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ABSTRACT

An integrated array of 2,400 spiking silicon neurons, with recon-
figurable synaptic connectivity and adjustable neural spike-based
dynamics, is presented. At the system level, the chip serves as
an address-event transceiver, with incoming and outgoing spikes
communicated over an asynchronous event-driven bus. Internally,
every cell implements a spiking neuron that models general prin-
ciples of synaptic operation as observed in biological membranes.
Synaptic conductance and synaptic reversal potential can be dy-
namically modulated for each event. The implementation employs
mixed-signal charge-based circuits to facilitate digital control of
system parameters and minimize variability due to transistor mis-
match. In addition to describing the structure of the silicon neu-
rons, we present experimental data characterizing the operation of
the 3mm × 3mm chip fabricated in 0.5µm CMOS technology.

1. INTRODUCTION

An increasing number of experimental microchip designs are in-
spired by biological structures, particularly those found in the ver-
tebrate and invertebrate nervous systems. Neuromorphic systems
engineering [1, 2] emulates both function and structure of biolog-
ical neural systems in silicon, and correspondingly achieves high
levels of efficiency in the implementation of sensory systems for
vision [3] and audition [4]. The complexity of neural computa-
tion, beyond sensory perception, requires a multi-chip approach
and a proper communication protocol between chips to implement
higher levels of processing and cognition.

The common language of neuromorphic chips is the “Address-
Event Representation” (AER) communication protocol [5], which
uses time-multiplexing to emulate extensive connectivity between
neurons. In its original formulation, AER implements a one-
to-one connection topology; to create more complex neural cir-
cuits, convergent and divergent connectivity is required. The AER
framework has proved essential in enhancing the connectivity be-
tween multi-chip neuromorphic modules [6, 7, 8, 9, 10, 11]. AER
“transceivers” [6, 10, 11] call for a memory-based projective field
mapping that enables routing an address-event to multiple receiver
locations. Accordingly, the chip described in this paper contains
2,400 neurons but no hardwired connections between cells, rather
depending on an external infrastructure to route events to their ap-
propriate targets.

There are a few examples of reconfigurable neural array
transceivers in the literature [10, 11], but the one presented here
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Fig. 1. Single-compartment model of a biological neuron with
multiple synapses and a static leak conductance.

differs in some important aspects. This paper concentrates on
the design of the neural cell, which has two novel attributes.
First, the silicon neuron implements a discrete-time version of the
single compartment, conductance-based membrane equation—a
standard model describing current flux through biological neural
membranes—which enables more sophisticated simulations than a
standard integrate-and-fire model allows. Second, this design per-
mits an unlimited number of connections between neurons, with
independent control of connection strength and synaptic reversal
potential on a per-connection basis.

2. NEURAL MODEL

A number of silicon neurons have been presented in the literature
with varying degrees of biological accuracy. The most detailed
and accurate silicon models feature many parameters and are very
flexible [12], but occupy a large on-chip area and therefore limit
the number of cells that can be fabricated on a single chip. The
simplest models contain only a few transistors and are well-suited
for implementation in a large-scale network, but deviate signifi-
cantly from the biology and have few adjustable parameters. Many
applications would benefit from a balance between these two ex-
tremes: a more biologically accurate neural model allows for more
sophisticated simulations of cognitive functions, but only in the
context of a sophisticated network architecture. We have therefore
designed a small-footprint, highly configurable, “general-purpose”
silicon neuron that implements a standard model of biological neu-
ral membranes.

A popular model used in computational neuroscience to de-
scribe the current flux through biological neural membranes is the
single-compartment model (Fig. 1).

The model is specified by the membrane equation:

Cm

dVm

dt
= g1(t) · (E1 − Vm) + g2(t) · (E2 − Vm) + · · · (1)

+ gleak · (Erest − Vm)
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Fig. 2. Data captured from an oscilloscope during operation of the
chip. The lower trace illustrates the membrane potential (Vm) of
a single neuron in the array as a series of events are sent at times
marked at the bottom of the figure. The synaptic reversal potential
(E) and synaptic weight (W) are drawn in the top two traces.

where Cm is a large membrane capacitance, Vm is the membrane
potential, gi(t) is a time-varying synaptic conductance, and Ei is
a synaptic reversal potential. Although biology operates in contin-
uous time, most neural interactions occur on the millisecond time
scale, so it is possible to simulate the internal dynamics of a neuron
using fast, discrete time steps. Similarly, while multiple synaptic
inputs can be active simultaneously in a real neuron, it is essen-
tially equivalent to activate a group of synapses in rapid succession
due to biology’s low precision in the time domain. We exploit both
of these observations in the design of the silicon neuron.

The neural cell schematic is shown in Figure 3, along with
event generation circuitry to trigger and communicate output
spikes (see Sec. 3). The cell size, including the event generation
circuitry, is 40µm × 60µm. Using a simple switched-capacitor
architecture, this circuit implements a discrete-time version of the
membrane equation:

Cm

∆Vm

∆T
= g(T ) · (E − Vm) (2)

By sequentially activating switches X1 and X2, a packet of charge
proportional to the externally supplied and dynamically modulated
reversal potential E is added to (or subtracted from) the membrane
capacitor Cm. The amount of charge transferred is also dependent
on which of the three binary-sized “synaptic weight” capacitors
(C0-C2) are enabled: these elements are dynamically switched on
and off by applying voltage to the gates of transistors M1-M3.
When sufficient charge has been integrated on Cm to cause Vm

to exceed a “spike threshold”, the neuron generates an event (see
Sec. 3). Figure 2 illustrates the functionality of one neuron in the
array as it receives a sequence of events with both the synaptic
reversal potential and the synaptic weight dynamically varied.

There are a few advantages of this architecture over previous
AER transceiver designs [11]. First, it allows for simulation of
an unlimited number of synapses on every cell, as each incom-
ing event can be assigned a unique weight and reversal poten-
tial. Second, it simulates biologically realistic conductance-based
synapses. The use of conductance-based synapses in a neural
model can have important implications: unlike standard integrate-
and-fire models, the order of events in a conductance-based model

is an essential factor in determining the neural output (Fig. 2).
Third, charge-based circuits exploit better matching between ca-
pacitors than between MOS transistors due to threshold variations,
which results in greater uniformity of operation across the chip.
Finally, there is very little charge leakage off the membrane ca-
pacitor, allowing for large dynamic range in the implementation of
neural dynamics on various time scales. Since neural integration
is discrete-time, it is also possible to decouple event timing from
emulated time, and dynamically warp the time axis [13].

3. EVENT GENERATION

Information encoded by neurons in the array is represented by the
time between successive events. Therefore, event generation and
communication is an essential element of the design. The event
generation circuitry of [11] is embedded in every cell (Fig. 3,
right). An event—signaled by a low voltage on Rreq—should be
generated each time a neuron’s membrane potential exceeds the
spike threshold. In the circuit, charge integrated on the membrane
capacitor (Cm) of a cell (see Sec. 2) results in an increase in poten-
tial applied to the gate of M4, the input terminal of a comparator.
Since Vm can rise very slowly, the comparator is implemented as a
current-starved inverter, with M5 biased in weak inversion, for re-
duced power dissipation. The spike threshold is set by Vthresh, the
voltage applied to the source of M4; this value is shared by all cells
in the array and is externally controlled. The corresponding input-
referred threshold is approximately equal to Vthresh +VTn

, where
VTn

is the threshold voltage of M4. When Vm exceeds this value,
a positive-feedback loop implemented by transistors M6-M8 is ac-
tivated, triggering a spike event by driving Vm to the positive rail
and Vcomp to ground.

A high voltage on M15 activates Rreq , the output node of a
row-wise wired-NAND, and indicates to the row arbitration cir-
cuitry that a cell in that row has generated an event and needs to
be serviced. Until this occurs, the row and column acknowledge
signals Rack and Cack will remain low, maintaining the positive
feedback loop and preventing any further inputs from affecting the
cell. The row arbitration circuity indicates it has selected a row
by driving one pair of Rscan and Rack signals high. All cells in
that row with pending events will then pull their Creq signals low,
indicating to the column arbitration circuitry that they have gen-
erated events and need to be serviced. Finally, the column arbi-
tration circuitry indicates which column it has selected by driving
one column’s Creq signal high. At that point, both Rack and Cack

are asserted (for one cell only) so the positive-feedback loop is in-
activated and the reset circuit implemented by nMOS transistors
M9 and M10 causes Vm to become Vreset (like Vthresh, Vreset is
shared by all cells in the array and is externally controlled). As Vm

drops below the comparator’s threshold voltage, Vcomp is pulled
high by M5 and the column and row requests (Creq and Rreq) are
removed. This completes the handshaking sequence between a cell
and the arbitration circuitry.

4. EXPERIMENTAL RESULTS

Every incoming event is routed to one or more neurons and is as-
sociated with a particular binary weight and an analog reversal
potential (E). Additionally, a spike threshold voltage (Vthresh)
and resting potential (Vreset) are set globally for the entire chip.
To quantify neurons’ dependence on these parameters, we have
performed three experiments. First, to determine the effect of the
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Fig. 3. Silicon single-compartment neuron (inside dashed box), with event generation circuitry (shown right, [11]).
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Fig. 4. Average ratio of output events to input events versus synap-
tic weight. Data are averaged across 10 trials per cell at each value
of synaptic weight, and then averaged over all 2,400 cells in the ar-
ray. The weight capacitors C0, C1, and C2 are designed to achieve
(ideally) the size ratio 1:2:4.

weight capacitors C0-C2 (see Fig. 3), each neuron’s membrane po-
tential was reset to a fixed voltage and a series of excitatory events
at a fixed reversal potential and a given synaptic weight were sent
to the cell. The number of events required to elicit a spike was
recorded and after ten measurements at each synaptic weight, an-
other cell in the array was tested. The results over all 2,400 cells
were summarized by plotting the average ratio of output events to
input events versus synaptic weight (Fig. 4). The design called for
a greater slope for the lines in Figure 4, but this was limited by
a large parasitic capacitance when a weight capacitor was in the
“off” state.

The second experiment was designed to quantify the effect of
the synaptic reversal potential (E). Here, each neuron’s membrane
potential was reset to a fixed voltage and a series of events at a
given excitatory synaptic reversal potential and a fixed synaptic
weight were sent to the cell. Again, the number of events required
to elicit a spike was recorded. However, instead of varying the
weight (as in the first experiment), the same cell was then re-tested
with a different value of E. The results over all 2,400 cells were
summarized by plotting the average ratio of output events to input
events versus synaptic reversal potential (Fig. 5). Although in nor-
mal operation the spike threshold voltage Vthresh is likely to be
fixed, in some cases it may be desirable to dynamically vary this
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Fig. 5. Average ratio of output events to input events versus synap-
tic reversal potential (E). Data are averaged across 10 trials per
cell at each value of synaptic weight, and then averaged across all
2,400 cells in the array.

parameter. Therefore, we repeated the experiment described above
using two different values of Vthresh (Fig. 5).

As discussed in Section 2, one of the advantages of imple-
menting the neurons in charge mode is that it minimizes variabil-
ity across the chip. To quantify the mismatch between neurons, we
conducted a third experiment wherein all of the event parameters
(synaptic weight, synaptic reversal potential, spike threshold volt-
age, and resting potential) were held constant at values that were
barely supra-threshold. The average ratio of the number of output
events to input events was measured as before, and the distribution
was plotted as a histogram (Fig. 6a). The variability is small, with
a standard deviation of 0.0017 around the mean of 0.0210. To see
if there was any systematic variation, the number of input events
required to elicit an output event was converted into a normalized
gray-scale value and the value for each neuron was plotted as a
single pixel in a 60 × 40 bitmap, where darker pixels correspond
to a larger number of output events per input events (Fig. 6b). Evi-
dently, there is a gradient toward lower response rates in the upper-
right quadrant of the array.

5. CONCLUSION

We have presented a novel neural array transceiver consisting of
2,400 spiking neurons that each implement a discrete-time version
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Fig. 6. (a) Histogram showing distribution of the average ratio of
output events to input events. (b) Bitmap illustrating spatial trends
in the variation of the average ratio of output events to input events
(see text for details).

of the biological membrane equation and include a single “general-
purpose” synapse with dynamically configurable weight and rever-
sal potential. The data shown verify the functionality of the chip.
Future work will focus on embedding multiple chips in a large
system containing digital memory to store connection patterns and
synaptic parameters, a microcontroller to manage a shared AER
bus, and a high-speed interface with a neuromorphic sensor or per-
sonal computer. A previous version of this system was used for
a variety of applications, including implementing Laplacian fil-
ters to isolate vertical edges on static images, a task that ran two
orders of magnitude faster in hardware than in simulation [11].
The new system will permit much larger networks and will oper-
ate approximately 100 times faster than the old hardware, to al-
low rapid prototyping and real-time emulation of realistic neural
circuits and, ultimately, interface with real biological neurons in
computer-controlled wetware experiments. An interesting exten-
sion of the functionality of these networks is to incorporate silicon
models of spike-based learning [14] in the address-domain [13].
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