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Abstract— A mixed-signal architecture for continuous-time
multidimensional model-free optimization is presented. It is based
on multi-channel coherent modulation and detection that reliably
estimates the objective function’s gradient, with respect to the
system parameters, in the presence of time delays. The narrow-
band nature of the excitation signals reduces the unknown
dynamics of the objective function to a single parameter per
control channel, the phase delay.

An efficient implementation of the adaptive control architec-
ture is presented; it incorporates parallel control channels with
individually selectable 6-level phase delay adjustment. Initial
experimental results indicate wide operating range covering
almost 7 decades of excitation frequencies.

I. INTRODUCTION

Function optimization and system adaptation using appli-
cation - specific VLSI circuits has been introduced in many
fields. It offers the advantages of hardware minimization and
convergence speed augmentation, when compared to equiva-
lent software approaches. Analog implementations are gener-
ally preferred in applications demanding low power and high
speed. A major challenge in designing these analog systems
is to find appropriate optimization techniques immune to
fabrication imperfections and mismatches; moreover, in many
cases these techniques should consider no prior knowledge of
the function or system subject to optimization.

The above problem, generally known as model-free op-
timization, has been broadly studied in Neural Networks,
where minimization of the error between the measured and
desired response of the system is needed. However, the results
can be easily projected to applications requiring minimiza-
tion/maximization of any convex/concave function. A widely
used optimization algorithm is gradient descent; several studies
have been published on different variations of it [1]. Most of
them use an estimate of the gradient derived by perturbing the
input variables of the under optimization function and then
correlating the output of the function with the perturbation(s).

According to the nature of the perturbations, the algorithms
can be divided into stochastic and deterministic ones. Analog
VLSI architectures and/or implementations using stochastic
perturbations have been presented for both discrete-time [2],
[3] and continuous-time [4], [5]. Algorithms that use deter-
ministic perturbations can be further divided into sequential
ones [6], where the dither is applied serially to each of the

variables, and parallel ones [7]. To the best of the authors’
knowledge, no VLSI circuit has been implemented for either
of them.

The main drawback of the sequential approach is that
its convergence speed decreases as the number of variables
increases.

Stochastic techniques have been much preferred over paral-
lel deterministic ones mainly due to their simpler hardware
implementation and scalability with respect to the number
of variables. However, they fail in the case of significant
and variable propagation delay. On the contrary, narrow-band
methods can be made much more robust to delay distortion,
and phase/amplitude distortion in general. This problem is
addressed in Section II.

In this paper, we present an analog VLSI implementation
of a (continuous) gradient descent algorithm for function opti-
mization using narrow-band deterministic (sinusoidal) dithers
(perturbations). The specific implementation is meant for
applications where adaptation of multivariable systems with
significant and time-variant propagation delays is needed. The
basic principles of gradient descent optimization and of the
delay-insensitive version implemented are given in Section II.
Some design aspects are discussed in Section III and initial
experimental results are shown in Section IV.

II. THEORETICAL BACKGROUND

Let u = (u1, u2, . . . , uk)T be a k × 1 real vector and J(u)
be a scalar cost function. The basic form of the (continuous)
gradient descent algorithm is

du

dt
= −ε∇J(u), (1)

where ε is a positive constant. Assuming that J has no saddle
points, u reaches a (local) minimum (almost always). The
convergence rate depends partially on ε. A variant of (1) that
is easily implementable in mixed-signal circuits is given by
(2).

du

dt
= −ε sgn

(

∇J(u)
)

. (2)

In both cases, maximization can be achieved using the same
rules but with ε < 0.

The gradient, ∇J , can be extracted by superimposing a
small-amplitude perturbation θθθ to signal u. For the stochastic
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case, θθθ is a vector of independent, zero mean, noise sources
ni(t), i = 1, ..., k, whereas in the deterministic case, it is a
vector of narrow-band signals with known carrier frequency.
For simplicity, it is assumed they are sinusoidal signals of
frequencies ωi, i = 1, ..., k [7]. The resulting vector ũ is

ũ = u + θθθ =

{

u + α [n1(t), n2(t), . . . , nk(t)]
T

or
u + α [cos(ω1t), cos(ω2t), . . . , cos(ωkt)]

T

where α is a small scalar parameter. Evaluating the resulting
metric J , using Taylor series, around θ0θ0θ0 = 0, we get

J(ũ) = J(u + θθθ) = J(u) +
(

∇J(u)
)T

θθθ + . . .

For the case of stochastic perturbations, the partial derivative
of J with respect to variable ui can be estimated by correlating
J with dither ni(t) over a time-integral period of predefined
length T [8]� T

0

J(ũ) · ni(t)dt '

� T

0

J(u) · ni(t)dt + α

� T

0

∂J(u)

∂ui ���� u
n

2

i (t)dt +

+α

� T

0 �j,j 6=i

∂J(u)

∂uj ���� u
ni(t)nj(t)dt (3)

Assuming that J(u) remains fairly constant within period
T , the first term of the R.H.S. (right hand side) is expected
to be close to zero since the noise sources (are assumed to
be ergodic and) have zero mean. Moreover, the third term
of the R.H.S. is also expected to be close to zero since the
noise sources are (jointly ergodic and) uncorrelated. Higher
order terms can be neglected since their amplitude will be
small. Therefore, correlation provides us with an estimate of
the partial derivative of J with respect to variable ui.

Following the same procedure, this time with sinusoidal
dithers, it can be proved that correlation of the metric J with
each of the dithers will result to

∫ T ′

0

J(ũ) cos(ωit)dt ' α

2

∂J

∂ui

∣

∣

∣

∣

u

. (4)

It should be noted that T ′ can be significantly smaller than
the integration period T used for correlation in the stochastic
case (3).

A difference between the two methods arises when a consid-
erable propagation delay, between the time the perturbation is

applied to the variables and the time correlation is performed,
should be accounted for. In the case of stochastic signals,
due to their random nature, there is no, at least easy, way
of compensating for the delay. For a “reasonably” accurate
gradient estimate, the integration time T should be no less than
τ ·k·m, where τ is the average propagation delay, k the number
of variables of the metric J and m a parameter proportional to
the accuracy of the estimate (e.g. if an error of less than 2% is
required, m should be greater than 50) [8]. Obviously, for large
delays, large integration times are needed, which reduce the
convergence speed. Moreover, the bandwidth of the stochastic
perturbations needs to scale inversely proportionally to m · τ
[8].

In the case of sinusoidal perturbations, as shown in [9], a
propagation delay scales the estimate of the partial derivative
of J with respect to ui by a factor cos(ϕi), namely

∫ T ′

0

J(ũ)|τ−delay cos(ωit)dt ' α

2

∂J

∂ui

∣

∣

∣

∣

u

cos(ϕi), (5)

where ϕi = ωi · τ . In other words, the propagation delay in
the metric reduces to a single parameter, phase ϕi, that can
be easily compensated for.

III. IMPLEMENTATION

The design of the implemented VLSI circuit is based on the
architecture described in [9]. A brief review is given and fur-
ther insight on the actual implementation of the main building
blocks is provided. Moreover, the aspect of propagation delay
compensation is described. The high level architecture of the
control channel for each variable of the objective function is
given in Fig. 1.
A. General architecture

A 3-phase oscillator generates sinusoidal signals at frequen-
cies ωi, i = 1, . . . , k, where ωi 6= ωj for i 6= j. For each
channel (each channel corresponds to a variable), one of the 3-
phases (fixed) is superimposed to variable ui and the perturbed
variable ũi is applied to metric J . The gradient descent
algorithm is then applied according to rule (2). Instead of exact
correlation, the value of ∂J(u)

∂ui

∣

∣

u

is estimated by multiplying
the metric J with dither ui and low-pass filtering the product.
According to the sign of the gradient and whether we need
minimization or maximization, ui is updated accordingly with
a rate specified by the charge pump [10].

CP

3

3

buffer buffercapacitor array
3-phase
oscillatorphase selectionmultiplier

received metric 
J( )

amplifier LPF quantizer sign selection charge 
pump

C
ui

i

Fig. 1. Block diagram for one channel of the phase controller
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B. Three-phase oscillator
The three-phase oscillator is a ring of 3 differential

Gm − C filters in shunt with tunable resistors R, as shown
in Fig. 2. The gain of each Gm − R − C block is
|H(jω)| = GmR/

√

1 + (ωRC)2 and the phase introduced
is tan−1 (H(jω)) = −ωRC.

+
-

+
-Gm R C

+
-

+
-Gm

+
-

+
-GmR C R C

Fig. 2. High-level architecture of the 3-phase oscillator. Transconductors
Gm and resistances R are tunable.

The Barkhausen oscillation criterion, namely that the gain
around the loop should be 1 and that the sum of the phases
should equal 360o, applied on the topology of Fig. 2 gives the
following conditions for oscillation

R =
2

Gm

(6)

ω =

√
3Gm

2C
(7)

According to (7), the oscillation frequency can be controlled
by transconductance Gm; the value of Gm is set by a bias
current. For oscillations to be sustained, R should also be
tunable and scale inversely proportionally to Gm.

C. Low-pass filter
The low-pass filter removes higher frequency components

generated by the multiplier. These components are terms both
at the perturbation frequencies ωi as well as at the sums and
differences ωi +ωj and ωi−ωj . In order to ensure satisfactory
compression of the unwanted terms, the filter needs to have a
steep roll-off and the perturbation frequencies ωi need to be
apart at least twice the bandwidth of the low-pass filter, i.e.,
f−3dB < mini,j |ωi − ωj | /2.

A 5th order Chebyshev filter was implemented using biquads
and 1st order Gm − C filters. All trasconductors in the filter
have the same topology and their gains (Gm) are linearly
controlled by replicas of the same current. In this way, the
bandwidth of the filter is controlled using only one current
without any distortion of the “shape” of the transfer function.

D. Propagation delay compensation
As shown in Section II, in the case of sinusoidal pertur-

bations, propagation delay introduces a factor cos(ϕi), i =
1, . . . , k to the gradient. For the purposes of this work,
knowledge of phase delays ϕi within some bounds has been
assumed.

The oscillator generating the sinusoidal perturbations, pro-
vides 3 phases, dividing the phase domain into 3 equal 120o

sections. Moreover, the sign selection block offers an extra
degree of freedom in phase selection, splitting the phase
domain further into 6 equal 60o sections, as shown in Fig. 3.

Knowing approximately the values of the phase delays ϕi, it is
possible to use for multiplication, and for each of the channels,
the phase of the oscillator that is closest to ϕi. Assuming that
the selected oscillator phase for channel i is ϕoi, the product
of multiplication and low-pass filtering can be proved to be� T ′

0

J(ũ)|
τ−delay cos(ωit−ϕoi)dt '

α

2

∂J

∂ui ���� u
cos(ϕi−ϕoi). (8)

Since the difference |ϕi − ϕoi| cannot be greater than 60o,
the value of the cos factor in (8) will be always positive, thus
not affecting the sign of ∂J(u)

∂ui

∣

∣

u

used for updating the value
of variables ui.

0o

30o

60o90o

120o

150o

180o

210o

240o
270o 300o

330o

Fig. 3. Phase domain splitted in 60o sections. The arrows represent the
selectable phases in the system. Depending on which gray area ϕi lies on,
the appropriate phase ϕoi is selected, that minimizes the phase error ϕi−ϕoi.

IV. EXPERIMENTAL RESULTS

Based on the discussed theoretical model, an 8-channel
VLSI implementation was designed, fabricated and tested.
Several specifications were set for the design with most impor-
tant one, the wide tuning range of the dithering frequencies,
from 100Hz up to 1GHz. Due to the broad range of operating
frequencies, bipolar transistors were preferred and most of the
building blocks were designed using translinear topologies.
The actual size of the chip is 3mm x 3mm with a minimum
size length of 0.5µm.

The update (increase or decrease) rates of the charge pumps
are independently programmable, and the amplitude of the
dithers superimposed to the outputs are adjustable for each
channel, extending the versatility of the implementation. It
should be also noted, that the specific design allows cascading
of multiple chips in a parallel architecture, expanding the
operation of the system to optimization of a virtually n-
variable function.

The first experiment to be conducted was the characteriza-
tion of the 3-phase oscillators. Fig. 4 shows the oscillation
frequency with respect to biasing current. Operation from less
than 100Hz to almost 1GHz is demonstrated, with the bias
current controlling linearly the frequency in a range of almost
7 decades.

In order to verify optimization, a simple 2-variable func-
tion was implemented using diodes and resistors. The ex-
act function was f(V1, V2, Vref ) = max(V1, V2, Vref ) −
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Fig. 4. Linear control of the oscillation frequency with the biasing current
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Fig. 5. Function optimization: The top two waveforms represent V1 and V2,
while the bottom one Vref

min(V1, V2, Vref ) − 2VF , where V1 > 0 and V2 > 0 were
the voltage outputs from 2 channels of the system, Vref > 0
was a reference voltage provided by a function generator, and
VF was the forward voltage drop of the used diodes. Function
f has a global minimum, reached when V1 = V2 = Vref . For
the purposes of the experiment, the dithering frequencies for
the two channels used were set to 20MHz and 26MHz, while
Vref was a triangular wave of period 50ms. For the specific
implementation and the specific perturbation frequencies, the
phase delay introduced by the metric was around 180o. This
led to a cos factor close to -1, multiplying the information
of the gradient; to compensate, the sign of the gradient was
flipped by the sign selection block. The response of the system
is illustrated in Fig. 5 and shows how variables V1 and V2

follow Vref .

V. CONCLUSION

An analog VLSI implementation of a multi-variable func-
tion optimization system has been presented. Adaptation is
achieved using the gradient descent algorithm, and gradient
information is retrieved using sinusoidal perturbations. The
deterministic nature of the signals makes propagation delay
compensation feasible. The main blocks of the design have
been analyzed. Some initial experimental results have been
demonstrated showing the broad range of achievable perturba-
tion frequencies with the implemented design and an example
of adaptation for a simple 2-variable function.
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