
Analog Integrated Circuits and Signal Processing, 30, 149–157, 2002
©C 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

VLSI Implementation of Fuzzy Adaptive Resonance and Learning Vector Quantization

JEREMY LUBKIN AND GERT CAUWENBERGHS
Electrical and Computer Engineering, Johns Hopkins University, Baltimore MD 21218

E-mail: gert@jhu.edu

Received January 25, 2000; Accepted March 21, 2000

Abstract. We present a mixed-mode VLSI chip performing unsupervised clustering and classification, implement-
ing models of Fuzzy Adaptive Resonance Theory (ART) and Learning Vector Quantization (LVQ), and extending
to variants such as Kohonen Self-Organizing Maps (SOM). The parallel processor classifies analog vectorial data
into a digital code in a single clock, and implements on-line learning of the analog templates, stored locally and
dynamically using the same adaptive circuits for on-chip quantization and refresh. The unit cell performing fuzzy
choice and vigilance functions, adaptive resonance learning and long-term analog storage, measures 43 µm × 43 µm
in 1.2 µm CMOS technology. Experimental learning results from a fabricated 8-input, 16-category prototype are
included.

Key Words: learning on silicon, vector quantization, adaptive resonance, analog memory

1. Introduction

Adaptive Resonance Theory (ART) [1] is a class of
neurally inspired models of how the brain performs
clustering and classification of sensory data, and as-
sociations between the data and representations of
concepts. The models perform unsupervised learning
of categories under continuous presentation of inputs,
through a process of ‘adaptive resonance’ in which the
learned patterns adapt only to relevant inputs, but re-
main stable under irrelevant or insignificant inputs.

More or less under the same umbrella, Vector
Quantization (VQ) [2] is a commonly used tech-
nique for digital encoding of continuous-valued vec-
torial signals, mostly for applications of data com-
pression and pattern recognition. As with VQ, Fuzzy
Adaptive Resonance [3] operates on analog vectorial
data, and learns categories stored in the form of ana-
log vector templates. Other variants on unsupervised
clustering and vector quantization include Kohonen
Self-Organizing Maps (SOM) and Kanerva associative
memories, among others.

In its basic form, the implementation of Fuzzy ART
and VQ involve a search among a set of vector tem-
plates for the one which best matches the input vector,
according to a given distance metric or ‘choice func-
tion.’ Learning continually adjusts the best matching

templates towards the input, conditional on a ‘vigi-
lance’ criterion in the case of Fuzzy ART. The process
of adaptive resonance for stable preservation of cate-
gories under variable inputs during learning is the main
difference between ART and other forms of VQ.

Several versions of vector quantizers and their vari-
ants have been developed in analog and mixed-mode
VLSI, e.g. [12–21]. The 8-input, 16-category chip pre-
sented here is implemented in current-mode CMOS
technology for low-power operation, and integrates
learning as well as long-term dynamic capacitive stor-
age of the analog templates using an incremental partial
refresh scheme [9]. The chip is configured to operate
either in Fuzzy ART or VQ mode, and can be extended
to perform Kohonen SOM through external addressing.
The compact size of the unit cell, 71λ×71λ in MOSIS
scalable CMOS technology, allows to expand the ar-
chitecture for applications requiring several hundreds
of inputs and/or categories integrated on a single chip.

2. Fuzzy Adaptive Resonance Theory

For a detailed exposition of the algorithm, we refer
to [3], and also [4], where several variants of Fuzzy
ART have been presented. Here we focus on the im-
plemented form, and define the equations with our

150 Lubkin and Cauwenberghs

notation used to represent the signals. We assume an
N -dimensional analog input I, and M weight templates
zi of same dimension, each representing one category.

2.1. Category Selection

The choice function Ti for each category i is computed
as

Ti = |I∧ zi |
α +|zi | (1)

where the fuzzy min operator ∧ is defined component-
wise as

I j ∧ zi j = min(I j , zi j) (2)

Inputs to the classifier are complement-encoded, sup-
plying the complements I j = Imax − I j along with all
inputs I j . Explicitly,

|I∧ zi | =
∑

i

(min(I j , zi j)+min(I j , z′
i j)) (3)

where the template weights for the complementary
input components z′

i j are independent from zi j . The
complement-encoding of the inputs provides automatic
normalization, |I| ≡ N · Imax.

Only when a category meets a vigilance condition,
it enters competition for the highest choice function
Ti , which identifies the winning output category. The
vigilance condition for each category is formulated as

|I∧ zi |
|I| > ρ (4)

where ρ is the vigilance parameter.
In our implementation, the vigilance condition is

checked before a category enters the competition, elim-
inating the need to iterate the search until a vigilant win-
ning category is found. The only complication arises
in the case where there are no vigilant categories. This
case triggers the creation of a new category with fast
learning which replaces one of the existing categories.
This is necessary in hardware, as the number of cate-
gories is hardwired.

2.2. Learning

Once the winning category has been selected, the
weights belonging to that category are updated accord-
ing to the learning rule:

zi = β(I∧ zi − zi) (5)

If no category is vigilant to enter the competition, a new
category is created (or existing category replaced), and
initialized with fast learning, zi ≡ I.

Expanding the fuzzy min operator, the weight up-
dates (5) can be expressed as

zi j = λ(I j , zi j)(I j − zi j) (6)

where

λ(I j , zi j) =

1 for initial coding and recoding
β when I j ≤ zi j

0 when I j > zi j

(7)

This modulation of the learning rate λ is easier to im-
plement in hardware, since it reduces to directly mod-
ulating the current supplying the weight updates.

Note that after coding/recoding the update can only
decrease the stored weight value, so it is important that
all weights be initialized to their maximum value.

3. Fuzzy ART and VQ Architecture

The chip presented here, a 8×16 Fuzzy–ART classifier
and vector quantizer (VQ), is implemented in current-
mode CMOS technology for low-power operation,
and integrates learning as well as long-term dynamic
capacitive storage of the analog templates using an
incremental partial refresh scheme [9]. A general
overview of VLSI methods used for on-chip learning,
and examples of other systems, are presented in [5].

The architecture of the hybrid implementation is
shown in Fig. 1. The core contains an array of 8×16

W
IN

N
E

R
-T

A
K

E
-A

LL

O
U

T
P

U
T

 D
E

M
U

LT
IP

LE
X

E
R

k

A
D

D
R

E
S

S
 D

E
C

O
D

E
R

k

4

i

4
UPDADDR

CATEGORY

MATCHING

Ij

d(.)

Ti

LEARNING / REFRESH
zD/A
LSB

zij

LEARN

RST

Fig. 1. Parallel VLSI architecture for Fuzzy ART and VQ, including
template learning and refresh functions.

Adaptive Resonance and Learning Vector Quantization 151

template matching cells interconnecting rows of tem-
plates with columns of input components. Each cell
constructs a distance d(I j , zi j) between one component
I j of the input vector I and the corresponding compo-
nent zi j of one of the template vectors zi . For Fuzzy
ART, this is the Fuzzy min as defined above; for VQ
the distance is the absolute difference |I j − zi j |, [7].
The component-wise distance is accumulated across
inputs along template rows to construct Ti , and pre-
sented to a winner-take-all (WTA), which selects the
single winner

k = arg max
i

Ti (8)

In the case of VQ, Ti is constructed by accumulating
d(I j , zi j) without weight normalization and vigilance
conditioning.

3.1. Choice Function

A simplified version of the Fuzzy ART choice function
is used here, to reduce the hardware implementation.
The simplifications are similar to the VLSI-friendly
version of the ART1 choice function in [12], which
eliminates the need to divide analog signals for com-
puting the choice functions. Details are given in the
Appendix.

The approximation amounts to expressing the
choice function as a linear combination of fuzzy min
and fuzzy max distances between input and template
row. In particular, the chip computes in parallel:

Ti
+ = |I∨ zi |

Ti
− = |I∧ zi |

(9)

where Ti
− is used for the vigilance condition, and

Ti
+ (or (1−α′)Ti

+ −α′Ti
−) is used for the choice

function, which enters competition for the minimum
value when the vigilance condition is met. The ap-
proximation is nearly perfect close to resonance, and
errors become significant only far from resonance,
where they are typically masked by a failing vigilance
condition.

When the chip is configured in VQ mode, the signals
Ti

+ and Ti
− are combined differentially to construct the

mean absolute difference (MAD) distance [17]

Ti
+ − Ti

− = |I− zi | (10)

3.2. Learning and Refresh

Learning is performed by selecting the winning tem-
plate k and producing an incremental update
zk in
the stored vector zk towards the input vector, accord-
ing to a modified version of (6). The learning rate λ is
modulated according to (7), except in VQ operation for
which the learning rate is constant, λ ≡ β. In the case of
Kohonen self-organizing maps [13], the neighbors of
the winner, i = k ±1, are also updated according to (6)
to preserve topological ordering in the digital coding.

The modification in the update rule (6) is to fix the
update amplitude by thresholding:

zk j = λ(I j , zk j)sgn(I j − zk j) (11)

A constant-amplitude, variable-polarity discrete up-
date is easier to implement than a continuous update,
and gives superior results in the presence of analog
imprecisions in the implementation [22]. The granu-
lar effect of coarse updates is avoided by reducing the
update constant β.

Dynamic refresh for long-term analog storage of the
weights zi j is achieved using the technique of binary
quantization and partial incremental refresh [9]. The
technique counteracts drift due to leakage in volatile
storage, by maintaining the analog value near one
of quantized levels. The stable levels of the dynamic
memory are defined by the transition levels of a binary
quantization function Q, which maps analog values to
binary values {−1, 1}. When Q(zi j) = 1, the analog
memory value zi j is slightly decreased, and conversely
when Q(zi j) = −1, zi j is slightly increased:

zi j = −µQ(zi j) (12)

Periodic iteration of updates (12) yields long-term sta-
ble memory as long as the update amplitude µ is larger
than the worst-case drift in between refresh iterations,
and significantly smaller than the separation between
memory levels [9].

4. VLSI Implementation

The circuits are implemented in current-mode CMOS
technology, with MOS transistors operated in sub-
threshold for low-power dissipation. The use of lateral
bipolar transistors offers the advantages of a BiCMOS
process while maintaining full compatibility with stan-
dard (digital) single-poly CMOS processes.

152 Lubkin and Cauwenberghs

4.1. Distance Estimation

The circuit diagram of the distance estimation cell is
shown in Fig. 2, and the layout of the cell, measuring
43 µm × 43 µm in 1.2 µm CMOS technology, is given
in Fig. 3.

As explained above, the choice function and vigi-
lance measures for Fuzzy ART, as well as the distance

Ij

zij

zj
SEL

Ti

SELi

VE

Vbp

Vbn

POLj

si
n

si
p

Q1+Q4 Q2+Q3

M1 M2 M3

M4

M5

M6

M7

M8

M9

M10

Fig. 2. Circuit schematic of the Fuzzy ART and VQ template match-
ing cell, with integrated learning and template refresh. The dashed
inset indicates a matched double pair of lateral bipolar transistors.

Ij
SE

L

/P
OL

j

Ij

VE

Ti-

Ti+

/SELi

Sip

Sin

Vbn

GND

Vbp

Fig. 3. Layout of the Fuzzy ART and VQ template matching cell, of
size 43 µm × 43 µm in 1.2 µm CMOS technology.

C1 C2

C4C3

E

G
B

p+ n+

n-

Fig. 4. Centroid geometry of the matched double pair of lateral
bipolar transistors, in conventional n-well CMOS technology.

metric for VQ, are decomposed in terms of the fuzzy
maximum and the minimum of I j and zi j , accumulated
separately onto two wires Ti

+ and Ti
− (9) and com-

bined outside of the array. Their computation is per-
formed by modulating the Early effect (collector con-
ductance) of a matched (double) pair of bipolar transis-
tors Q1–Q4 and Q2–Q3, by means of MOS transistors
M1, M2, M3 and M4 connected as source followers.
Parallel and series connections in the source follow-
ers yield the maximum and minimum of I j and zi j ,
respectively, in the output currents.

A centroid geometry, shown in Fig. 4, is used for
improved matching between the bipolar transistor cur-
rents that supply the differential output. By combining
collector outputs in pairs C1 +C4 and C2 +C3, system-
atic variations and gradients in geometry are cancelled
to first order. Matching is important, since the collec-
tor conductance is relatively small. The Early effect
is maximized by using a minimum length geometry
for the base, equaling the minimum length of an MOS
transistor.

The winner-take-all (WTA) is implemented as a
variation on the standard current-mode design in
[10,11] with the addition of a triggered voltage-
mode output stage for improved settling accuracy and
speed [17].

4.2. Learning and Refresh

Transistors M5 through M10 implement the incre-
mental update
zi j , when the cell is selected ei-
ther for refresh, or for learning (when kWTA ≡ i). The
polarity POLi of the fixed-amplitude update
zi j is
precisely implemented by means of a binary controlled
charge pump [9]. The charge pump is free of switch
charge injection parasitics, by avoiding clock signals on

Adaptive Resonance and Learning Vector Quantization 153

the MOS gates that couple capacitively into the storage
capacitor. Vbn and Vbp are biased deep in subthreshold
for precisely controlled increments and decrements as
small as 10 µV. The timing of the update (and selec-
tion of the template) is performed by means of signals
S j

n and S j
p [22].

The update polarity is computed externally to the
array, by circuitry common for all cells on the same
column, shown at the top of Fig. 1. This arrangement
is most space efficient since only one row of cells needs
to be updated at once. A global signal (LEARN) selects
the mode of operation, learning or refresh.

Figure 5 shows the simplified schematic of the exter-
nal learning cell, one per column of VQ distance cells.
The circuit receives the selected analog template value
zi j on the line Z SE L

j along with the input I j which are
used to generate the update polarity POLi and supply
it to the selected distance cell. When a distance cell is
selected, switch M6 is closed and transistors M5–M6
along with M11–M13 implement a comparator. The
update is performed in the cell according to POLi by
activating the signals S j

n and S j
p for the entire row of

selected cells.
The selection of λ(I j , zi j) in (7) is implicit in

the computed polarity of the update in (11), and is
automatically enforced by limiting updates to negative
polarities only. This is implemented by pulling Vbn in
Fig. 2 to zero whenever LEARN is active, in Fuzzy
ART mode. The remaining Vbp pMOS tail current then
provides the negative β updates. Note that negative
zi j updates correspond to positive charge injection on
the storage capacitor, since the output currents on the

Ij

Vap

Van

zj
SEL

0

1

LEARN

zD/A

0

1

LSB

0

1

POLj

CMP

M11

M12

M13

Fig. 5. Simplified schematic of the learning and refresh circuitry, in
common for a column of Fuzzy ART/VQ cells. Analog multiplexers
are implemented with complementary CMOS switches.

Ti
+ and Ti

− lines decrease when the stored voltage
increases.

In learning mode (LEARN≡1), the polarity POLi is
computed by comparing zk j with the input I j , yielding
a fixed-size update according to (11). In refresh mode
(LEARN≡0), zk j is compared with an external ref-
erence signal zD/A to construct the binary quantization
function used for partial incremental refresh [9] in (12).
As in [23], the binary quantization Q of zk j is obtained
by retaining the least significant bit (LSB) of analog-
to-digital (A/D) conversion of zk j . A single-slope
sequential A/D is implemented for simplicity, using
a D/A signal on zD/A , ramped up in discrete steps
synchronously with the alternating LSB. When the
comparator flips sign, the instantaneous LSB value is
sampled and latched to generate the update polarity
Q(zk j), producing an update according to (12).

5. Experimental Results

The layout of the 8×16 learning Fuzzy ART classifier
and vector quantizer, implemented in 1.2 µm CMOS
technology, is shown in Fig. 6. The experimental re-
sults described here have been obtained from this chip,
and are limited to Fuzzy ART operation. A previous

Fig. 6. Layout of the 8×16 array, analog learning Fuzzy ART clas-
sifier and VQ. The die size is 2.2×2.25 mm2 in 1.2 µm CMOS
technology.

154 Lubkin and Cauwenberghs

1 1.5 2 2.5 3
2.08

2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

Input (V)

O
ut

pu
t

(µ
A

)

Fig. 7. Measured Fuzzy ART choice function for one row of cells,
sweeping one input component while fixing the other 7 inputs.

16 × 16 version in 2 µm CMOS technology, with ex-
perimental results in VQ mode, are described in [7]
and [8].

The fuzzy min distance metric is illustrated in Fig. 7,
obtained by sweeping one of the 8 inputs while fixing
the other inputs to the template values. Note the reverse
polarity of the input needed for a proper “min” opera-
tor; this is inconsequential since inputs are complement
encoded and so both polarities are presented together.

Results for dynamic refresh of the templates at
128-level quantization are shown in Fig. 8, obtained by
observing the drift in stored voltage level on one of the
cells over 100 refresh cycles (several minutes), for dif-
ferent initial values of the voltage zi j . The correspond-

0.5 1 1.5 2 2.5 3 3.5

0

16

32

48

64

80

96

112

128

Analog Input (Volts)

St
or

ed
 L

ev
el

Fig. 8. Stability of the analog memory array, at 128-level quantiza-
tion. Measured drift over 100 self-refresh cycles (several minutes),
from different initial values.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Voltage Drift (mV)

a.
u.

Fig. 9. Measured spread of the drift over time of the stored analog
voltage during refresh.

ing drift without refresh would have been several volts.
Further improvements in resolution and stability can be
achieved, at some expense in silicon area, by using the
A/D/A quantizer in [23]. Stable long-term storage at
256-level quantization, in excess of 109 refresh cycles
(more than a week), was previously demonstrated with
this technique in [24].

The spread of the stored analog voltage, during re-
fresh over time, is recorded in Fig. 9. With an update
amplitude of 0.4 mV, the excursion of the voltage is lim-
ited to about 1 mV. An external refresh scheme with
off-chip memory would amount to the same, or larger,
excursion in voltage during refresh. Since the on-chip
refresh can proceed in the background, without inter-
rupting the fuzzy ART or VQ computation, the dynamic
analog memory is transparent to the user.

Learning tests which validate the functionality of
the classifier in LVQ and Fuzzy ART learning modes,
with adaptive updates according to (11), are illustrated
in Fig. 10. While the LVQ updates are symmetric in
upward and downward directions, the asymmetry in
charging rate for upward and downward transitions is
a feature of Fuzzy ART—stability of neural plastic-
ity in the presence of changing and noisy input condi-
tions [3].

Applications of the chip, and its scalable extensions,
to speech and image coding are the subject of continued
research. We are currently also investigating connec-
tions between adaptive classifiers of this type, and a
broader class of kernel “machines” for on-line incre-
mental supervised learning [25], and their VLSI imple-
mentation [26].

Adaptive Resonance and Learning Vector Quantization 155

0 500 1000 1500 2000

1

1.5

2

2.5

3

Update Cycle

T
em

pl
at

e
(V

)

(a)

0 500 1000 1500 2000

1

1.5

2

2.5

3

Update Cycle

T
em

pl
at

e
(V

)

(b)

Fig. 10. Template adaptation recorded from a single cell in learn-
ing mode, under fixed input, from a range of initial template val-
ues. (a) Learning vector quantization (and Fuzzy ART fast learning)
mode. (b) Fuzzy ART learning mode. Solid lines: 2.5 V fixed input;
and dotted lines: 1.5 V fixed input.

6. Conclusions

We have implemented an asynchronous mixed-mode
CMOS VLSI system capable of classifying and learn-
ing in real-time. We presented a parallel architecture
and corresponding analog VLSI BiCMOS implemen-
tation of a fuzzy ART classifier, fabricated in a single-
poly CMOS process using lateral bipolar transistors.
The chip can be configured for variants on fuzzy ART
such as VQ and Kohonen self-organizing maps. It in-
corporates analog storage of the templates, sharing the

same circuitry used for learning. With a dense cell
size of 71×71 λ units in scalable MOSIS technology,
the integration of a 256-input, 1024-category classifier
is feasible on a 1 cm2 die in a 0.35 µm CMOS process
(λ = 0.2 µm). Extension to full Fuzzy ARTMAP capa-
bility (for pattern association) would reduce the density
roughly by a factor two, still supporting 256 inputs and
512 categories.

Appendix: Simplifications in Implemented Fuzzy
ART Choice Function

For complement-encoded inputs, we can expand the
fuzzy-min operator as

|I∧ zi | =
∑

i

(min(I j , zi j)+min(I j , z′
i j))

= N Imax +
∑

i

(min(I j , zi j)

− max(I j , z′
i j)) (A.1)

where z′
i j = Imax − z′

i j is the complement of the weight
corresponding to the complement-encoded input. This
and similar expressions for |zi | allow to expand the
choice function as

Ti = |I∧ zi |
α +|zi |

≈ 1+
∑

i
(min(I j ,zi j) − max(I j , z′

i j))

N Imax

1+
∑

i
(zi j − z′

i j)

N Imax

(A.2)

≈ 1+
∑

i (min(I j , zi j)−max(I j , z′
i j))

N Imax

− zi j − z′
i j

N Imax
(A.3)

assuming N Imax is much larger than other terms in
the expression. This approximation is almost perfect
near ‘resonance,’ and differences between exact and
approximated versions are significant only when the
distance between input and template is large, and the
vigilance condition is less likely to be met. A more
precise approximation follows.

First, we further simplify the expression, and elimi-
nate the need of computing and subtracting the summed
weights |zi | altogether. Since at initial coding zi j ≡ z′

i j ,
and since the weights zi j and z′

i j only decrease under

156 Lubkin and Cauwenberghs

the learning updates, it follows that zi j ≤ z′
i j . Thus,

min(I j , zi j)−max(I j , z′
i j)− zi j + z′

i j

= min(I j , z′
i j)−max(I j , zi j) (A.4)

and the choice function reduces to

Ti = N Imax −∑
i (max(I j , zi j)−min(I j , z′

i j))

N Imax

= 2N Imax −∑
i (max(I j , zi j)+max(I j , z′

i j))

N Imax

= 2− |I∨ zi |
N Imax

(A.5)

In other words, maximizing the fuzzy min choice
function normalized by the weights is, approximately,
equivalent to minimizing a modified fuzzy max choice
function, without weight normalization.

It can be verified that this new choice function for the
Fuzzy-ART algorithm produces valid clustering behav-
ior, in the sense that it satisfies the properties outlined
in [3]. However, for correct Fuzzy-ARTMAP opera-
tion, it is not possible to neglect α in the approxima-
tion of the choice function (1), at the risk of invalidating
certain properties such as “Direct Access to Subset and
Superset Patterns” [4]. Nevertheless, a non-zero value
for α is easily accounted for in the above approxima-
tions, changing (A.5) into

Ti ≈ 1+
∑

i
(min(I j ,zi j) − max(I j , z′

i j))

N Imax

1+
∑

i
(zi j − z′

i j)

N Imax + α

≈ 1+
∑

i (min(I j , zi j)−max(I j , z′
i j))

N Imax

− (1−α′)(zi j + z′
i j)N Imax

= 2−α′ − (1−α′)|I∨ zi |−α′|I∧ zi |
N Imax

(A.6)

where α′ = α/N Imax. Thus, for Fuzzy ARTMAP with
nonzero value for α, a valid choice function can still be
constructed by linearly combining fuzzy max and min
operations.

Acknowledgment

This work was supported by ARPA/ONR MURI
N00014-95-1-0409, by ONR YIP N00014-99-1-0612,
and by NSF Career MIP-9702346. Chip fabrication was
provided through MOSIS.

References

1. Grossberg, S., “Adaptive pattern classification and universal
recoding, I: Parallel development and coding of neural feature
detectors.” Biological Cybernetics 23, pp. 121–134, 1976.

2. Gersho, A. and Gray, R. M., Vector Quantization and Signal
Compression. Kluwer Academic, Norwell, MA, 1992.

3. Carpenter, G. A., Grossberg, S. and Rosen, D. B., “Fuzzy ART:
fast stable learning and categorization of analog patterns by an
adaptive resonance system.” Neural Networks 4, pp. 759–771,
1991.

4. Serrano, T., Linares, B. and Andreou, A., Adaptive Resonance
Theory Microchips. Kluwer Academic, Norwell MA, 1998.

5. Cauwenberghs, G. and Bayoumi, M. (eds.), Learning on Silicon.
Kluwer Academic, Norwell MA, 1999.

6. Cohen, M., Abshire, P. and Cauwenberghs, G., “Mixed-mode
VLSI implementation of fuzzy ART,” in Proc. IEEE Int. Symp.
Circuits and Systems (ISCAS’98), Monterey, CA, May 31–
June 3, 1998.

7. Lubkin, J. and Cauwenberghs, G., “A micropower learning vec-
tor quantizer for parallel analog-to-digital data compression,”
in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’98).
Monterey, CA, May 31–June 3, 1998.

8. Lubkin, J. and Cauwenberghs, G., “A learning parallel analog-
to-digital vector quantizer.” Journal of Circuits, Systems and
Computers (Special Issue on Analog and Digital Arrays)
8(5–6), pp. 605–614, 1998.

9. Cauwenberghs, G. and Yariv, A., “Fault-tolerant dynamic multi-
level storage in analog VLSI.” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing 41(12),
pp. 827–829, 1994.

10. Lazzaro, J., Ryckebusch, S., Mahowald, M. A. and Mead, C. A.,
“Winner-take-all networks of O(n) complexity,” Advances in
Neural Information Processing Systems, Morgan Kaufman, San
Mateo, CA, 1989, vol. 1, pp. 703–711.

11. Andreou, A. G., Boahen, K. A., Pouliquen, P. O., Pavasovic, A.,
Jenkins, R. E. and Strohbehn, K., “Current-mode subthreshold
MOS circuits for analog VLSI neural systems.” IEEE Transac-
tions on Neural Networks, 2(2), pp. 205–213, 1991.

12. Serrano-Gotarredona, T., Linares-Barranco, B. and Huertas,
J. L., “A real time clustering CMOS neural engine.” In: D. S.
Touretzky (ed.), Advances in Neural Information Processing
Systems. Morgan Kauffmann, San Mateo, CA, 1995, vol. 7.

13. Hochet, B., Peiris, V., Abdot, S. and Declercq, M. J., “Implemen-
tation of a learning Kohonen neuron based on a new multilevel
storage technique.” IEEE J. Solid-State Circuits 26, pp. 262–267,
1991.

14. Fang, W. C., Sheu, B. J., Chen, O. T. C. and Choi, J., “A
VLSI neural processor for image data-compression using self-
organization networks.” IEEE Transactions on Neural Net-
works, 3(3), pp. 506–518, 1992.

15. He, Y. and Cilingiroglu, U., “A charge-based on-chip adapta-
tion Kohonen neural network.” IEEE Transactions on Neural
Networks 4(3), pp. 462–469, 1993.

16. Tuttle, G. T., Fallahi, S. and Abidi, A. A., “An 8b CMOS vec-
tor A/D converter.” ISSCC Technical Digest. IEEE Press, 36,
pp. 38–39, 1993.

17. Cauwenberghs, G. and Pedroni, V., “A charge-based CMOS par-
allel analog vector quantizer,” Advances in Neural Information

Adaptive Resonance and Learning Vector Quantization 157

Processing Systems. MIT Press, Cambridge, MA, 1995, vol. 7,
pp. 779–786.

18. Konda, M., Shibata, T., Ohmi, T., “Neuron-MOS correlator
based on manhattan distance computation for event recogni-
tion hardware.” Dig. International Symposium on Circuits and
Systems. Atlanta, GA, 1996.

19. Wang, J. W., Coggins, R. J. and Jabri, M. A., “Micropwer ana-
logue building blocks for template matching in implantable de-
vices,” in Proc. 8th Australian Conf. Artificial Neural Networks,
pp. 177–180, 1997.

20. Granger, E., Blaquière, Y., Savaria, Y., Cantin, M.-A. and
Lavoie, P., “A VLSI architecture for fast clustering with fuzzy
ART neural networks.” J. Microelectronic Systems Integration
5(1), pp. 3–18, 1997.

21. Coggins, R. J., Wang, R. J. W. and Jabri, M. A., “A micropower
adaptive linear transform vector quantiser.” In: G. Cauwenberghs
and M. Bayoumi (eds.), Learning on Silicon. Norwell Kluwer
Academic, MA, 1999.

22. Cauwenberghs, G., Analog VLSI stochastic perturbative learn-
ing architectures.” Int. J. Analog Integrated Circuits and Signal
Processing 13(1/2), pp. 195–209, 1997.

23. Cauwenberghs, G., “A micropower CMOS algorithmic A/D/A
converter.” IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications 42(11), pp. 913–919, 1995.

24. Cauwenberghs, G., “Analog VLSI long-term dynamic storage,”
in Proc. IEEE International Symposium on Circuits and Systems
(ISCAS’96), Atlanta, GA, 1996, vol. III, pp. 334–337.

25. Cauwenberghs, G. and Poggio, T., “Incremental and decremental
support vector machine learning,” submitted (also available as
MIT AI memo, http//www.ai.mit.edu), 2000.

26. Genov, R. and Cauwenberghs, G., “Charge-mode parallel
architecture for matrix-vector multiplication,” in Proc. 43rd
IEEE Midwest Symp. Circuits and Systems (MWSCAS’2000).
Lansing, MI, August 8–11, 2000.

Jeremy Lubkin received the B.S. and M.S. degrees
in electrical engineering from the Johns Hopkins
University in 1997 and 1998, respectively. He is cur-

rently employed at Tality, Columbia, MD, where he is
active in the design of analog and mixed-signal CMOS
and BiCMOS integrated systems.

Gert Cauwenberghs received the Engineer’s
degree in Applied Physics from the University of
Brussels, Belgium, in 1988, and the M.S. and Ph.D.
degrees in electrical engineering from the California
Institute of Technology in 1989 and 1994. In 1994, he
joined Johns Hopkins University where he is now as-
sociate professor of Electrical and Computer Engi-
neering. During 1998–1999 he was on sabbatical as
visiting professor of Brain and Cognitive Science at
the Center for Computational and Biological Learn-
ing, Massachusetts Institute of Technology, and at the
Center for Adaptive Systems, Boston University. His
research covers VLSI circuits, systems and algorithms
for parallel signal processing, adaptive neural compu-
tation, and low-power coding and instrumentation. He
has organized special sessions at conferences and jour-
nal special issues on learning, adaptation and memory,
and recently co-edited a book on Learning on Silicon
(Kluwer, 1999). He was Francqui Fellow of the Bel-
gian American Educational Foundation in 1988, and re-
ceived the National Science Foundation Career Award
in 1997, the Office of Naval Research Young Investi-
gator Award in 1999, and the Presidential Early Career
Award for Scientists and Engineers (Pecase) in 2000.
He is associate editor of the IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal
Processing, and Chair of the IEEE Circuits and Sys-
tems Society Technical Committee on Analog Signal
Processing.

