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Charge-Mode Parallel Architecture
for Vector–Matrix Multiplication
Roman Genov, Member, IEEE,and Gert Cauwenberghs, Member, IEEE

Abstract—An internally analog, externally digital architecture
for parallel vector–matrix multiplication is presented. A three-
transistor unit cell combines a single-bit dynamic random-access
memory and a charge injection device binary multiplier and
analog accumulator. Digital multiplication of variable resolution
is obtained with bit-serial inputs and bit-parallel storage of matrix
elements, by combining quantized outputs from multiple rows of
cells over time. A prototype 512 128 vector–matrix multiplier on
a single 3 mm 3 mm chip fabricated in standard 0.5- m CMOS
technology achieves 8-bit effective resolution and dissipates 0.5 pJ
per multiply-accumulate.

Index Terms—Analog array processors, analog-to-digital con-
version (ADC), charge-injection device (CID), dynamic random-
access memory (DRAM), support vector machines (SVM), vector–
matrix multiplication (VMM), vector quantization (VQ).

I. INTRODUCTION

REAL-TIME artificial vision systems for interactive
human–machine interfaces [1] incur a significant amount

of computation, in excess of even the most powerful processors
available today. One of the most common, but computationally
most expensive operations in machine vision and pattern
recognition is that of vector–matrix multiplication (VMM) in
large dimensions

(1)

with -dimensional input vector , -dimensional output
vector , and matrix elements . In artifi-
cial neural networks, for instance, the matrix elements
correspond to weights, or synapses, between neurons. The ele-
ments may also represent templates in a vector
quantizer [2], or support vectors in a support vector machine [3].

Dedicated parallel VLSI architectures have been developed
to speed up VMM computation, e.g., [4]. The problem with
most parallel systems is that they require centralized memory
resources, i.e., RAM shared on a bus, thereby limiting the avail-
able throughput. A fine-grain, fully parallel architecture, that
integrates memory and processing elements, yields high com-
putational throughput and high density of integration [5]. The
ideal scenario (in the case of vector–matrix multiplication) is
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Fig. 1. General architecture for fully parallel vector–matrix multiplication
(VMM).

where each processor performs one multiply and locally stores
one coefficient. The advantage of this is a throughput that scales
linearly with the dimensions of the implemented array. The re-
curring problem with digital implementation is the latency in
accumulating the result over a large number of cells. Also, the
extensive silicon area and power dissipation of a digital mul-
tiply-and-accumulate implementation make this approach pro-
hibitive for very large (100–10 000) matrix dimensions.

Analog VLSI provides a natural medium to implement fully
parallel computational arrays with high integration density
and energy efficiency [6]. By summing charge or current on
a single wire across cells in the array, low latency is intrinsic.
Analog multiply-and-accumulate circuits are so small that one
can be provided for each matrix element, making it feasible to
implement massively parallel implementations with large matrix
dimensions. Fully parallel implementation of (1) requires an

array of cells, illustrated in Fig. 1. Each cell
computes the product of input component and matrix
element , and dumps the resulting current or charge on
a horizontal output summing line. The device storing
is usually incorporated into the computational cell to avoid
performance limitations due to low external memory access
bandwidth.Various physical representations of inputs and matrix
elements have been explored, using synchronous charge-mode
[7]–[10], asynchronous transconductance-mode [11]–[13],
or asynchronous current-mode [14] multiply-and-accumulate
circuits.

The main problem with purely analog implementation is the
effect of noise and component mismatch on precision. To this
end, we propose the use of hybrid analog–digital technology to
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Fig. 2. Block diagram of one row in the matrix with binary encoded elementsw , for a singlem and withI = 4 bits. Data flow of bit-serial inputsx
and corresponding partial outputsY , with J = 4 bits.

simultaneously add a large number of digital values in parallel,
with careful consideration of sources of imprecision in the im-
plementation and their overall effect on the system performance.
Our approach combines the computational efficiency of analog
array processing with the precision of digital processing and the
convenience of a programmable and reconfigurable digital in-
terface.

A mixed-signal array architecture with binary decomposed
matrix and vector elements is described in Section II. VLSI im-
plementation with experimental results from fabricated silicon
are presented in Section III. Section IV quantifies the improve-
ments in system precision obtained by postprocessing the quan-
tized outputs of the array in the digital domain. Conclusions are
presented in Section V.

II. M IXED-SIGNAL ARCHITECTURE

A. Internally Analog, Externally Digital Computation

The system presented is internally implemented in analog
VLSI technology, but interfaces externally with the digital
world. This paradigm combines the best of both worlds: it
uses the efficiency of massively parallel analog computing (in
particular: adding numbers in parallel on a single wire), but
allows for a modular, configurable interface with other digital
preprocessing and postprocessing systems. This is necessary to
make the processor a general-purpose device that can tailor the
vector–matrix multiplication task to the particular application
where it is being used.

The digital representation is embedded, in both bit-serial and
bit-parallel fashion, in the analog array architecture (Fig. 2). In-
puts are presented in bit-serial fashion, and matrix elements are
stored locally in bit-parallel form. Digital-to-analog (D/A) con-
version at the input interface is inherent in the bit-serial imple-

mentation, and row-parallel analog-to-digital (A/D) converters
are used at the output interface.

For simplicity, an unsigned binary encoding of inputs and ma-
trix elements is assumed here, for one-quadrant multiplication.
This assumption is not essential: it has no binding effect on the
architecture and can be easily extended to a standard one’s com-
plement for four-quadrant multiplication, in which the signifi-
cant bits (MSB) of both arguments have a negative rather than
positive weight. Assume further-bit encoding of matrix ele-
ments, and -bit encoding of inputs

(2)

(3)

decomposing (1) into

(4)

with binary–binary VMM partials

(5)

The proposed mixed-signal approach is to compute and accu-
mulate the binary–binary partial products (5) using an analog
VMM array, and to combine the quantized results in the digital
domain according to (4).

B. Array Architecture and Data Flow

To conveniently implement the partial products (5), the binary
encoded matrix elements are stored in bit-parallel form,
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and the binary encoded inputs are presented in bit-serial
fashion. The bit-serial format was first proposed and demon-
strated in [8], with binary–analog partial products using analog
matrix elements for higher density of integration. The use of
binary encoded matrix elements relaxes precision requirements
and simplifies storage [9].

One row of -bit encoded matrix elements usesrows of bi-
nary cells. Therefore, to store an digital matrix ,
an array of binary cells is needed. One bit of
an input vector is presented each clock cycle, takingclock
cycles of partial products (5) to complete a full computational
cycle (1). The input binary components are presented least
significant bit (LSB) first, to facilitate the digital postprocessing
to obtain (4) from (5) (as elaborated in Section IV).

Fig. 2 depicts one row of matrix elements in the bi-
nary encoded architecture, comprisingrows of binary cells

, where in the example shown. The data flow is
illustrated for a digital input series of bits, LSB first
(i.e., descending index). The corresponding analog series of
outputs in (5) obtained at the horizontal summing nodes
of the analog array is quantized by a bank of analog-to-digital
converters (ADC), and digital postprocessing (4) of the quan-
tized series of output vectors yields the final digital result (1).

The quantization scheme used is critical to system perfor-
mance. As shown in Section IV, appropriate postprocessing
in the digital domain to obtain (4) from the quantized partial
products can lead to a significant enhancement in system
resolution, well beyond that of intrinsic ADC resolution. This
relaxes precision requirements on the analog implementation
of the partial products (5). A dense and efficient charge-mode
VLSI implementation is described next.

III. CHARGE-MODE VLSI IMPLEMENTATION

A. CID/DRAM Cell and Array

The elementary cell combines a CID computational unit [8],
[9], computing one argument of the sum in (5), with a DRAM
storage element. The cell stores one bit of a matrix element

, performs a one-quadrant binary–binary multiplication
of and , and accumulates the result across cells with
common and indexes. The circuit diagram and operation of
the cell are given in Fig. 3. An array of cells thus performs (un-
signed) binary multiplication (5) of matrix and vector

yielding , for values of in parallel across the array,
and values of in sequence over time.

The cell contains three MOS transistors connected in series
as depicted in Fig. 3. Transistors M1 and M2 comprise a dy-
namic random-access memory (DRAM) cell, with switch M1
controlled byRow Selectsignal . When activated, the
binary quantity is written in the form of charge stored
under the gate of M2. Transistors M2 and M3 in turn comprise
a charge injection device (CID), which by virtue of charge con-
servation moves electric charge between two potential wells in
a nondestructive manner [8], [9], [15].

The cell operates in two phases:Write andCompute. When
a matrix element value is being stored, is held at and

at a voltage . To perform a write operation, either
an amount of electric charge is stored under the gate of M2,

Fig. 3. CID computational cell with integrated DRAM storage (top). Charge
transfer diagram for active write and compute operations (bottom).

if is low, or charge is removed, if is high. The
amount of charge stored, or 0, corresponds to the binary
value .

Once the charge has been stored, the switch M1 is deacti-
vated, and the cell is ready to compute. The charge left under
the gate of M2 can only be redistributed between the two CID
transistors, M2 and M3. An active charge transfer from M2 to
M3 can only occur if there is nonzero charge stored, and if the
potential on the gate of M2 drops below that of M3 [8]. This
condition implies a logicalAND, i.e., unsigned binary multipli-
cation, of and . The multiply-and-accumulate oper-
ation is then completed by capacitively sensing the amount of
charge transferred onto the electrode of M3, the output summing
node. To this end, the voltage on the output line, left floating
after being precharged to , is observed. When the charge
transfer is active, the cell contributes a change in voltage

(6)

where is the total capacitance on the output line across
cells. The total response is thus proportional to the number of
actively transferring cells. After deactivating the input ,
the transferred charge returns to the storage node M2. The CID
computation is nondestructive and intrinsically reversible [8],
and DRAM refresh is only required to counteract junction and
subthreshold leakage.

The bottom diagram in Fig. 3 depicts the charge transfer
timing diagram for write and compute operations in the case
when both and are of logic level 1. A logic level
0 for is represented as , and a logic level 1 is repre-
sented as , where is the supply voltage. For ,
logic level 0 is represented as , and logic level 1 as GND.

Transistor-level simulation of a 512-element row indicates a
dynamic range of 43 dB, as illustrated in Fig. 4, and a computa-
tional cycle of 10 s with power consumption of 50 nW per cell.
Experimental results from a fabricated prototype are presented
next.
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Fig. 4. Voltage transfer characteristic (top) and integral nonlinearity (bottom)
for a row of 512 CID/DRAM cells, simulated usingSpectreSwith MOS model
parameters extracted from a 0.5-�m process.

Fig. 5. Micrograph of the mixed-signal VMM prototype, containing an array
of 512� 128 CID/DRAM cells, and a row-parallel bank of 128 flash ADCs.
Die size is 3 mm� 3 mm in 0.5-�m CMOS technology.

B. Experimental Results

We designed, fabricated and tested a VLSI prototype of the
vector–matrix multiplier, integrated on a 33 mm die in 0.5-
m CMOS technology. The chip contains an array of 512128
CID/DRAM cells, and a row–parallel bank of 128 gray-code
flash ADCs. Fig. 5 depicts the micrograph and system floorplan
of the chip. The layout size of the CID/DRAM cell is 8 45
with m.

The mixed-signal VMM processor interfaces externally in
digital format. Two separate shift registers load the matrix el-
ements along odd and even columns of the DRAM array. Inte-
grated refresh circuitry periodically updates the charge stored
in the array to compensate for leakage. Vertical bit lines extend
across the array, with two rows of sense amplifiers at the top
and bottom of the array. The refresh alternates between even
and odd columns, with separate select lines. Stored charge cor-
responding to matrix element values can also be read and shifted
out from the chip for test purposes. All of the supporting digital
clocks and control signals are generated on-chip.

Fig. 6. Measured linearity of the computational array. The number of active
charge-transfer cells is swept in increments of 64, with the analog voltage output
on the sense line shown on the top scope trace.

Fig. 6 shows the measured linearity of the computational
array. The number of active cells on one row transferring
charge to the output line is incremented in steps of 64. The case
shown is where all binary weight storage elements are actively
charged, and an all-ones sequence of bits is shifted through the
input register, initialized to all-zeros bit values. For every shift
of 64 positions in the input, a computation is performed and the
result is observed on the output sense line. The experimentally
observed linearity agrees with the simulation in Fig. 4.

The chip contains 128 row–parallel 6-bit flash ADCs, i.e., one
dedicated ADC for each and . In the present implementa-
tion, is obtained off-chip by combining the ADC quan-
tized outputs over (rows) and (time) according to (4).
Issues of precision and complexity in the implementation of (4)
are studied later.

IV. QUANTIZATION AND DIGITAL RESOLUTIONENHANCEMENT

Significant improvements in precision can be obtained by ex-
ploiting the binary representation of matrix elements and vector
inputs, and performing the computation (4) in the digital do-
main, from quantized estimates of the partial outputs (5). The
effect of averaging the quantization error over a large number
of quantized values of boosts the precision of the digital
estimate of , beyond the intrinsic resolution of the analog
array and the A/D quantizers used.

A. Accumulation and Quantization

The outputs for a single obtained from the analog
array over clock cycles can be conceived as an matrix,
shown in Fig. 2. Elements of this matrix located along diagonals
(i.e., elements with a common value of ) have identical
binary weight in (4). Therefore, the summation in (4) could be
rearranged as

(7)
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Fig. 7. Diagram for the A/D quantization and digital postprocessing block in Fig. 2, using row–parallel flash A/D converters. The example shown is fora single
m, LSB-first bit-serial inputs, andI = J = 4.

where , , and

(8)

with and
.

Several choices can be made in the representation of the sig-
nals being accumulated and quantized. One choice is whether
to quantize each array output and accumulate the terms in
(8) in the digital domain, or accumulate the terms in the analog
domain and quantize the resulting . Clearly, the former
leads to higher precision, while the latter has lower complexity
of implementation. We opted for the former, and implemented a
parallel array of low-resolution (6-bit) flash ADCs, one for each
row output .

B. Row–Parallel Flash A/D Conversion

Consider first the case of row–parallel flash (i.e., bit-parallel)
A/D conversion, where all values of are fully quan-
tized. Fig. 7 presents the corresponding architecture, shown for
a single output vector component. Each of the horizontal
summing nodes, one for each bit-planeof component , inter-
faces with a dedicated flash A/D converter producing a digital
output of -bit resolution. The summations (8) and (7) are
then performed in the digital domain:

(9)

and

(10)

A block diagram for a digital implementation is shown on the
right of Fig. 7, assuming LSB-first bit-serial inputs (descending
index ). With radix 2, a shift-and-accumulate operation avoids
the need for digital multiplication. The LSB-first bit-serial
format minimizes latency and reduces the length of the register
accumulating .

If the ADC is capable of resolving each individual binary
term in the analog sum (5), then the sum is retrieved from the
ADC with zero error, as if computed in the digital domain. For
zero-error digital reconstruction, the ADC requires (at least)

quantization levels, that coincide with the levels of the
charge transfer characteristic for any number (0 to) of active
cells along the output row of the analog array. Provided nonlin-
earity and noise in the analog array and the ADC are within one
LSB [at the -bit level], thequantization errorthen
reduces to zero, and the output is obtained at the max-
imum digital VMM resolution of bits. For
large arrays, this is usually more than needed, and places too
stringent requirements on analog precision, .

In what follows we study the error of the digitally constructed
output in the practical case where the resolution of the
ADC is below that of the dimensions of the array,

. In particular, we study the properties of assuming un-
correlated statistics of quantization error. The analysis yields an
estimate of the gain in resolution that can be obtained relative to
that of the ADC quantizers, independent of the matrix and input
representation , , and . The quantization is modeled as

(11)

where represents the quantization error, modeled as uni-
form random i.i.d. within one LSB. Conceptually, the error term

in (11) could also include effects of noise and nonlinear
distortion in the analog summation (5), although in practice the
precision of the array exceeds the ADC resolution, as shown in
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the experimental data of Section III-B. From (9) and (11), the
error in the digitally constructed output

(12)

can then be expanded as

(13)

Define the full-scale range of the ADC acquiring ,
and the corresponding range of the constructed digital output

. Then according to (9),

(14)

which approaches for . Therefore, the full signal
range is approximately equal to the output signal range of each
of the ADCs.

Let the variance of the uniform quantization noisein (11) be
, identical . In theCentral Limit, the cumulative quanti-

zation error can be roughly approximated as a normal process,
with variance equal to the sum of the variances of all terms in
the summation (13). Each signal component, , with quan-
tization noise but scaled with binary weight , con-
tributes a variance in the sum (13), and the total
variance of the output error is expressed as

(15)

which approaches for . Therefore, the
signal-to-quantization-noise ratio (SQNR) approaches

(16)

for large and . In other words, by quantizing each array
output instead of the combined total , we obtain an
improvement in signal-to-quantization-noise ratio of a factor 3.

To characterize the improved precision in terms ofeffective
resolution(in bits), it is necessary to relate the second order sta-
tistics of the quantization erroror to a measure of the error
indicative of resolution. There is a certain degree of arbitrari-
ness in doing so, but in what follows we define resolution as the
medianof the absolute error i.e., the (symmetric) extent of the
50% confidence interval of the error. The choice of convention
matters, because the distributions forand are different—
is approximately uniform, and in theCentral Limitis normal.

Let be uniformly distributed in the interval . The
median absolute value is then , and the variance

, yielding the relation

(17)

for the uniform distribution. The median absolute value for a
normal distribution, in terms of the standard deviation, is ap-
proximately

(18)

This allows to express the SQNR gain in (16) as a gain inmedian
resolution

(19)

or, in other words, a gain of approximately 2 bits over the reso-
lution of each ADC.

For a flash ADC architecture, two “free” extra bits of resolu-
tion are significant, since the implementation cost is exponen-
tial in the number of bits. For the VMM processor described
in Section III-B, a 6-bit flash ADC architecture gives 8-bit (me-
dian) output resolution. The choice of 6-bit ADC resolution was
dictated by two considerations. First, a larger resolution would
have incurred a disproportionate cost in implementation, since
the 128 parallel ADCs already comprise a significant portion of
the total silicon area as shown in Fig. 5. Second, a lower resolu-
tion would compromise the 7 “bits” of precision available from
the analog array (Figs. 4 and 6).

V. CONCLUSION

A charge-mode VLSI architecture for parallel vector–matrix
multiplication in large dimensions ( 100–10 000) has
been presented. An internally analog, externally digital archi-
tecture offers the best of both worlds: the density and energetic
efficiency of an analog VLSI array, and the noise-robustness and
versatility of a digital interface. The combination of analog array
processing and digital post-processing also enhances the preci-
sion of the digital VMM output, exceeding the resolution of the
quantized analog array outputs by 2 bits. Significantly larger
gains in precision could be obtained by exploiting the statistics
of binary terms in the analog summation (5) [18].

Fine-grain massive parallelism and distributed memory, in
an array of 3-transistor CID/DRAM cells, provides a compu-
tational efficiency (bandwidth to power consumption ratio) ex-
ceeding that of digital multiprocessors and DSPs by several or-
ders of magnitude. A 512 128 VMM prototype fabricated in
0.5- m CMOS offers 2 10 binary MACS (multiply accu-
mulates per second) per Watt of power. This opens up possi-
bilities for low-power real-time pattern recognition in human–
machine interfaces [1], artificial vision [16], and vision pros-
theses [17].
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