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ABSTRACT

We study the ability of a sensor array to blindly separate and lo-
calize broadband traveling waves impinging on the array, with ad-
ditive sensor noise. We consider arrays smaller than the shortest
wavelength in the sources, such as MEMS acoustic arrays or VLSI
arrays of RF receivers. A series expansion about the center of the
array of the time-delayed signals emanating from the sources re-
duces the problem of separating and localizing the delayed sources
to that of separating instantaneous signal mixtures using conven-
tional tools of Independent Component Analysis. The covariance
of the noise in the estimated sources is expressed in terms of the
covariance of the sensor noise and the angular direction of the
sources. Physical simulations demonstrate separation and local-
ization of three non-coplanar speech sources using a planar array
of four sensors within a 1 mm radius.

1. INTRODUCTION

Wavefront sensing in space for localizing sound has been in prac-
tice since the pioneering work by Blumlein in the 1930s [1], a pre-
cursor to the advances in binaural signal processing that we know
today. The direction of a traveling wave can be inferred directly by
sensing spatial differentials on a sub-wavelength scale, a principle
exploited in biology,e.g., for localizing prey emitting or reflect-
ing high-frequency sound [2, 3], and implemented in biomimetic
MEMS systems [4].

Super-resolution spectral methods are commonly used to lo-
calize multiple narrowband sources [5]. Yet little is known
about the problem of localizing and separating multiple broad-
band sources. Separating mixtures of delayed sources has been ad-
dressed with Independent Component Analysis (ICA),e.g., [6, 7],
but requires a large number of parameters to obtain sufficient tem-
poral resolution for precise localization. Adapting delays [8] re-
duces the number of parameters, but is prone to local optima.

The approach we present here avoids the problem of separat-
ing delayed mixtures by expanding the delayed signals in a series
of terms that only contain the instantaneous signals and their time
derivatives. By taking spatial derivatives, we are able to isolate
terms of various orders in the temporal derivatives, all indirectly
contributing observations of linearly independent instantaneous
mixtures of the source signals. This formulation is equivalent to
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that of standard ICA, and a number of approaches exist for such
blind separation, some utilizing VLSI hardware [9]. The mixing
coefficients obtained from ICA yield the angles of the incoming
waves. Therefore our method can be seen as an combination of
the wave sensing idea by Blumlein, and ICA, performing at once
blind separationand localization of traveling waves.

In a physical setting with an array of sensors, the spatial
derivatives are estimated on a grid, and the sensor observations
contribute additive noise. We analyze the noise characteristics of
the estimated source signals by ICA, and present simulated results
that show successful separation and localization of speech sources
using a planar geometry of sensors much smaller than the short-
est wavelength present in the speech. The technique can be used
to separate multiple signals with miniature distributed sensors or
sensor arrays that are integrated on a single MEMS or VLSI chip,
e.g., [4].

2. PHYSICAL MODELING

2.1. Wave Propagation

We consider linear mixtures of traveling waves emitted by sources
at various locations, and observed over a distribution of sensors in
space. The distribution of sensors could be continuous or discrete.
In what follows we assume an array of discrete sensors, but the
theory applies as well to sensors distributed continuously in space.
However, the sources are assumed to be discrete.

2.2. Instantaneous Series Expansion

The usual approach to wideband separation tries to find the sources
by combining the received signals at multiple delayed times. This
is computationally expensive. The approach proposed here re-
duces the problem of separating mixtures of delayed sources to
that of separating an instantaneous mixture of signals related to
the sources through a succession of time derivatives of increasing
order.

Let the coordinate systemr be centered in the array so that the
origin coincides with the “center of mass” of the sensor distribu-
tion. We define�(r) as the time lag between the wavefront at point
r and the wavefront at the center of the array,i.e., the propagation
time � (r) is referenced to the center of the array. Then the field
s(t + � (r)) can be expanded about the center of the array in the
power series expansion,

s(t+ �(r)) = s(t) + � (r) _s(t) + 1

2
� (r)2�s(t) + : : : (1)
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Figure 1: (a): Far-field wave traveling to the right(u = �1; c =
1). (b) through (f): Series expansions of order 0 through 4 around
the origin(r = 0).

2.3. Limiting Cases of Interest

Two types of approximations are in order, each with a different
physical origin.

2.3.1. The far field

In the far-field approximation, the distance from the source is
much larger than the dimensions of the sensor array. This is a sen-
sible approximation for an integrated MEMS or VLSI array with
dimensions typically smaller than 1 cm. Then the wavefront de-
lay �(r) is approximately linear in the projection ofr on the unit
vectoru pointing towards the source,

�(r) �
1

c
r � u (2)

wherec is the speed of (acoustic or electromagnetic) wave prop-
agation. An example traveling wave in the far field, and its series
expansion, are illustrated in Figure 1.

2.3.2. Wave resolution

The second condition, which we termwave resolution, pertains to
the relative size of terms in the series expansion, or the scale on
which the signals are sampled. In fact, there are two conditions
that need to be satisfied simultaneously, bounding the dimensions
of the array from below and above.

The Fourier transform of (1) in time corresponds to a
frequency-domain transfer function with series approximation

exp(+j!� (r)) = 1 + j!�(r)� 1

2

�
!�(r)

�2
+ : : : : (3)

The series (3) converges uniformly for all!, but the number of
terms needed increases rapidly withj!�(r)j. On the other hand,
for purposes ofseparatingthe sources from physical observations
of individual terms in the series, the ratio of consecutive terms in
the series cannot be too small. A trade-off between approximation
and resolution power is thus obtained when� � j!�(r)j � �

where� is sufficiently above the observation noise floor, and� is
not too large.

In the far-field approximation,!�(r) = �k � r wherek is
the wave vector,k = �!

c
u = � 2�

�
u and thewave resolving

condition translates to

��max � jrj � ��min; (4)

where�min = c
fmax

is the shortest wavelength present in the spec-
trum of the traveling wave and�max = c

f
min

is the largest. In other
words, we consider array dimensions not much larger than the
smallest wavelength, but not too small compared with the largest
wavelength. Note that� in the upper limit depends on the number
of terms in the expansion, as illustrated in Figure 1.

3. STATISTICAL MODELING

To separate a mixture of signals, it is necessary to specify assump-
tions on the signals and the way they are mixed and observed.

3.1. Signal Model

We assume that the sources are statistically independent so that
their joint probability density function factors:

Pr(s) =

LY
`=1

'
`(s`): (5)

This allows us to apply ICA to the instantaneous mixture problem
that follows.

3.2. Mixing and Acquisition Model

Let x(r; t) be the signal mixture picked up by a sensor at position
r. As one special case we will consider a two-dimensional array of
sensors, with position coordinatesp andq so thatrpq = pr1 + qr2

with orthogonal vectorsr1 andr2 in the sensor plane.
In the far-field approximation (2), each source signals

` con-
tributing toxpq is advanced in time by� `pq = p�

`
1 + q�

`
2 , where

�
`
1 =

1

c
r1 � u

`

�
`
2 =

1

c
r2 � u

` (6)

are the inter-time differences (ITD) of source` between adjacent
sensors on the grid along thep andq place coordinates, respec-
tively. Knowledge of theangle coordinates� `1 and� `2 uniquely de-
termines, through (6), the direction vectoru` along which source
s
` impinges the array, in reference to thefp; qg plane1.

Under thewave resolvingcondition, the series expansion (1)
for each source yields

xpq(t) =

LX
`=1

s
`(t)+�

`
pq _s

`(t)+ 1

2
(� `pq)

2�s`(t)+: : :+npq(t) (7)

wherenpq(t) represents additive noise in the sensor observations.
Although not essential, we will assume that the observation noise

1We assume that the sources impinge on top, not on bottom, of the
array. This is a reasonable assumption for an integrated MEMS or VLSI
array since the substrate masks any source impinging from beneath.



is independent across sensors, and follows a univariate Gaussian
distributionnpq(t) / N (0; �).

In what follows we will concentrate on the first two terms in
the series expansion (7), linear in the space coordinates:

xpq(t) �

LX
`=1

s
`(t) + (p� `1 + q�

`
2) _s

`(t) + npq(t) : (8)

4. BLIND SEPARATION AND LOCALIZATION

Based on the models above, we are now ready to address the prob-
lem of inferring the unknown source signals and their unknown
angular coordinates. In principle we could consider MAP (Maxi-
mum A Posteriori) estimation based on a generative model of the
signals (5) and the mixing model (8). Since the mixing model
contains time derivatives of various order in the signals, the MAP
estimates of the signalss`(t) lead to a set of coupled differential
equations that are computationally involved.

4.1. Spatial gradients and ICA

We proceed with an alternative,gradient-based method, that iso-
lates time derivatives of the linearly combined signals by taking
spatial gradients ofx alongp andq. The advantage of this tech-
nique is that it effectively reduces the problem of estimatings

`(t)
and� `i to that of separating instantaneous mixtures of the indepen-
dent source signals.

Underwave-resolvingconditions, individual terms in the se-
ries expansion (7) can be resolved. Different linear combinations2

of the signalssl are thus obtained by taking spatial derivatives
of various ordersi andj along the position coordinatesp andq,
around the originp = q = 0:

�ij(t) �
@
i+j

@ip@jq
xpq(t)

����
p=q=0

=
X
`

(� `1)
i(� `2)

j d
i+j

di+jt
s
`(t) + �ij(t); (9)

where�ij are the corresponding spatial derivatives of the sensor
noisenpq around the center. The point here is that all signalss

l

in (9) are differentiated to thesameorderi+ j in time. Therefore,
taking spatial derivatives�ij of orderi+j � k, and differentiating
�ij to orderk � (i+ j) in time yields a number of different linear
observations in thekth-order time derivatives of the signalss`.

In practice, spatial derivatives (9) are approximated by dis-
crete sampling on the gridxpq(t). Finding the proper sampling
coefficients on a grid to approximate derivatives is a well stud-
ied problem in digital signal processing [12]. For dense sensor
arrays, an alternative is to approximate the derivatives using mo-
ments over the sensor distribution, giving estimates that are more
robust to noise. Distributed sensors that acquire spatial gradients
directly are also implementable in MEMS technology [4].

As an example, consider the first-order casek = 1, corre-
sponding to (8):

�00(t) =
P

`
s
`(t) + �00(t);

2The issue of linear independence will be revisited when we consider
the geometry of the source angles relative to that of the sensors in Sec-
tion 4.2.

�10(t) =
P

`
�
`
1 _s

`(t) + �10(t); (10)

�01(t) =
P

`
�
`
2 _s

`(t) + �01(t):

Estimates of�00, �10 and�01 are obtained with just four sensors
xpq:

�00 � 1

4

�
x
�1;0 + x1;0 + x0;�1 + x0;1

�
�10 � 1

2

�
x1;0 � x

�1;0

�
(11)

�01 � 1

2

�
x0;1 � x0;�1

�
Taking the time derivative of�00, we thus obtain from the sensors a
linear instantaneous mixture of the time-differentiated source sig-
nals,
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#
; (12)

an equation in the standard formx = As + n, wherex is given
and the mixing matrixA and sourcess are unknown. Ignoring for
now the noise termn (and for a square matrix,` = 3) this problem
setting is standard in ICA, with an independence assumption (5) on
the sourcess. ICA produces, at best, an estimateŝ that recovers
the original sourcess up to arbitrary scaling and permutation. The
direction cosines� `i are found from the ICA estimate ofA, after
first normalizing each column (i.e., , each source estimate) so that
the first row of the estimatêA, like the realA according to (12),
contains all ones. This simple procedure together with (6) yields
estimates of the direction vectorŝu` along with the source esti-
matesŝ`(t), which are obtained by integrating the components of
ŝ over time and removing the DC components.

It is interesting to note the similarity between (12), with` =
1, andoptical flow for constraint-solving velocity estimation in a
visual scene [13].

4.2. Noise Characteristics

The presence of the noise termn complicates the estimation ofs
andA. Assume for now a standard formulation of ICA (e.g., [7])
that attempts to linearly unmix the observationsx:

ŝ = Â
�1
x = Â

�1
As� Â

�1
n; (13)

whereA is square and invertible. Assume also a reasonable ICA
estimateÂ so that (13) reduces tôs � s �A

�1
n, disregarding

arbitrary permutation and scaling in the source estimates. The er-
ror terme � �A�1n contributesvarianceto the estimatês; in
general the noisen will also affect the estimatêA and produce a
bias term in ŝ according to (13).

The functional form of the errore allows us to estimate the
noise characteristics of the source estimates, without considering
details on how ICA obtained these estimates. The covariance of
the estimation error isE[eeT ] = A

�1
E[nnT ](A�1)T . In other

words, the error covariance depends on the covariance of the sen-
sor noise, the geometry of the sensor array, and the orientation of
the sourcesu` as determined by the mixing matrixA.

For example, consider the casek = 1, suitable for a minia-
ture array.A in (12) is square wheǹ = 3. The determinant of
A can be geometrically interpreted as the volume of the polyhe-
dron spanned by the three source direction vectorsu

`. The er-
ror covariance is minimum when the vectors are orthogonal, and
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Figure 2: Blind identification and localization of three speech
sources using a simulated array of four co-planar sensors within
a 1 mm radius.Left: source signalssi(t). Right: reconstructed
signalsŝi(t), normalized.

the estimates ofs andA become unreliable as the source direc-
tion vectorsu` approach the same plane. Therefore, to first order
(k = 1) at most threenon-coplanarsources can be separated and
localized with a planar array of sensors.

For arrays of larger dimensions,wave-resolvingconditions
support a larger number of termsk, and thus a larger number of
sources̀ , given by the number of mixture observations up to or-
der k in (9). The condition thatA as determined by (9) be full
rank amounts to constraints on the geometry of the source direc-
tion vectorsul. For instance, only one source can lie along any
given directionu.

When the number of sources present is greater than the num-
ber of gradient observations̀max in (9), separation and local-
ization is still possible, but requires an informativeprior on the
sources (5). In particular, a sparse ICA decomposition is obtained
in the overcomplete casè > `max by using a Laplacian prior
on the sources [10]. For example, overcomplete ICA could be
directly applied on the mixture (12) to separate more than three
sparsesources.

4.3. Results

To demonstrate that the proposed algorithms both localize and
separate, we simulated the signals received by a hypothetical ar-
ray of four sensors in the plane as specified by (11), with ra-
dius jr1j = jr2j = 1 mm. Three speech waveforms, sampled
at 16 kHz, were used for the source signals With these parame-
ters, the time delays between sensors amount to about 10 % of the
sampling time, satisfying thewave-resolvingconditions. Gaussian
noise was added to the sensor signals, with a signal-to-noise ratio
(SNR) of 50 dB for each sensor.

Results of the simulated experiment are given in Figure 2. The
reconstructed sourceŝsi(t) are affected by additive noise, but the
SNR is comparable to that of the sensors, and no cross-talk is audi-
ble. The extracted direction vectors from̂A are indistinguishable
from the simulated directionsu`.

5. CONCLUSIONS

A method for localizing and separating broadband sources in space
by measuring spatial and temporal derivatives of the field over a
sensor array has been described. The essential point is that by
making a power series expansion of the field about the center of
the array and identifying the terms in the series with measurements
of the spatial gradients, a set of instantaneous equations in the time
derivatives of the source signals is obtained. These instantaneous
equations can then be solved with standard ICA methods. The ICA
solution yields estimates of the sources, along with the cosines of
the angles of the direction vectors of the sources with respect to
the coordinate axes of the array.

The requirement that the terms in the power series be
amenable to separation places upper and lower bounds on the size
of the array, smaller than the shortest wavelength but not too small,
as given by (4). The number of sources that can be extracted de-
pends strongly on the number of resolvable terms in the series.
With just zero and first order terms in the expansion, three inde-
pendent and non-coplanar sources can be extracted with as few as
four planar sensors.
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