized channels (D). 

Let the system be in an initial state y = .Yo and 
z = Zo with V = Vo and [L] = [L]o for t < to. At 
t = to, a change in [L] and V occurs such as re' = V1 
and [L] = [L]I for t > to. The general solution of  
the system is: 

y ( t  - to) = y ~  + K1 e x p ( - ( t  - to)/rl)  

§ K2 e x p ( - ( t  - to)/r2) 

z ( t  - to) = z ~  + K3 e x p ( - ( t  - to ) / r l )  

+ K4 e x p ( - ( t  - to)/r2) (50) 

where 

(Yo-Yoo) ( a + l / r 2 )  + b ( z 0 - z c o )  
K1 = 

1/v2 - 1/vl  

K2 = (Yo - Yoo) - KI  

- a  -- 1/rl 
K3 = K1 

b 

- a  - 1/r2 
K4 = K2 

b 

b r6(Vl, [L]I) - d rl(V1, [L]I) 
Yoe = 

ad  - bc 

c r l ( g l ,  [Lh)  - a r6(g i ,  [Lh)  

a d  - bc  
Zoo 

and the coefficients are a = - r l  (171, [L]I) - r2(V1)  - 
r3(V1), b = - r l ( V 1 ,  [Lh)  + r4(Vi), c = r3('Vi) - 
r6(V1, [Lh)  and d = -r4(V1) - rs(V1) -r6(V1, [L]I). 
The time constants rl and r ;  are given by: 

a + d 1 
rl,2 -1 - 4- ~ ~  - d)  2 + 4bc  (51) 

2 

If rl = re, the system is described by a single 
exponential with the following values: 

K1 = [ ( y 0 - y o o )  ( a + l / r l )  + b ( z 0 - z o o ) ]  

( t - t o )  + (Y0-Yoo) 
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K3 = [ ( Y ~ 1 7 6 1 7 6  + b ( z ~ 1 7 6 1 7 6  

[1 - ( a  + 1 / r l ) ( t  - to)] + 

- a  - 1/ri 
(Y0 - yoo) b 

and with K2 = K4 = 0. 

Appendix B Kinetic Scheme and Derivation of  
the Alpha Function 

Consider the following second-order gating scheme: 

rl ([L]) 
C , " C 1 

I'2 

",,, / 
T5 T3 

0 

(52) 

where C and C1 are the closed forms of the receptor, 
O is the open (conducting) form, and r l . . . r 5  are 
voltage-independent rate constants. 

This scheme can give rise to an alpha function 
only if two approximations can be made: 

(a) The transmitter concentration ([L]) occurs as a 
Dirac delta function 3(t - to) (i.e. a pulse of in- 
finitely large amplitude and infinitely short dura- 
tion). For a release event occurring at time t = to 
one writes: 

r l ([L])  = rl 3(t  - to). (53) 

(b) The form C is always considered to be in excess 
compared to C1 and O. This would be the case if 
very few receptors bind transmitter, so that nearly 
all receptor molecules remain in form C. The frac- 
tion of  channels in C is therefore considered as 
constant and always remains ~ 1. 

Making these assumptions, one obtains the follow- 
ing set of kinetic equations: 

dx 
- -  = rl 6 ( t - - t o ) - - ( r E + r 3 ) x  
dt  

dy  
= r 3 x - r 5  y,  

dt  
(54) 

where x and y represent the fraction of receptors in 
the forms C1 and O respectively. 

These equations can be solved by Laplace 
transform, giving the following general double- 
exponential solution for y: 

y( t  - to) = 

e x p [ - ( t  - t0)/rl] - e x p [ - ( t  - to)/r2] (55) 
Yl T3 

l / r 2  - 1/Zl 

w h e r e  r l = l / ( r 2  q - r 3 )  a n d  ~:2=1/r5. 

In the limit of r2 ---> /:1, or r5 -+ (r2 + r3), this 
reduces to 

y ( t  - to) = rl r3 (t - to) e x p [ - ( t  - to)/ra] , (56) 

which is a form equivalent to the alpha function in- 
troduced by Rall (1967). 

It is important to mention that this kinetic interpre- 
tation of the alpha function only holds for y << 1, in 
order to remain consistent with condition (b) above. 
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