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ABSTRACT

Wireless smart sensors impose severe power constraints that
call for power budget optimization at all levels in the de-
sign hierarchy. We elucidate a connection between statis-
tical learning theory and rate distortion theory that allows
to operate a wireless sensor array at fundamental limits of
power dissipation. GiniSVM, a support vector machine
kernel-based classifier based on quadratic entropy, is shown
to encode the sensor data with maximum fidelity for a given
constraint on transmission budget. The transmission power
is minimized by GiniSVM in the form of a quadratic cost
function under linear constraints. A classifier architecture
that implements these principles is presented.

1. INTRODUCTION

Emerging wireless embedded sensors impose serious re-
strictions on power consumption [1]. These constraints de-
rive from the vision of operating the sensors off ambient
(e.g., solar or thermal) power, and make it necessary to allo-
cate power resources efficiently to the task of sensing, com-
putation and communication.

As physical size decreases so does energy capacity. Be-
cause communication is often the single largest energy con-
sumer the optimization of wireless communication proto-
cols is key in meeting energy constraints. For a typical blue-
tooth application [2] operating at 700kbps and dispensing
115n.J/bit, the total power consumption of a stand-alone
communication module is approximately 800mW which
exceeds the power budget for most miniature stand-alone
sensors. To achieve sub-microwatt operation, power budget
optimization has to be performed rigorously at several lev-
els [3] as shown in increasing level in the design hierarchy:

1. Technology Level— Supply and threshold voltage
reduction;

2. Circuit and Logic Level— Logic style, current star-
vation, switching behavior, supply switching and sub-
threshold design;
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3. Architectural Level— Parallelism and pipelining;

4. Algorithmic and System Level— Utilization of sig-
nal statistics, floor planning, data encoding, sleep
modes and reference localization.

It has been argued [3] that higher reduction in power con-
surption can be obtained by optimizing at the highest level.
Such a hierarchical optimization methodology is a two-
way procedure where each level imposes design constraints
on the subsequent higher level. For wireless smart sen-
sor arrays, we approach the problem by addressing power-
efficient classification and encoding of sensor data transmit-
ted over a communication channel. Considerations from the
perspective of low-power sensor design are:

1. Reduction of Supply Voltages leading to reduc-
tion in noise margins. Noise in the circuit plays
a dominant role in the classifier performance, and
large margin machine learning techniques may be
employed during training to aid in discriminating be-
tween classes in run-time.

2. Reduction of Transmission Rate, an effective way
to reduce power dissipation in the transmission mod-
ule. Effective reduction of transmission rate amounts
to efficient data encoding such that only relevant
events are detected and transmitted. For a sensor the
primary aim is detection, therefore a classifier is re-
quired to register detected events as illustrated in Fig-
ure 1. For a multi-event (e.g., olfactory) sensor ar-
ray architecture it is often necessary to transmit con-
fidence values of events rather than indicator flags
to enhance resolution at the receiver, using a more a
complex decoding algorithm. With a reduced supply
voltage a multi-event/class classifier has to deal with
reduced noise margins and increased distortion. In
designing a classifier for a low-power wireless sen-
sor array, it is therefore crucial to encode events ef-
ficiently according to confidence values to achieve
maximum fidelity given the constraint on the number
of bits for encoding.

Rate Distortion Theory provides lower bounds on dis-
tortion for a fixed transmission rate, determined by the
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Fig. 1. Wireless smart sensor architecture

transmitter power budget. Statistical Learning Theory on
the other hand provides tools to design classifiers that model
signal statistics for efficient discrimination between classes.
In this work we elucidate a connection between the two that
provides a unified framework to a sensor and classification
architecture that operates at fundamental limits of power
dissipation.

The paper is organized as follows. Section II briefly re-
views principles of rate distortion functions and fundamen-
tal limits of distortion given a fixed transmission rate. Sec-
tion III reviews principles of large margin classifiers and
statistical learning theory and discusses how the large mar-
gin concept is directly related to designing classifier with
larger noise margins for low voltage operation. Section IV
presents GiniSVM, a large margin classifier that conforms
to principles of rate distortion theory to operate at funda-
mental limits of power dissipation. Section V discusses the
practical implications and architectural implementation of
GiniSVM. Section VI provides comments and conclusions.

2. RATE DISTORTION THEORY

Classical Rate Distortion Theory [4] specifies a lower bound
on the number of bits required to encode a signal within
a specified amount of distortion. Given a set of indepen-
dent signals X1, X5, .., Xy, with power Sy, S, .., Sw, the
optimal allocation of number of bits Ry, Ry, .., Ry to rep-
resent X1, Xo,.., Xn such as to keep the total distortion
D, + Dy + .. + Dy below an upper-bound D, is given by
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where [z]4 represents positive part of z. Distortion for each
of the signals corresponding to this optimum bit allocation
has the form

Dmin ;
Di= { Si ;

S' > -Dm'm
S: < Dunin @

where Diip is computed by solving 3, D; = D through
the reverse water-filling procedure illustrated in Figure 2 [9].

Signal,Level

Class

Fig. 2. Reverse water-filling procedure: signal classes
above the noise floor are encoded for transmission.

For designing integrated sensors an alternative equiv-
alent problem formulation is of more importance. Given
the total number of bits R, specified by the transmitted
power budget, the alternative seeks to optimize bit alloca-
tion amongst various signal to achieve minimum distortion
in a mean square sense. The sensor utilizes the optimal al-
location obtained to encode the confidence/probability mea-
sure for each of the events/classes. Current techniques use
dynamic programming to solve the problem of resource al-
location. We will show in the next section that by using a
large margin classification architecture based on quadratic
entropy, GiniSVM, an optimal encoding is obtained under
the constraint of utilizing a fixed number of bits.

3. LARGE MARGIN CLASSIFICATION

Large margin (LM) classifiers like Support Vector Machines
(SVM) [51 have several attractive properties from a practical
implementation perspective:

1. They generalize well even with relatively few data
points in the training set, and bounds on the general-
ization error can be directly estimated from the train-
ing data. This ensures shorter time for real-time sys-
tem training.

2. The only parameter that needs to be chosen is a
penalty term for mis-classification which acts as a
regularizer [6] and determines a trade-off between
resolution and generalization performance, to control
learning ability.

3. The algorithm finds, under general conditions, a
unique separating decision surface that provides best
out-of-sample performance. This property is unlike
neural network classifier implementation where the
solution obtained is not unique and hence cannot be
quantified.
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Fig. 3. Large margin kernel machines. (a) Training data
in data space. (b) Nonlinear map ®() projects data space
onto feature space where they are linearly separated with
maximum margin.

4. They provide a framework to model non-linear classi-
fication boundaries by projecting the input data point
into higher dimensional space and then computing the
distances with the aid of a kernel. This is illustrated
in figure 3 where the training samples that are not
linearly separable in (a) are projected through a non-
linear mapping ®() onto higher dimensional feature
space (b) where they become linearly separable.

5. The learning algorithm performs model selection based
on some optimization criterion, by which only the
data points (support vectors) which are relevant to
the classification problem are used for computation.
This feature leads to optimal utilization of hardware
resources (memory to store support vectors) which is
critical for a power conscious design.

One attractive property of large margin classifiers from
an implementation perspective, is the direct correspondence
of classifier margin maximization during training to opti-
mizing circuit noise margin. This is illustrated in figure 3(b)
which shows a maximal margin hyper-plane obtained after
training. The maximum margin hyper-plane is more robust
to small perturbations in training samples than any other
separating hyperplane, and hence is more immune to sen-
sor noise inherent in circuit design. Traditional implemen-
tation of non-linear classifiers using (unregularized) neural
networks primarily aims at separating the data without di-
rect consideration of margin leading to less optimal noise
immunity from a circuit designer perspective. Another at-
tractive property of a large margin classifier is the relative
insensitivity of classification performance to small pertur-
bations in the non-linear mapping ®. This enables use of
simple computational elements in an array configured so
it can be characterized via a kernel and optimally trained
to maximize its classification performance and power con-
sumption. :

GiniSVM [7] is a sparse multi-class probability regres-
sion technique based on large margin principles that gener-
ates conditional probability estimates for class k based on
input feature vector x, Py (x) o exp(fi(x)). The func-
tions f;(x) are estimated using empirical data consisting of
training examples x[m],m = 1, .., M and their correspond-
ing labels indicating prior probabilities values y;[m],i =
1,.., K. As with SVMs, dot products in the expression for
fi(x) convert into kernel expansions over the training data
x[m)] by transforming the data to feature space [8]

filx) =
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Z AT x[m].x + b; (3)
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where K (-,-) denotes any symmetric positive-definite ker-
nel' that satisfies the Mercer condition, such as a Gaussian
radial basis function or a polynomial spline [6].

The parameters A" in (3) are determined by minimizing
a dual formulation which for GiniSVM takes the form of a
quadratic-entropy based potential function in the parame-
ters {7]
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where Q,, = K(x[l], x[m]).
Using the first order conditions for optimizing (4) the
following necessary and sufficient condition is obtained

M
> _lfi(@) = 2l =20 ®)

which conforms to the rate distortion criterion (2). The
procedure finds the optimal number of bits to encode the
signal exp(f;(x)) under the assumption that the log-signal
power log S; is linearly proportional to the signal strength
fi(z). The parameter 2+ determines the total bit budget ob-
tained from power consumption requirement of the trans-
mitter module. The parameter 2z is adaptively computed
for each classification based on the reverse water filling

'K (x,y) = ®(x).®(y). The map &(-) need not be computed explic-
itly, as it only appears in inner-product form.
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Fig. 4. GiniSVM Architecture

principle illustrated in figure 2. Only signals with power
higher than z or the noise level are encoded for transmis-
sion and the rest are discarded. The total bit budget 27 is
then proportionately distributed according the class bit bud-
get R; = [fi(z) — z]4+. The validity of signal indepen-
dence f;(z) between K classes is obtained through training
of GiniSVM which makes f;(z) depend only on class dis-
criminatory features.

4. SYSTEM ARCHITECTURE

The architecture of GiniSVM is shown in figure 4. It con-
sists of the following blocks:

¢ Kernel Block— stores support vectors x{m] and
computes the kernel K (x[m],x) between support
vectors and the input feature vector x. Floating gate
transistor array [10] could be a possible implementa-
tion ensuring a minimal standby power consumption.

o Coefficient Block— computes the inner-product be-
tween the kernel K (x[m], x) and the coefficients A
to obtain values of fi(x) = >, AT K (x[m], x).

¢ Encoder Output Block— encodes confidence val-
ues of Py(x) = ezp(fi(x)),t = 1,.., K using a total
fixed number of bits R.

An efficient analog implementation of the kernel and co-
efficient block can be obtained using subthreshold CMOS
circuits as described in [10].

5. CONCLUSIONS

In this paper we proposed a classifier architecture for a wire-
less sensor operating at fundamental limits of power dissi-
pation by utilizing the GiniSVM large-margin kernel ma-
chine. The design methodology is flexible enough to incor-
porate user specified bit budget constraints into the classi-
fier architecture. Circuit design parameters are then directly
obtained by optimizing a classifier cost function which also
ensures that the system operates with a near optimal fidelity.
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