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Abstract—We study a range of neural dynamics under varia-
tions in biophysical parameters implementing extended Morris-
Lecar and Hodgkin-Huxley models in three gating variables.
The dynamics are emulated in NeuroDyn, an analog VLSI
programmable neural emulation platform with generalized chan-
nel kinetics and biophysical membrane dynamics. We present
simulation and measurement results and observe consistent
agreement over a wide regime of tonic spiking and intrinsic
bursting dynamics through the variation of a single conductance
parameter governing calcium recovery.

I. INTRODUCTION

Neuromorphic engineering, as an analysis by synthesis ap-
proach to computational neuroscience, is increasingly offering
physical tools for studying the dynamics of complex neural
systems. While analog neural chips inherently have limited
programming capability, recent designs have overcome this
limitation by incorporating a large number of parameters in a
reconfigurable architecture [1]-[5]. This opens up opportunities
in systematic studies of the dependence of the dynamics upon
biophysical parameters.

Here we present such a study on a silicon biophysical neural
model with wide-ranging membrane dynamics and channel
kinetics [6] that, within the same architecture as illustrated
in Figure 1, extends the Hodgkin-Huxley (HH) and Morris-
Lecar (ML) paradigms from tonic spiking to intrinsically
bursting neural dynamics [7]. The ML model has been used to
study and model recordings from spinal cord neurons [8]. The
analog VLSI design of the NeuroDyn system, and preliminary
experimental results were presented in [9]. First results on
coupled neural dynamics with inhibitory synapses were re-
ported in [10]. Details on the circuit implementation and com-
plete experimental characterization of the neural and synaptic
circuits, as well as presentation of calibration and parameter
fitting procedures to align neural and synaptic characteristics
from models or recorded data onto the digitally programmable
analog hardware are presented in [11].

We demonstrate that the addition of a slow inactivation term
to the Morris-Lecar neuron model results in bursting neural
dynamics in an aVLSI implementation. Systematic regression
of parameters results in generation of circuit parameters to
implement the model on chip. Calculation of inter-spiking
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Extended Morris-Lecar

w

h

m!

gating
variables

channel
currents

dynamics

Ca

K

r synapse

neuron

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

INa = m3hgNa(V − ENa) (1)

IK = n4gK(V − EK) (2)

dV

dt
C = −INa − IK − IL + Iext (3)

Iαn

Iβn

In

IgK

I4
nIgK

EK

V

IK

INa

IL

Iext

C

m3

h

n4

Isyn

r

Vi

Vj

mss

w

ICa

m∞

Fig. 1. The NeuroDyn analog VLSI programmable neural emulation
platform [9]-[11] is used to generate both tonic firing and intrinsic bursting
dynamics using extensions on Hodgkin-Huxley and Morris-Lecar paradigms.

interval (ISI) for both simulated and measured bursting wave-
forms over the variation of a single conductance parameter
gw governing calcium recovery show agreement in behavior
between simulation and measurement data.

II. SYSTEM OVERVIEW

The NeuroDyn system [9]-[11] consists of 4 neurons with
Hodgkin-Huxley type membrane dynamics fully connected
through 12 conductance-based synapses. All parameters are
individually addressable and individually programmable and

978-1-4244-7270-3/10/$26.00 ©2010 IEEE 186



(a)

(b)

Fig. 2. Simulation data displaying membrane and gating variable dynamics in
the ML model (a) and with an extension to include slow inactivation dynamics
(b).

are biophysically-based governing the conductances, reversal
potentials, and voltage-dependence of the channel kinetics.
There are a total of 384 programmable parameters governing
the dynamics with each parameter stored on-chip in a 10-bit
DAC.

III. METHODOLOGY

A. Membrane Dynamics

The Hodgkin-Huxley membrane dynamics [12] describe
neural dynamics as a sum of conductance-based channel
currents. Gating variables m,h, and n describe the voltage-
dependent dynamical profiles of each channel and are de-
scribed by

Cmem
dVi

dt
= −INai

− IKi
− ILi

− Isynij
(1)

where i, j = 0 . . . 3, and

INai
= mi

3hi gNai
(Vi − ENai

)
IKi

= ni
4 gKi

(Vi − EKi
)

ILi
= gLi

(Vi − ELi
).

Isynij
= rij gsynij

(Vi − Esynij
)

In order to emulate bursting neural dynamics, the Hodgkin-
Huxley model requires the addition of a slow-modulation
due to Ca inactivation dynamics. We accommodate this extra
inactivation channel by first considering the two-dimensional
“reduced” excitation model as described by Morris-Lecar [13]:

Cmem
dVi

dt
= −ICai − IKi − ILi − Isynij (2)

(a)

(b)
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Fig. 3. Measurement data displaying membrane and gating variable dynamics
in the ML model (a) and with an extension to include slow inactivation
dynamics (b).

Fig. 4. Measured activation and inactivation asymptotes for gating variables
m∞, h and w in the ML with and without the intrinsic bursting extension.

where i, j = 0 . . . 3, and

ICai = m∞i gCai (Vi − ECai)
IKi = wi gKi (Vi − EKi)
ILi = gLi (Vi − ELi) (3)

Isynij = rij gsynij (Vi − Esynij )

We then reintroduce the variable hi as a multiplicative term
in the calcium conductance in (3), modeling the calcium re-
covery rather than calcium inactivation, on a slower timescale
spanning several action potentials. We also revert to the cubic
form of fast Ca (Na) activation in the Hodgkin-Huxley model,
of the form (1). We show that we can adapt this model (1)
to reproduce rich spiking and bursting dynamics, with only
changes in the conductance and channel kinetics, illustrated
in Fig. 1 and described below.

B. Channel Kinetics

The neuron channel gating variables are modeled by a rate-
based first-order approximation to the kinetics governing the
random opening and closing of membrane channels for any of

187



(a) (b) (c)

Fig. 5. Simulated intrinsically bursting neuron simulation with variation of a single conductance parameter gw governing calcium recovery with increasing
values from (a) to (c)

the gating variables x (e.g. m,h, n, w):

dxi

dt
= αxi

(1− xi)− βxi
xi (4)

where each channel variable denotes the fractions of corre-
sponding channel gates in the open state, and where the α and
β parameters are the corresponding voltage-dependent opening
and closing rates. The channel variables can be equivalently
expressed as:

τxi

dxi

dt
= x∞i

− xi (5)

with asymptotes x∞i
= αxi

/(αxi
+ βxi

) and time constants
τxi

= 1/(αxi
+ βxi

).
We model each of the opening and closing channel kinetics

in the NeuroDyn system using the seven-point sigmoidal re-
gression functions implemented as cascaded differential pairs.
As described in [11], we use a least squares fit regression
technique to determine the appropriate current biases to fit the
generalized channel kinetic functions.

Simulation data was obtained by implementing the models
described using MATLAB. The simulation and measurement
data illustrating the neural spiking behavior before and after
the inclusion of the slow inactivation channel are shown in
Figure 2 and Figure 3. The h gating variable is set with
constant channel kinetics before the inclusion of the slow
inactivation channel, and results in constant regular spiking.
The asymptote activation and inactivation variables in the
extended ML model are shown in Figure 4.

IV. RESULTS

We calculate the ISI histogram for each burst of spikes
over the variation of a single parameter gw governing calcium
recovery [7] for both simulation and measurement data as
displayed in Figure 5 and Figure 6. We observe consistent
spiking behavior over a wide regime of neural dynamics. For
low gw conductance values, the neuron spikes and is followed
by subthreshold oscillations. As the gw conductance value is
increased, the neuron spikes and the following subthreshold
oscillations are more pronounced. And when the gw con-
ductance value is further increased, the neuron spikes in a
bursting manner. When the gw conductance value is further
increased, the number of subsequent bursting spikes is reduced
as we observed quadruplets then triplets then doublets and
finally single neuron spikes. The main difference between the
simulated and experimentally observed dynamics is the effect
of measurement noise which manifests as random fluctuations
in spike and burst rates, as well as the number of spikes per
burst.

V. CONCLUSION

Previous studies [14] have shown intrinsically bursting
neural dynamics implemented with extensions to the HH
model requiring more gating variables. Other models are ca-
pable of emulating intrinsic bursting neural dynamics, such as
Izhikevich’s simple model [15] which uses just two dynamical
variables and Mihalas-Niebur’s neural model [16] which uses
three dynamical variables to also govern threshold adaptation.
Here we have presented a model that reproduces both tonic
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(a) (b) (c)

Fig. 6. Measured intrinsically bursting neuron measurement with variation of a single conductance parameter gw governing calcium recovery with increasing
values from (a) to (c)

spiking and intrinsically bursting neural dynamics in three
dynamical variables that directly account for the biophysics of
membranes and channels in the NeuroDyn neural emulation
platform. We show correspondence between simulated and
measured data over a wide regime of neural spiking and
bursting dynamics.
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