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ABSTRACT

We present an architecture for processing spike-based sensory
information in real-time. The system is based on a re-configurable
silicon array of general-purpose integrate-and-fire neurons (as op-
posed to application-specific circuits), which can emulate arbitrary
cortical networks. A combined retinal/cortical network has been
designed and tested with a neuromorphic silicon retina. Neural ac-
tivity is communicated between chips at rates of up to 1,000,000
spikes/sec with a bit-parallel Address-Event Representation pro-
tocol. This work represents the first step in constructing an
autonomous, continuous-time, biologically-plausible hierarchical
model of visual information processing using large-scale arrays of
identical silicon neurons.

1. INTRODUCTION

Both silicon and biological spiking sensors can generate millions
of events per second, all of which must be transmitted to exter-
nal processors for higher levels of processing. In the brain, this
is achieved by extensive connectivity between neural centers with
distributed and parallel processing. In artificial neuromorphic sys-
tems, spikes can be rapidly transmitted to various locations us-
ing the address-event representation (AER) communication pro-
tocol [1–3], but relatively few solutions exist for real-time and
large-scale processing of this spike-encoded sensory information
(however, see [4–11] for some work in this direction).

We are presenting a neuromorphic system that can process
sensory information in real-time, up to a rate of about 1,000,000
spikes per second. In previous work, we described an address-
event integrate-and-fire array transceiver (IFAT) system that con-
tains up to 9,600 silicon neurons [12], and demonstrated its abil-
ity to process visual information produced by a neuromorphic im-
ager [12–15]. However, until now the computations were limited
to off-line processing with a computer “in the loop”. Here we
concentrate on the implementation of an autonomous, real-time,
combined retinal/cortical system that can process video informa-
tion encoded in spikes. Eventually, this approach could lead to an
autonomous object recognition device with binocular vision.

The complexity involved and resource allocation necessary for
neural computation in higher levels of sensory processing neces-
sitates a multi-chip approach for artificial systems [4, 5, 9, 10].
Software packages, though easily re-configurable, are not suited
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for real-time processing of spikes. Custom VLSI implementations
with dedicated hardware geared towards solving specific tasks of-
fer an attractive alternative. However, unlike software systems,
custom VLSI chips have a turnover time between 2-3 months. The
re-configurable IFAT system [12] used in this work is a “best of
both worlds” solution, as it combines the speed of dedicated hard-
ware with the programmability of software.

The goal of our current research is to implement a
biologically-plausible hierarchical model of visual information
processing [16] entirely contained within the IFAT. The data de-
scribed here illustrates outputs from the first stage of this model.
Previous work in this area by other groups has relied upon sepa-
rate chips for each stage of processing, and has advanced to very
sophisticated models of retinal processing and the first layer of
cortical processing [4–6]. However, implementations of more ad-
vanced stages have not been demonstrated in hardware. We believe
the ability to perform rapid prototyping and real-time testing of
neural architectures with the IFAT will complement the dedicated-
chip approach as we work towards a full implementation of neuro-
morphic vision.

A description of the IFAT and spike-domain imager (called the
“Octopus Retina”) are provided in Sections 2.1 and 2.2, followed
by details of the combined system in Section 2.3. We then discuss
a strategy for implementation of the hierarchical visual model in
Section 3 and show data from the first stage of processing. Finally,
the paper is concluded in Section 4.

2. HARDWARE

2.1. Integrate-and-Fire Array Transceiver (IFAT)

The Integrate-and-Fire Array Transceiver (IFAT) system (Fig. 1)
contains up to 9,600 spiking silicon neurons on four custom
VLSI chips [17], with re-configurable synaptic connectivity and
adjustable neural dynamics. Network architectures are stored
in 128 MB of digital RAM, allowing for up to 4,194,304
synapses [12], each of which can specify a different synaptic
weight and synaptic equilibrium potential [17]. At the system
level, the IFAT acts as an address-event (AE) transceiver, com-
municating incoming and outgoing events over an asynchronous
AE bus. Internally, an FPGA routes incoming spikes to the ap-
propriate neural targets to enable processing at a rate of up to
1,000,000 events per second. The spike input rate of the system
is limited by slow access and setup times for the RAM and DACs,
respectively. The current setup also utilizes an array of logic-level
shifters to communicate between the FPGA and other components
on the PCB. This produces additional processing delays.

19190-7803-8834-8/05/$20.00 ©2005 IEEE.



I&F

MCU

RAMRAM

DAC

DIO

Fig. 1. Printed circuit board (PCB) integrating all components
of the IFAT system: custom VLSI integrate-and-fire chips (I&F),
digital-to-analog converter (DAC), digital memory (RAM), FPGA
microcontroller (MCU), and digital input/output port (DIO).

2.2. Octopus Retina (OR)

The Octopus Retina (OR) is a 60 × 80 array of integrate-and-
fire neurons that translates light intensity levels into inter-spike
interval times at each pixel [13, 14]. The design is based on the
simple phototransduction mechanism found in the retinae of oc-
topi, although instead of the parallel connectivity found in biology
between the retina and cortex, the silicon implementation uses a
pipelined and arbitrated read-out scheme and transmits data se-
rially over an address-event bus. Under uniform indoor lighting
(0.1mW/cm2), the OR generates a mean firing rate of 200,000
address events per second (41.7 effective fps), while providing
120dB of dynamic range and consuming 3.4mW.

2.3. Combined System

The novel aspect of this present work, as a milestone in the contin-
uing evolution of the IFAT system, is the integration of IFAT with
the OR to form an autonomous, re-configurable, real-time visual
information processing system. To interface the two subsystems,
we designed a printed circuit board (PCB) that manages connec-
tions between up to two octopus retinae, the IFAT, and a personal
computer (CPU) (Fig. 2). There are four user-selectable modes
of operation: (1) reset mode, (2) RAM loading mode, (3) RAM
read-back mode, and (4) transact mode. Depending on the mode,
the FPGA on the IFAT enters one of its four state machines and
enables/disables the appropriate tri-state buffers on the interface
PCB. The buffers determine whether OR1, OR2, or the CPU has
access to the address-event bus that supplies inputs to the IFAT.

On power-up, the system enters reset mode, which tri-states
all the buffers on the PCB and instructs the IFAT to reset all the
neurons on the I&F chips. Once reset, the user can choose to load
the RAM with a “netlist”, which specifies the network topology
and synaptic strengths between the OR and IFAT neurons, as well
as configuring recurrent connections between IFAT neurons. Be-
cause the IFAT uses non-volatile SRAM, it is not necessary to load
a netlist each time the system is powered up (while convenient in
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Fig. 2. Block diagram of the combined retinal/cortical system,
with IFAT components contained in the upper block. The FPGA
receives spikes from either of the two octopus retinae (OR) or the
computer (CPU), depending on which is selected by the multi-
plexer (MUX). Outgoing addresses from the IFAT are sent to the
computer for visualization or storage.

general, this feature was selected to enable storing learned pat-
terns). After a netlist is programmed, or after on-line modification
of an existing netlist, the contents of RAM can be read by the
FPGA for verification.

Information processing and communication between the ORs
and the IFAT occurs in transact mode. Here, the FPGA state ma-
chine performs handshaking with up to two ORs and arbitrates
between them if events are pending from both. Additionally, this
mode allows events to be sent to the IFAT from the CPU, if any ex-
ternal inputs are required. Finally, recurrent connections between
I&F neurons on the IFAT can be implemented in this mode.

The netlist stored in RAM contains a look-up table that de-
scribes how the FPGA should route events from all of the different
sources. Depending on the number of neurons in the overall sys-
tem, the addressing scheme can include two or more bits of “chip
select” (CS) to distinguish similar addresses originating from dif-
ferent locations. When the FPGA receives a request, it enables the
appropriate buffer on the PCB, reads the address bits on the incom-
ing AE bus, prepends the CS bits, and stores the binary word as a
base address (presynaptic address). It then adds a ‘synapse offset’
to form a complete 22-bit RAM address, which is used to look up
a set of synaptic parameters for the first postsynaptic target. Next,
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Fig. 3. Orientation selective Receptive Field (RF) kernel composi-
tions in the simple cell network. Top row shows −45◦ and +45◦

receptive fields: (RF1/RF2) dark-to-light transitions, (RF3/RF4)
light-to-dark transitions. Bottom row shows 0◦ and 90◦ recep-
tive fields: (RF5/RF6) light-to-dark transitions, (RF7/RF8) dark-
to-light transitions.

the digital synaptic weight is set up on the I&F chips and the ana-
log synaptic equilibrium potential is established by the DAC. The
event is then sent to one of the IFAT’s silicon neurons by activating
its row, column, and chip select lines [17]. Finally, the FPGA in-
crements the offset by one and repeats this process until a reserved
word is received from the RAM indicating an end of postsynaptic
targets.

3. VISUAL INFORMATION PROCESSING

The long-term goal of this research is to create an autonomous,
general-purpose spike processing platform that can be interfaced
with any address-event neuromorphic sensor to implement real-
time emulations of higher cortical functions. The particular ap-
plication envisaged by this work is a multi-stage vision system
that would receive its input from the ORs and implement silicon
facsimiles of cortical simple cells, complex cells, composite fea-
ture cells, complex composite cells, and finally, view-tuned cells,
according to the model of Riesenhuber and Poggio [16]. Each
level of the hierarchy pools inputs from lower levels using ei-
ther linear summation or a nonlinear maximum operation (MAX),
which simultaneously allows for high feature selectivity and in-
variance [16]. Currently, we have only implemented the first stage
of processing in real-time. However, we are working towards a full
implementation.

The first stage of processing implements simple cells, oriented
spatial filters that detect local changes in contrast. We have previ-
ously demonstrated a feed-forward network that can perform this
function, although it was originally tested off-line using a stream
of events captured from the OR and stored on disk [12]. The
simple cell network architecture is illustrated in Fig. 3. Briefly,
each IFAT cell receives inputs from four consecutive OR neurons

oriented in either the vertical, horizontal, or diagonal directions.
Within each 4-cell receptive field (RF), two of the inputs are ex-
citatory and two are inhibitory, so that only one of a light-to-dark
(+ -) or dark-to-light (- +) transition in the underlying image will
provide net excitatory input. Figure 4 shows eight captured frames
from the real-time system, each presenting the output of only one
of the eight types of simple cells.

In the second stage of processing, similarly-oriented simple
cells with nearby RFs must be pooled together using the MAX
operator to form complex cells, position-invariant spatial filters.
Multiple architectures for implementing the maximum operation
were proposed in [18], and, using the IFAT, we have verified the
operation of a feedback MAX network with an artificially gener-
ated input pattern of 30 neurons [19], but we have not yet ported
this to the real-time visual system.

The two archetypal network operations described above, lin-
ear summation and MAX pooling, form the basis for all stages
of processing beyond complex cells. While we have not yet in-
tegrated these operations in a single netlist, there are no technical
barriers preventing us from doing so. Rather, we are currently
limited by the number of I&F neurons available. However, the ar-
chitecture of the combined system described here is modular [19],
in the sense that the controlling IFAT does not know what devices
generate incoming addresses, and therefore the system can be ex-
tended to include connections for multiple IFATs. In this case,
each stage of processing that requires a MAX computation should
be contained within one IFAT board to conserve bandwidth and op-
timize speed, since there are more connections within MAX stages
than between stages. To fully implement the Riesenhuber and Pog-
gio model [16], we would also need to train the network to identify
specific views of particular objects. Because “learning” in this sys-
tem equates to modifying the contents of RAM, it can be achieved
on-line, as we have demonstrated with a previous version of the
IFAT [20].

4. CONCLUSION

We have described a system that processes spike-based sensory in-
formation in real-time, using a “general-purpose” re-configurable
array of silicon neurons. The system is currently configured for
inputs from up to two neuromorphic retinae, but can be extended
to include connections from multiple different sensors, additional
arrays of neurons, or any other device that communicates with
address-events. We are currently working towards a full imple-
mentation of a biologically-plausible model of hierarchical visual
information processing, but because the system is designed to en-
able construction of arbitrary neural networks, we invite readers
to contact us for collaborative opportunities with different sensory
modalities.
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Fig. 4. Video-rate frame captures showing eight different types of simple cell outputs. (a) Original image from the octopus retina, (b–i)
output from arrays of IFAT cells implementing receptive fields RF1–RF8 (cf. Fig. 3).
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