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ABSTRACT

We presentan analogVLSI address-event transceiver containing
anarrayof integrate-and-fireneuronsandaschemefor implement-
ing a reconfigurableneuralnetwork with probabilisticsynapses.
Neural “spikes” are transmittedthroughaddress-event represen-
tation—theaddressof thesendingneuroniscommunicatedthrough
anasynchronousrequestandacknowledgmentcycle. Continuous-
valuedsynapticweightsareimplementedby probabilisticallyrout-
ing addressevents. Resultsfrom a prototypesystemwith 1,024
analogVLSI integrate-and-fireneurons,eachwith upto 128prob-
abilistic synapses,demonstratetheseconceptsin an imagepro-
cessingapplication.

1. INTR ODUCTION

Thebrain’s remarkableability to processinformationin a parallel
anddistributedmanneris enabledby its massively connectedar-
chitecture.Unfortunately, the extensive connectivity of the brain
is impossibleto directly implementin VLSI dueto thelimitations
of connectivity within andbetweenmicrochips.Thereis another
characteristicof neuralsystems,however, thatenablesusto over-
comethis problem.Neuronsrepresenttheir activity asactionpo-
tentialsor “spikes”—continuous-time,discrete-valuesignals.We
cantakeadvantageof thetemporallysparsenatureof spikecoding
andthehighbandwidthof VLSI systemsto overcometheconnec-
tivity problemby time-multiplexing signalsfrom many connec-
tionson thesamedatabus.

Address-event representation(AER) is a communicationpro-
tocolthatusestime-multiplexing to emulateextensiveconnectivity
[1] (Fig. 1). We have anarrayof cellsthatencodetheir activity in
the form of spikes(thesender)andwe want to transmittheseac-
tivities to anotherarrayof cells (the receiver). The “brute force”
approachwouldbeto useonewire for eachpairof cells,requiring
N wires for N cell pairs. In an AER system,however, the loca-
tion of a spike on the senderis encodedasan address,which is
sentacrossa shareddatabus. The receiver decodesthe address
andreconstructsthe sender’s activity. HandshakingsignalsREQ
andACK arerequiredto ensurethatonly onecell pair is usingthe
databus at a time. This schemereducesthe requirednumberof
wires from N to � log2N. Two piecesof information uniquely
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identify a spike: its location,which is explicitly encodedasanad-
dress,andthetime that it occurs,which neednot beexplicitly en-
codedbecausetime representsitself. Theencodedspike is called
anaddress-event(AE).
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Figure 1: Address-event representation.Senderevents are en-
codedinto anaddress,sentover thebus,anddecoded.Handshak-
ing signalsREQ andACK arerequiredto ensurethatonly onecell
pair is communicatingata time. Notethatthetimeaxisgoesfrom
right to left.

AER implementsa one-to-oneconnectiontopology, which is
appropriatefor emulatingtheoptic andauditorynerves[1, 2]. To
implementmore complex neuralcircuits, convergent and diver-
gentconnectionsarerequired.Severalauthorshave discussedand
implementedmethodsof enhancingtheconnectivity of AER sys-
temsto this end [3, 4, 5, 6]. Thesemethodscall for a memory-
basedprojective field mappingwhich enablestheprojectionof an
address-event to multiple receiver locations.

In this paper, we proposea schemethatemploys probabilistic
synapticweightingin conjunctionwith AER andanintegrate-and-
fire transceiver to implementreconfigurableneuralarchitecturesin
VLSI. After introducingthescheme,we exploresometheoretical
issuesthatarisein integrate-and-fireneuralnetworks with proba-
bilistic synapses.Finally, wedescribeahardwarerealizationof the
schemeandreportresultsfrom theprototypesystemfor animage
processingtask.

2. ADDRESSDOMAIN COMPUTATION

We augmentthe traditionalAER systemto createa scalable,re-
configurablearchitecturethatis sufficient for implementingawide
rangeof network topologies. We map a two-layer neural net-
work to the AER framework by meansof a look-up tablecircuit
(Fig. 2). Eachrow in the tablecorrespondsto a singlesynaptic



connection—itcontainsinformationaboutthesenderlocation,the
receiver location,andthe weight of the connection(polarity and
magnitude).A sendercell cantransmitto multiple receiver cells,
enablingconvergent and divergent connections.A circuit inter-
pretstheweightof aconnectionastheprobability thattheAE will
betransmittedfrom thesendercell to thereceiver cell.
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Figure2: Mappingof a two-layernetwork into anAE look-upta-
blewith transmissionprobabilities.In thisexample,sender1sends
an AE. An inhibitory AE is transmittedto receiver 0 with 100%
probability, and thenan excitatory AE is transmittedto receiver
2 with 50%probability. In the implementation,thesynapticcon-
nectiontable is storedin a random-accessmemory(RAM). The
first two columnscomprisethememoryaddress,andthe remain-
ing columnscomprisethememorydata.

Thereceiver consistsof cellsthatintegrateAEs from multiple
locations.Eachcell hasa potentialthatchangeswith activity. An
excitatory (inhibitory) AE causesthe potentialto be incremented
(decremented).The potentialis initialized to zeroandcannotgo
below zero;whenthepotentialexceedsa threshold,thecell sends
an AE asoutputand the potentialis resetto zero. For this rea-
son,thecellsarecalled integrate-and-fire (IF) cells. Becausethe
IF arrayboth transmits andreceivesAEs, we call thearrayan IF
transceiver.

Thecombinationof thelook-uptablecircuit andtheIF trans-
ceiver comprisesa modulethat can be connectedboth in series
andin parallelto createlarge-scaleneuralsystems.The connec-
tivity of themodulescanbereconfiguredby alteringthecontents
of the look-up tables.Synapticplasticity canbe implementedon
thefly by alteringnot only thetransmissionprobabilities,but also
theconnectiontopology.

3. THEORETICAL ISSUES

Integrate-and-fireneuralnetworkswith probabilisticsynapsesex-
hibit drastically different dynamicalpropertiesthan neural net-
works thatencodetheir synapticweightsandactivities with con-
tinuousvariables(e.g. a McCulloch-Pittsneuralnetwork or other
mean-rateabstraction). Before describingour hardware imple-
mentationof anintegrate-and-fireneuralnetwork,wemustaddress
theseissues.

3.1. Statisticsof probabilistic transmission

Probabilisticsynapseshaveinterestingstatisticalproperties.When
the presynapticspike events are Poissondistributed, the proba-
bilistic transmissiondoesnot alter the statisticsof the activity.

More formally, if the presynapticactivity is Poissondistributed
andencodedby eventrateλ , andtheprobabilistictransmissionis
modeledasaBernoulliprocesswith parameterw, thepostsynaptic
eventswill bePoissonwith ratewλ [7, pp. 47-8]. In otherwords,
the ratewill be reduced,but the regularity will be unchanged.If
thepresynapticeventshave a regular interval, however, theprob-
abilistic natureof thesynapseswill make theactivity lessregular,
addingstochasticityto thesystem.

3.2. Rectification dynamicsin integrate-and-firecells

In a McCulloch-Pitts(MP) neuralnetwork, a rectifying activation
function can model the responseof the IF cell to the integrated
synapticcontributions.In this simplifying model,theoutputspike
count,Kout, is approximatelyproportionalto the rectifieddiffer-
encebetweenthe excitatory spike count KE, and the inhibitory
spike countKI , asgivenby

Kout �
���

s� KE � KI �
θ  if KE ! KI

0 if KE " KI

(1)

wheres is thepotentialstepsize,θ is thethreshold,and #%$ & repre-
sentstheflooringoperation.Eq.1 tellsusthatthethresholdcross-
ing will occurat theθ ')( 2p * 1+ event,wherep is theprobability
of anexcitatoryevent,and1 * p is theprobabilityof aninhibitory
event.

In reality, the effect of the IF dynamicson the rectifying re-
sponseis not assimpleasEq. 1 suggests.Becausethe potential
is clampedto zerowhenever the net input is negative, the order
in which inhibitory andexcitatory eventsarrive matters.By con-
structinga probabilisticmodelof the IF cell, we canestimatethe
effect of dynamicsin the rectificationto first order. The stateof
thepotentialof the IF cell canbemodeledasa Markov chain,as
depictedin Fig. 3(a).By iteratingthestate-transitionmatrixof the
Markov model,we canempiricallydeterminetheprobabilitydis-
tribution of thepotentialstate.In theMarkov model,thepositive
biasinducedby therectificationwill causethethresholdcrossing
onaverageto occurearlier thanin theMP model1. Fig.3(b)shows
aplot of thedifferencebetweenthethresholdcrossingtimesin the
MP modeland the Markov model,normalizedto the MP model
thresholdcrossingtime. Thedifferencebetweenthetwo decreases
asthethresholdincreases,asthemostlikely stateof theprobabil-
ity distribution hasmoretime to move away from the zerostate
(V � 0) whereinhibitory spikescanbelost. Thedifferenceis less
pronouncedwhen the ratio of excitatory to inhibitory eventsin-
creases,asthis too shiftstheprobabilitymassaway from thezero
state.

4. IMPLEMENT ATION

To demonstratetheseideas,we implementedand testeda pro-
totype system. The systemconsistsof a boardwith a full cus-
tomintegratedcircuit 32 , 32-celladdress-eventintegrate-and-fire
transceiver, a 128k , 16 RAM for storageof theroutingtableand
synapticweights, and a microcontrollerwhich probabilistically
gatesthe transmissionof AEs and handlesthe handshakingbe-
tweenthetransceiver andtheoutsideworld.

1We take the thresholdcrossingtime asthe earliesttime in which the
thresholdstate(V - θ ) is themostlikely state.
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Figure3: (a) State-transitiondiagramfor a Markov chainmodel
of the potentialof an IF cell. This modelwasusedto determine
thetime of thresholdcrossing.p is theprobabilitythatanevent is
excitatory. (b) Comparisonof McCullochPitts (MP) andMarkov
modelsfor an IF cell for two valuesof p. The y-axis shows the
differencebetweenthresholdcrossingtimesin theMP modeland
theMarkov model,normalizedto theMP model.

4.1. Addr ess-event integrate-and-fire transceiver

Theaddress-eventIF transceiverwasdesignedona1 2 5 , 1 2 5 mm2

die in a 0 2 5 µm, 5 Volt process(λ � 0 2 3 µm). TheIF transceiver
receivesAEs asinput, integratesthem,andtransmitsAEs asout-
put. IncomingAEs aredecodedanddirectedto oneof the1,024
randomlyaccessiblecells.An outputaddressencodingsystemin-
dependentlyservicesspiking event requestsin thearrayby scan-
ning rowsandthencolumnsfor events,andthensendingoutgoing
AEs.

A schematicof the VLSI IF cell is shown in Figure4(a). It
contains14transistorsandtakesupanareaof 68 , 68λ 2. Thecell
hasan � 88 fF storagecapacitorwhichholdsthepotentialVSTORE.
VSTORE is initialized to VDD, which correspondsto zero stored
voltage.Excitatory(inhibitory) eventsbringVSTORE towardsGND
(VDD).

TransistorsM1-M4 serve to selectthe cell and incrementor
decrementthepotentialaccordingly(Fig. 4(b)). WhenRSEL and
RSEL areactivated(row selection),the value of CPOL (column
selection)is passedto VCP. M3 andM4 comprisea charge pump
that injectscharge on or removescharge from VSTORE. VBP and
VBN biasM3 andM4 in thesubthresholdregime. If CPOL � GND
(CPOL � VDD), M4 (M3) is on and currentflows from (to) the
capacitor, incrementing(decrementing)thepotential. If CPOL �
VDD ' 2, thepotentialis unchanged.Theswitch injection-freeop-
erationof the charge pumpallows incrementsanddecrementsas
smallas50 µV [8].

M5, M6, and M7 (the drain of which is normally connected
to VSTORE) comprisea latching comparator. WhenVSTORE ap-
proachesthethresholdsetbyVTHRESHandVBIAS, VCOMP is pulled
high,turningonM7, whichpullsdownVSTORE. Thispositivefeed-
backforcesVSTORE to GND.

VCOMP drivesthegatesof M12 andM13, which form thepull-
down of wired-NORgatesfor columnandrow, respectively. When
VCOMP goeshigh,RREQ is activated.Whentherow scannerfinds
the active RREQ signal, it activatesRSCAN, which in turn acti-
vatesCREQ. WhenthecolumnscannerfindstheactiveCREQ, an
AE is sentoff the chip. The resettingof VSTORE is controlledby
M8-M11, whichcompriseaCMOSNORgatewhereGND is gated
by M7. WhentheoutgoingAE is acknowledged,theactivationof
RACK andCACK resetsVSTORE to zeropotential,at voltageVDD.

4.2. Addr ess-event routing

The IF transceiver operatesin conjunctionwith a RAM, which
storesthelook up table,anda microcontroller, whichprobabilisti-
cally gatesthetransmissionof AEs. In ourexperimentalsetup,all
of the elementswereplacedon a printedcircuit boardandinter-
facedwith a PC.

The boardis capableof operatingin several modes. In pro-
grammingmode,thecontentsof the look-uptableareloadedinto
theRAM andthenetwork topologyis configuredor reconfigured.
The senderaddress,receiver addresses,synapticweightsandpo-
larities are suppliedby the PC while the microcontrollerscrolls
throughthesynapseindices(referto Fig. 2).

In feedforward mode, incoming AEs are sent from the PC
to the RAM, and the microcontrollerscrolls through all of the
synapsesprojectingfrom the senderaddress.For eachincoming
AE, themicrocontrollergeneratesarandomnumberwhichis com-
paredto thesynapticweightmagnitudes.If a weightmagnitudeis
largerthantherandomnumber, theevent is projectedto thetrans-
ceiver addressthat correspondsto the synapse.Output AEs are
sentfrom theIF transceiver to thePC,wherethey arerecorded.

Thesystemcanalsooperatein arecurrentmode,whereoutput
AEs areroutedfrom the transceiver to theRAM. TheRAM then
projectseventsbackto thetransceiver, asbefore.Thefeedforward
andrecurrentmodescanbecombinedto createnetworksthathave
bothhiddenunitsandoutputunits.

5. RESULTS AND DISCUSSION

As a proof of concept,we examinedan imagefiltering problem
(Fig. 5). We usedan imagefrom a Matlab(R)demoasour test
image(Fig. 5(a)),anda one-dimensionalLaplacianthatenhances
verticaledgesasourfilter ( 3 1 * 2 14 ). First,we performedsimply
a convolution followedby a rectificationusingMatlab(Fig. 5(b)),
implementingthemodeldescribedin Eq. 1. Then,we performed
thefiltering in theaddress-domainwith ourVLSI system(Fig.5(c)).
The numberof times an event was sent from a pixel in the in-
put image was proportionalto the pixel’s intensity. A total of� 1 5 1605 000 events were sent, correspondingto 2 5 550 for the
brightestinput pixel. VTHRESH andVBIAS wereset to 2 2 5 V and
0 2 8 V, giving a firing thresholdof 1 2 24 V. The excitatory bias
(VBN) wassetsuchthat40spikeswererequiredto reachthreshold.
Theinhibitory bias(VBP) wastuneduntil theexperimentalresults
matchedthat thoseof therectifiedconvolution. At thatpoint, in-
hibitory eventswere7 timesasstrongasexcitatoryevents.Weran
a detailedMatlab simulationof the systemthat incorporatedthe
probabilistictransmissionof eventsand the rectifying properties
of theIF cells (Fig. 5(d)). Thethresholdandexcitation/inhibition
ratio weresetto matchtheexperimentalsystem.

If we considertheconceptspresentedin Sec.3.2,we cansee
why suchstronginhibition wasrequiredto matchtherectifiedcon-
volutionresults.At a thresholdlevel of 40events,thepositivebias
in the responsedue to rectificationis significant. Therefore,we
adjustedtheinhibitory strengthto counteractthepositive bias.As
shown in Fig. 3, increasingthethresholdalsomitigatesthiseffect,
but this requiresmoretime in orderto getasatisfactorynumberof
spikes.

Both the experimentalresults(Fig. 5(c)) and the simulation
results(Fig. 5(d)) displaysomenoiseascomparedto therectified
convolution(Fig.5(b)). Thisis primarily dueto thequantizationof
theoutputintensityto � 20 levels.Thereis someminoradditional
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Figure4: VLSI integrate-and-firecell. (a) Circuit schematic.Seetext for details.(b) Truth tablefor thecell selectioncircuit.

noisein theexperimentalresultsmainlydueto transistormismatch
in thechargepumpcells.

The experimentran in lessthan 5 minutes,while the simu-
lation ran for morethan2 hours. The speedof the experimental
systemwaslimited by theresponseof the I/O cardin thePCand
the 5 MHz clock speedof the microcontroller. The I/O interface
is mainly for purposesof characterizationandacquisition;in ac-
tual applicationsinterfacingwith silicon retinas,silicon cochleas,
or othertransceivers,the slow PCcanbecircumvented.Themi-
crocontrollercanbereplacedby eitheranFPGAor integratedinto
thetransceiver for furthergainsin operatingspeed.

6. CONCLUSIONS

We have demonstratedthatAER canfacilitatecomputationin ad-
dition to communication.This approachenablesthe implementa-
tion of massively connectednetworksof integrate-and-fireneurons
in VLSI. We have employedprobabilisticsynapticweightingand
memory-basedlook-up tablesto implementreconfigurablecon-
nectivity. While theresultshereusedonelook-uptableandtrans-
ceiver, thearchitectureis scalableandis well suitedto multi-chip
systems.Many modulescanpotentiallybeconnectedin seriesand
in parallelto implementlarge-scale,multi-layeredneuralprocess-
ing systems.

Currentefforts arefocusedon completelyintegratingthesys-
tem, theassemblyof a multi-modulesystem,investigationof the
potentialfor plasticityandlearningin theaddressdomain,andthe
utilization of codingschemesthatrely on spike timing.
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