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Abstract—Stochastic adaptive algorithms are investigated
for online correction of spatial nonuniformity in random-access
addressable imaging systems. The adaptive architecture is imple-
mented in analog VLSI, integrated with the photosensors on the
focal plane. Random sequences of address locations selected with
controlled statistics are used to adaptively equalize the intensity
distribution at variable spatial scales. Through a logarithm
transformation of system variables, adaptive gain correction
is achieved through offset correction in the log-domain. This
idea is particularly attractive for compact implementation using
translinear floating-gate MOS circuits. Furthermore, the same
architecture and random addressing provide for oversampled
binary encoding of the image with equalized intensity histogram.
The techniques apply to a variety of solid-state imagers, such
as artificial retinas, active pixel sensors, and IR sensor arrays.
Experimental results confirm gain correction and histogram
equalization in a 64 64 pixel adaptive array integrated on a
2.2-mm 2.25-mm chip in 1.2- m CMOS technology.

Index Terms—Adaptation, analog VLSI, CMOS imager, equal-
ization, floating gate, focal plane, nonuniformity.

I. INTRODUCTION

Since the seminal work by Carver Mead on neuromorphic
floating-gate adaptation in the silicon retina [1], few groups have
addressed the problem of online adaptive correction of nonuni-
formities on the focal plane in solid-state image sensor arrays
[2] and neuromorphic vision sensors [3], [4], while most ef-
forts have concentrated on nonadaptive correction using on-chip
[5] or off-chip calibrated storage. Gain and offset nonuniformi-
ties in the photosensors and active elements on the focal plane
contribute “salt-and-pepper” fixed-pattern noise at the received
image, which limit the resolution and sensitivity of imaging sys-
tems. Flicker noise and other physical sources of fluctuation and
mismatch make it a necessity to correct for these effectsonline,
which is problematic since the image received is itself unknown.
Existing “blind” adaptive algorithms for online correction are
complex and the amount of computation required to implement
them is generally excessive. Integration on the focal plane would
incur a significant increase in active pixel size and a decrease in
spatial resolution and fill-factor of the imager along with an in-
crease in power consumption.
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In this paper we present a class ofstochasticadaptive algo-
rithms which integrate general nonuniformity correction with
minimal, if not zero, overhead in the number of active com-
ponents on the focal plane. In particular, we use floating-gate
adaptive CMOS technology to implement a two-transistor adap-
tive gain element for online focal-plane compensation of current
gain mismatch. The algorithms make effective use of the statis-
tics of pixel intensity under randomly selected sequences of ad-
dress locations and avoid the need for extra circuitry toexplicitly
compute spatial averages and locally difference the result. The
resulting stochastic algorithms are particularly simple to imple-
ment.

The same stochastic algorithms for adaptive nonuniformity
correction which take advantage of the spatial statistics of image
intensity can be used to perform image intensity equalization
and normalization on the focal plane. Equalization is a useful
property because it maximizes the available dynamic range and
assigns higher sensitivity to more statistically frequent intensi-
ties. At the same time, the image is converted into digital form
avoiding the need for explicit analog-to-digital conversion.

In Section II we formulate the stochastic algorithms for adap-
tive nonuniformity correction. We show how a simple logarithm
transform on offset correction allows us to use the same algo-
rithms for gain correction. We briefly discuss intensity equal-
ization in Section III as a natural extension of the stochastic
rules of Section II. In Section IV we describe and analyze the
floating-gate translinear current-mode VLSI implementation of
the adaptive pixel. The system architecture including the ex-
ternal circuits used for experimental validation of our VLSI im-
ager is described in Section V. Section VI shows experimental
results for gain nonuniformity correction and image intensity
equalization. We discuss these results in Section VII and give
our conclusions in Section VIII.

II. A DAPTIVE NONUNIFORMITY CORRECTION

Nonuniformity correction can be approached using two
strategies: apply a uniform reference image to the static imager
and ensure that all pixel outputs are equal [1], or drift natural
scenes across the imager where each pixel subtracts its output
from its spatially low-pass filtered output to derive an error
signal [6]. The former is referred to asstatic nonuniformity
correction (SNUC) and the latter asscene-basednonuniformity
correction (SBNUC). Our imager can accommodate either type
of mismatch correction strategy. The SBNUC algorithm has
been implemented on the focal plane in CMOS and IR-based
imagers [2] and has been successful in reducing offset mis-
match.
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In this paper, we will concentrate on SNUC to reduce cur-
rent gain mismatch in a photo-transistor based CMOS imager
or silicon retina. We will show how by applying a controllable
voltage offset on a floating-gate transistor in each pixel, we
achieve an adjustable, adaptive pixel current gain. Our system
architecture also allows us to perform SBNUC through control-
ling the statistics of random address sequences.

First we set up the problem in terms of established online
algorithms for offset correction. Then we show how this same
algorithm can be extended to gain mismatch reduction through
a simple logarithm transformation of system state variables.

A. Canceling Offset Nonuniformity

Fig. 1(a) schematically demonstrates the offset correction
technique. The set of system equations is

(1)

where
input random (sensor) variable;
received input with unknown offset;
applied offset correction;
corrected output.

For offset compensation, we want

const pixels (2)

A simple (gradient descent) adaptive rule to achieve this is [6]

(3)

which adjusts the output on average toward a reference con-
structed by expressing variable degrees of smoothness in the
image

for SNUC

for SBNUC
(4)

where the symbol represents spatial averaging at global
and local scales, respectively, anddenotes the adaptation (or
“learning”) rate. Circuits implementing a locally differenced
diffusive kernel, with adjustable space constant, to perform the
computations in (3) are presented in [2]. We introduce a sto-
chastic version of the rule in (3)

(5)

where the subscripts and denote pixel addresses
at consecutive time steps and , respectively. Taking
expectations on both sides of (5), for a particular pixel selected
at time , yields

which depends on the statistics of the consecutive address se-
lections as determined by the conditional transition probabili-
ties (densities) . Therefore, by controlling the
statistics through proper choice of the random
sequence of addresses, we can implement, on average, the spa-
tial convolution kernels needed to implement both SNUC and

SBNUC in (4). In particular, for a random sequence with
and independent [i.e., ]

(6)

Whereas, if and are related by embedding memory
in the address sequence (e.g., through inertia, or imposing limits
on )

(7)

Equation (5) is a stochastic online version of SNUC and
likewise, (7) implements stochastic SBNUC. Hardware re-
quirements can be further simplified by thresholding the update
in (5) into the pilot-rule

sign (8)

with fixed-size update increments and decrements.

B. Canceling Gain Nonuniformity

The gradient descent formulation [6] also adaptively compen-
sates for gain mismatch, although it does not prevent the gain
from becoming negative. Our approach is to relate gain correc-
tion, under the positivity constraint imposed by current-domain
circuits, to offset correction through a logarithm transformation.
This transformation has a physical meaning which can be ex-
ploited in the hardware implementation as discussed in the next
section. Fig. 1(b) schematically illustrates the concept of gain
mismatch correction in relation to Fig. 1(a).

The system is governed by

(9)

which transform into

(10)

so that for gain nonuniformity correction

const pixels (11)

By identifying correspondending terms (in particular,
or and ) in (1) and (10), and because of the
monotonicity of the logarithmic map, the learning rule (8) can
be rewritten as

sign (12)

which in turn can be expressed as a stochastic online learning
rule with relative gain increments

sign (13)

III. I NTENSITY EQUALIZATION

The constant terms (const) both in offset (2) and gain (11) cor-
rection are undefined and not regulated during the adaptation.
This problem can be circumvented by properly normalizing the
acquired image. One particularly attractive approach to normal-
ization is to equalize the image intensity histogram, which in
addition to mapping the intensity range to unity also produces a
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(a) (b)

Fig. 1. (a) Offset correction. (b) Gain correction.

Fig. 2. Input intensity probability density function (top) and corresponding
mean-rate transfer function (bottom) for intensity equalization and
normalization.

maximum entropy coded output [7]. Incidentally, the same sto-
chastic algorithms (8) and (13) for nonuniformity correction can
also be used for histogram equalized image coding.

Pixel intensities are mean-rate encoded in a single-bit
oversampled representation akin to delta-sigma modulation
[8], although without the need for integration nor any other
processing at the pixel level. This could be compared with
a popular scheme for neuromorphic multi-chip systems, the
address-event communication protocol [9], in which sparse
pixel-based events such as spiking action potentials are com-
municated asynchronously across chips. In the technique
described here, addresses are not event-based, but supplied
synchronously, with prescribed random spatial statistics.

In particular, we code the image in terms of the bits obtained
by comparing and as in (8) or and
as in (13). If larger, a “1” symbol is transmitted, else a “0.”
The selected address is either part of the transmitted code or is
generated at the receiver end from the same random seed. Thus,
the code is defined as

sign (14)

By selecting random addresses with controlled spatial statistics
as in (4), this code effectively compares a selected pixel’s inten-
sity with a base value that is either a global or local average. The
probability of “1” is the fraction of pixels in that neighborhood
with intensity lower than the present pixel. This is illustrated in

Fig. 3. Floating gate adaptive pixel circuit.

Fig. 2, in which the mean-rate pixel activity is given by the cu-
mulative probability density function

(15)

This corresponds to intensity equalization and normalization of
the image, a desirable feature for maintaining a large dynamic
range in image acquisition [10]. As seen in Fig. 2, the coding
transfer function assigns higher sensitivity to statistically more
frequent intensities. The uniform distribution and maximum en-
tropy encoding obtained by this transformation is a well-known
result and appears to take place in biological phototransduction
as well [7]. The mechanism of image equalization as achieved
here is unique in that it is due to statistical techniques in an
oversampled representation, and the statistics of the address se-
quence can be tailored to control the size of the neighborhood
for different spatial scales of intensity normalization.

IV. FOCAL-PLANE VLSI IMPLEMENTATION

Rather than implementing (13) directly, we make use of the
exponential relationship between voltage and current in a (sub-
threshold) MOS transistor to encode a currentgainas the expo-
nential of a differential voltage across afloating gatecapacitor.
The increments and decrements in (12) are then naturally
implemented by hot-electron injection and tunneling across the
floating gate oxide [11].

A. The Pixel

The pixel circuit diagram is shown in Fig. 3. A verticalpnp
bipolar transistor converts photon energy to emitter current
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Fig. 4. Pictorial interpretation of the contributions of�,V , andQ=C to
the pixel current transfer function: (a) for sub-threshold output currentI and
(b) for above-threshold output currentI .

with current gain . Transistors and form a current
mirror with adjustable current gain [12]. is a floating-gate
transistor with two control electrodes; and set
through capacitive coupling

(16)

with the charge injected/tunneled onto the floating gate,
and an externally applied

global voltage for all pixels. The pixel’s output current
is sourced by transistor and measured off-chip. Transistor

’s gate and source provide random access pixel addressing
at the periphery, as needed to implement the stochastic kernel.
For this pixel design, (16) establishes the following current
transfer function in the subthreshold regime:

(17)

Fig. 5. Micrograph of 64� 64 pixel adaptive imager chip. Dimensions are 2.2
mm� 2.25 mm in 1.2�m CMOS technology.

Fig. 6. Chip architecture and system setup for gain mismatch correction and
intensity histogram equalization.

where
;

subthreshold leakage current;
and width and length of transistors and ;

supply voltage;
thermal voltage;
subthreshold slope factor (back gate coefficient).

The first exponential factor on the right in (17) corresponds
to the adaptive gain correction, while the second exponen-
tial factor represents normalization which is globally controlled
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Fig. 7. Time course of gain nonuniformity reduction, as recorded from the adaptive imager chip. Also shown are acquired images before and after gain correction
performed under conditions of uniform illumination.

by . By injecting electrons onto (tunneling electrons from)
the floating gate [11] we incrementally (decrementally) alter,
which in turn logarithmically modulates, and thereby effec-
tively implements the pilot rule (12).

Fig. 4 illustrates the effect of the various contributions to
the pixel current transfer function versus , through the
floating gate voltage as given by (16). Capacitive division
between and reduces the voltage swing on the floating
gate by a factor relative to the input voltage .
Through the logarithm -to- transformation across the MOS
transistor in subthreshold, this compresses the dynamic range of
intensities in the output image

(18)

by a factor , as shown in Fig. 4(a). Hot electron injec-
tion onto the floating gate modulates the charge, and thereby
corrects the (relative) gain in each pixel individually by corre-
spondingly lowering the floating gate voltage . The elec-
trode voltage allows for a global shift of for all pixels,
in either a positive or negative direction as shown in Fig. 4(a) and
(b). The effect either way is a global, electronically adjustable
scale factor in the gain, which allows for automatic gain con-
trol. For lower values of , which bring transistor above
threshold as indicated in Fig. 4(b), a smaller compression factor

is obtained in the current transfer function (18), although this
factor then depends on the signal. If the image is subsequently
histogram equalized through the oversampled binary encoding
(14), the nonlinearity in the transfer function (18) becomes ir-
relevant.

V. VLSI SYSTEM ARCHITECTURE

An array of 64 64 adaptive pixels is integrated withand
random-access addressing decoders onto a 2.2-mm2.25-mm
chip in 1.2- m CMOS technology. The micrograph of the pro-
totype fabricated through MOSIS is shown in Fig. 5.

Fig. 6 illustrates the architecture of the chip and the setup
used to experimentally validate the concept of reducing the gain
mismatch between pixels on the prototype adaptive array. We
uniformly illuminate the imager and randomly select a column
and row address . With switch closed and open, we
measure using a transimpedance amplifier to generate
a voltage . If , we open and momentarily
close . The drain of transistor is pulsed down to

and a small packet of negative charge is injected onto
the floating gate. If , we do not alter the gain of the
selected pixel and continue by randomly selecting a new pixel.
As such we implement aone-sidedversion of the stochastic pilot
rule of (12)

;

otherwise.

Because adaptation is active in only one direction, the average
level drifts in that direction over time. We can use the cou-
pling electrode voltage to compensate for this drift.

After gain nonuniformity correction, the imager can be used
to acquire static natural images. Also, using random addresses
with prescribed statistics, the output bit from the comparator

can be accumulated in bins whose addresses are de-
fined by . The resulting histogram then represents the in-
tensity equalized acquired image.
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VI. EXPERIMENTAL RESULTS

The phototransistor-based imager was uniformly
illuminated using a white light source. We scanned the pixel
array before any gain mismatch correction, and again after
every 200 cycles of correction, until we judged correction to
be completed after 2800 cycles. Each of the 4096 pixels was
selected in random sequence every cycle. Fig. 7 shows the
evolution of the histograms built from recorded from each
pixel on the focal-plane versus adaptation cycle number. Also
shown are the scanned images from the chip before and after
gain mismatch correction.

We measured and plotted the standard deviation of
( ) normalized to the mean , versus , before
and after gain mismatch correction. The five different
correspond to five different levels of illumination which we
label 1, 2, 3, 4, and 5. Adaptation was done at illumination level
with label 5. Fig. 8 plots these experimental results.

We projected a black and white 35-mm slide onto the imager
after gain mismatch correction and scanned the array. The slide
contained a light-grey character “R” against a dark-grey back-
ground (both bitmapped). The resulting image, as scanned from
the imager chip, is shown in Fig. 9.

We also projected a 35-mm grayscale (pixelated ) slide
“eye” image, shown in Fig. 10(a), onto the imager. The acquired
image is shown in Fig. 10(b), and the histogram equalized image
obtained from 256-times oversampled binary coding of the chip
output is shown in Fig. 10(c).

VII. D ISCUSSION

Injecting a negative packet of charge onto the floating gate of
transistor lowers its gate voltage and therefore increases its
output current. Consequently, correction is in one direction only,
increasing the current gain. Since the efficiency of charge in-
jection depends exponentially on the magnitude of drain-source
current through the device [11], pixels having higher will
inject more each time their drains are pulled to . This posi-
tive feedback mechanism can be kept in check either by driving
the common drain with a current rather than voltage source,
or by appropriately setting , keeping closed for a fixed
time interval ( 100 s), and having hysteresis in the comparator
which computes . We choose the latter option for sim-
plicity of the test setup.

The scanned image before correction in Fig. 7 shows strong
vertical striations in . After the gain mismatch correction
procedure, these striations are no longer visible as evidenced by
the post-correction image. We see five dark pixels (low) in
this image. These pixels are “stuck” off and therefore experi-
ence negligible injection when they are selected. Ideally, after
correction we should expect to see an impulse in the histogram,
all pixels having the same when uniformly illuminated. In
reality we see a single narrow peak in the histogram due to in-
jection efficiency being proportional to current and due to hys-
teresis in the comparator.

Fig. 8 demonstrates that we did in fact reduce gain mismatch
and not just as a consequence of increasing
[13]. The pre- and post-correction data lie on two separate
curves demonstrating that there is indeed a dramatic reduction

Fig. 8. Experimental pre- and post-corrected� =hI i versusI for five
different illumination intensities: (top curve) before gain correction and (bottom
curve) after gain correction.

Fig. 9. Example image acquired from the adaptive imager chip after gain
mismatch reduction. We projected a light-grey letter “R” against a dark-grey
background onto the chip.

Fig. 10. (a) Original “eye” image; (b) image acquired from the chip; and (c)
equalized image obtained from oversampled binary coding of the chip outputs.

in gain mismatch due to adaptation. At low (i.e., low
illumination) there is a reduction in from 70 to



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2001 89

10%. At higher (i.e., high illumination), the reduction is
from 24 to 4%.

The scanned image of an “R” after adaptation shown in Fig. 9
gives a clear image mostly free of gradients, striations, and other
fixed pattern noise present in the imager before compensation.
The remaining “salt and pepper” noise (two pixels in Fig. 9) is
an artifact of the inhomogeneous adaptation rates under voltage-
controlled hot electron injection in the setup of Fig. 6, which
can be alleviated by using a current-controlled setup instead.
The “eye” image shown in Fig. 10(c) reveals more (intensity)
detail, especially around the iris, in the image after intensity
equalization than the acquired image in Fig. 10(b).

VIII. C ONCLUSIONS

We have introduced a compact pixel design and a strategy
for reducing gain mismatch inherent in arrays of phototransis-
tors used in CMOS imagers. We have shown how the learning
rule for offset correction can be transformed into the log do-
main to produce a stable learning rule for online gain mismatch
correction. This rule is very naturally implemented by a simple
translinear circuit. The pixel incorporates a floating gate tran-
sistor which can be incrementally injected with a small packet of
negative charge. The injected charge increases the current gain
of the pixel in relative terms (i.e., by constant increments on a
logarithmic scale).

Experimental results from a custom phototransistor-
based adaptive pixel CMOS array, fabricated through MOSIS,
prove that our pixel design and learning rule were successful for
static nonuniformity correction. In addition, we demonstrated
intensity histogram equalization and digital coding of the output
image, in a binary oversampled representation, by means of the
same random-addressing stochastic algorithms and architecture
as used for the adaptation.
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