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ABSTRACT

A linear calibration technique for on-line digital correction of ana-
log imprecisions in the implementation of multi-stage analog-to-
digital converters, is presented. The calibration is ‘blind’, in that it
uses no reference and operates directly on the digital output during
conversion. The only assumption made on the input signal is that
its spectrum is bandlimited. The excess sampling over Nyquist
bandwidth is used for least-squares auto-zeroing calibration. The
technique extends directly to digital correction of multi-stage over-
sampled A/D converters where a multi-bit quantizer is implemented
using a pipelined algorithmic A/D converter. Behavioral simula-
tions on pipelined algorithmic and dual-quantization oversampled
A/D converters demonstrate significant improvements in signal-to-
quantization-noise performance over the uncalibrated case.

1. INTRODUCTION

Cascaded multi-stage designs for algorithmic and oversampled
analog-to-digital conversion [1, 2], such as pipelined A/D con-
verters [3], and multiple-quantization cascaded delta-sigma modu-
lators [4, 5], offer efficient analog hardware implementations with
optimal trade-off between resolution, speed and hardware com-
plexity and power dissipation. The resolution that can be attained
by these designs severely depends on precision and matching of
analog components in the implementation, such as amplifier gain
and capacitor ratios. To a large extent, the effect of analog circuit
imperfections can be undone in the digital domain by postpro-
cessing the output bit streams. Digital calibration techniques have
been applied to multi-stage pipelined [3] and multiple-quantization
oversampled [6, 7, 8] A/D converters. On-line techniques offer the
advantage of continuous adaptation in the background of the con-
version process [6, 8]. A nice example with efficient hardware
implementation is given in [8] where the adaptation eliminates the
quantization noise of a first quantizer along with a test signal in-
jected externally into the quantizer, thereby minimally interferring
with the input signal.

This paper introduces an on-line ‘blind’ calibration technique
which does not require a reference signal, applicable to pipelined
algorithmic A/D converters, multi-stage oversampled A/D convert-
ers and their combinations. The technique assumes a bandlimited
input signal, reserving a stop band to correct for any linear errors
in the analog implementation by autozeroing the output response
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Figure 1: Signal stop band for blind calibration.

in the stop band through least-squares linear parameter estimation,
as illustrated schematically in Figure 1.

Analog circuit models for algorithmic and oversampled data
converters are summarized in the next section, with corresponding
models for linear digital correction. The blind calibration technique
is defined and applied to (super-)Nyquist-rate algorithmic A/D
conversion in Section 3, extended to multi-stage oversampled A/D
conversion in Section 4, and further discussed and concluded in
Section 5.

2. ANALOG MODELS AND DIGITAL CORRECTION

The models are discrete-time with both analog and digital signals
represented in the � -domain, the operator � denoting a unit time ad-
vance. One time step corresponds to the reciprocal of the sampling
frequency, ��� , which exceeds the Nyquist frequency ��� . Analog
signals are normalized to the range ��� 1 ��� 1� , and binary signals
are � 1.

2.1. Multi-Stage Delta-Sigma Modulator

Without loss of generality, we consider a dual-stage oversampled
design of the Leslie-Singh [5] topology as depicted in Figure 2. A
second-order delta-sigma modulator����� � 1 ���! 1 "$# �&% 1 '�)( � � 2 (*�+ 2 " �,�-% 1 ' (1)

with input # and one-bit quantized output% 1 �/. 1 " ( ' � sgn " ( ' " 2 '
interfaces to a second stage with multi-bit quantized output% 2 �/. 2 " ( ' �/(&�!0 2 � " 3 '0 2 representing the quantization noise contributed by . 2. The
output bits from both stages are digitally combined%1�/2 1 " � ' % 1 �32 2 " � ' % 2 " 4 '
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Figure 2: Multi-stage, multiple quantization oversampled A/D
conversion. Example topology with second-order ∆Σ modulator
and multi-bit quantizer . 2 (Leslie-Singh, 1990).

in order to eliminate the quantization noise introduced in the first
stage, yielding second-order noise-shaping modulated, second-
stage multi-bit quantization error%UTE��V 2 # � 1 �W� 1 � V 1 1

1 �W� 2 � V 1 2
0 2 " 5 '

obtained by the following choice of FIR filters2 1 " � ' � �XV 2 �!�XV 1 1 �W� 1 � V 1 12 2 " � ' � 1 �-� 1 � V 1 1

1 �-� 2 � V 1 2
(6)

The key to digital correction is a technique to adaptively estimate
these filter coefficients [7] or a suitable subset [6, 8]. The results
outlined below hold for any form of the second quantizer . 2, which
itself could implement a multi-stage oversampled modulator [4].
In what follows, we consider the special case where the second
quantizer . 2 is a pipelined algorithmic A/D converter. In a practi-
cal implementation of this arrangement, the ∆Σ quantizer . 1 shares
the first stage (most significant bit) of . 2 [5].

2.2. Algorithmic A/D Conversion

A radix- Y bit-level sub-ranging data converter converts an inputZ into [ output bits \�] through algorithmic recursion of binary
quantization and residues\ ] � . " Z ] V 1 ' � sgn " Z ] V 1 ' �_^`� 1 abaca�[Z ]d� Ye] Z ] V 1 �-fg]e\h]i�!j�] (7)

starting from Z 0 T Z . For ideal radix-2 conversion, Y ] T 2, f ] T 1
and j ] T 0, and the output bits \ ] yield the digital output \ directly
in binary format. A nominal value for Ye] strictly less than two
provides fault-tolerant analog implementation, allowing a margin
for random variations in Y ] , f ] and j ] caused by analog gain and
offset errors and corrected through digital calibration [3]. Inverting
the recursion (7) backwards from ^k�/[Bagaga 1 yields a digital output\B�mln ]�o 1 p ] \ ] �3q " 8 '
which effectively eliminates the quantization noise from all stages^ except the very last: \BT Z �*r l Z l " 9 '

valid for the choice of coefficientsp ]s� rg]�fc]qt� ln u o 1

r u j u (10)

where r ] T 1 vxw ]y o 1 Y y . As z Z l z|{ 1, the integral error of
quantization (9) is bounded by r l , supporting linearity at the [~}��� l]�o 1 log2 " Ye] ' bit level. An efficient (but off-line) incremental
auto-calibration procedure to obtain the coefficients (10) in absence
of a precise analog reference, is demonstrated in [3].

2.3. Numerical Example

A second-order delta-sigma modulator of the topology in Figure 2,
and an algorithmic A/D converter with [�� 16 stages and radix Y��
1 a 85, are used in the behavioral simulations. The analog parameter
ranges correspond to typical switched-capacitor implementations
as follows:  �]�� 0 a 5 � 0 a 01; �~]`� 0 a 9975 � 0 a 0025; Ye]k�/Y`� 0 a 01;f ] � 0 a 5 Y ] and j ] �E� 0 a 05. Noise is included in the above models
but omitted here for clarity, since it detracts from evaluating the
limits of raw SQNR performance attained by calibration alone.

3. SUPER-NYQUIST BLIND CALIBRATION

With neither control over a reference nor information on the input
signal Z other than through the output bits \ ] , the task of esti-
mating the parameters p ] and q in (8) from (9) is ill-defined, at
best. The approach proposed here is to require a bandlimited input
spectrum, with sampling frequency � � strictly above the Nyquist
rate ���_� 2 ��� . The stop band � ���c�������3���<� is reserved for cal-
ibration purposes, illustrated in Figure 1. Since calibration can
be slow, only a negligible overhead in the sampling bandwidth
needs to be expended, ���B����� . No additional cost is incurred
since an anti-alias bandlimiting filter is already required for perfect
reconstruction of the input.

A high-pass filter ��� spanning the band � �����������B�h�$� eliminates
the input signal Z . Values of the coefficients p ] are then estimated
by minimizing the variance of the filtered quantization noise 0B�\|� Z :

( � � 0 )2 ����ln ]�o 1 p ] � � \ ]M� 2 " 11 '
solved through a standard least-squares linear regression technique,
after eliminating one extra degree of freedom by fixing one of the
coefficients p ] ( p 1 T 1). The extra degree of freedom in the
scaling of the output is inevitable, since no reference is available to
determine the absolute input scale. Similarly, the offset constant q
is undefined, eliminated along with Z by ��� .

An interesting observation arises from comparing the least-
squares ( � 2-norm) formulation of the integral nonlinearity in the
minimization of (11), with the ��� -norm optimal measure of in-
tegral nonlinearity in (9) obtained from the ideal choice of coef-
ficients (10). The difference is illustrated in Figure 3, showing
integral error distributions obtained from simulating the A/D con-
verter specified above, with ideal coefficients calculated from (10),
calibrated coefficients from minimization of (11), and nominal un-
calibrated coefficients (obtained from (10) with Y ]�� Y , f ])� Yiv 2
and j ]�� 0 ' . The histograms are collected from 5 � 105 random
input values, and integral nonlinearity is defined as the difference
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Figure 3: Histogram of algorithmic A/D conversion integral non-
linearity. (—): Ideal coefficients calculated from the analog gain
and offset parameters; (- - -): Coefficients abtained from blind
calibration (4096 points, �e�Æ� 2 ��� ); ( ÇbÇgÇ ): Default coefficients
from nominal analog gain and offset parameters.

between Z and the best linear fit of \ . It is clear that the ideal cal-
culated coefficient values warrant the lowest worst-case error, but
the calibrated values yield lower typical error in the least-squares
sense. The � 2-norm provides a more relevant measure of quanti-
zation noise when used in oversampled A/D conversion.

The effect of data size on the quality of the estimated coeffi-
cients is illustrated in Figure 4, analyzing the effective resolution
of the A/D converter obtained by the blind calibration technique
as a function of number of calibration samples and relative signal
bandwidth ����v��e� . A lower bound on the number of samples �
required for calibration is approximated byÈ

1 � ���� �)É �!ÊË[�� 1 " 12 '
stating that the rank of the data matrix (effective number of linearly
independent calibration samples) needs to exceed the number of
estimated parameters p ] . This approximation agrees with the ob-
servations in Figure 4, showing thresholds in calibration length lin-
early increasing with relative signal bandwidth � � v�� � . The results
indicate excellent performance obtained with just 4,096 calibration
samples for a mere 2% overhead in sampling bandwidth above the
Nyquist limit.

4. NOISE-SHAPING BLIND CALIBRATION

The super-Nyquist blind calibration technique extends directly to
oversampling converters containing multiple stages of delta-sigma
modulators and multi-bit quantizers. A fringe benefit of the over-
sampling is a significant frequency margin for calibration over the
entire noise band, �h�Uvh���,� 1 v OSR where OSR is the oversam-
pling ratio. The only complication arises from the frequency de-
pendency of the quantization error in (5) through the noise shaping.
The key to blind calibration here is to match the noise-shaping of
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Figure 4: Effective resolution of algorithmic A/D conversion ob-
tained by blind on-line calibration of variable length, for a Nyquist
signal bandwidth covering 50%, 90% and 98% of the sampling
rate.

the quantization noise as faithfully as possible in the least-squares
formulation of the parameter estimates.

By means of example, we consider the Leslie-Singh [5] topol-
ogy of Figure 2, with second quantizer . 2 (3) implemented by
the pipelined A/D converter (9) ( ( T Z ; % 2 T \ ). As before,
applying the highpass filter � � to (5) eliminates the bandlimited
input # in (5). From (4) and (5), the set of coefficients p ] and FIR
filters 2 1 " � ' and 2 2 " � ' are estimated by minimizing the variance
of the quantization noise 0 2, assumed white with uniform power
spectrum over the calibration band:z ��� 0 2 z 2 � ����  1�1�W� 1

 2�1�W� 2
��� % ���� 2� z 2 1 " � ' � � % 1 �+2 2 " � ' � � % 2 z 2� ����� 2 1 " � ' � �c% 1 �!2 2 " � ' ln ] o 1 p ] � �c\h] �����

2

(13)

where � TE0 u Ω with Ω � 2 ���~vh� � , and the digital emphasis filter� � " � ' � 4" �1� 1 ' 2 � � " � ' �  1�1�W� 1

 2�1�W� 2
� � " � ' " 14 '

serves to equalize the second-order noise-shaping of the spectrum
of 0 2 in the estimation, besides removing the signal band of # . The
error made in the approximation of the unknown noise-shaping
in (14) does not affect the accuracy of the results to first order.

The solution consists of minimizing (13) (in time or frequency
domain), while fixing one of the coefficients to eliminate one degree
of freedom as before. The least-squares estimation is nonlinear
in the parameters, since the coefficients in 2 2 " � ' and p ] appear
together in a product. A simple iterative means to linearize the
estimation is to alternatingly solve for the 2 1 " � ' and p ] coefficients
while fixing 2 2 " � ' (plus one other coefficient), and subsequently
solving for 2 1 " � ' and 2 2 " � ' fixing the p ] coefficients (plus one
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Figure 5: Output amplitude spectrum in response to a sinusoidal
input. Top: Single-bit second-order ∆Σ modulator output % 1 from
the first stage. Center: Combined dual-quantization output \ from
∆Σ modulator and 16-stage radix-1.85 algorithmic A/D converter,
with nominal, uncalibrated coefficients. Bottom: Calibrated
output \ .
other). From nominal initial settings for 2 2 " � ' , this procedure
converges in about 5 iteration cycles in our numerical experiments.

The simulation results demonstrate significant improvements
in signal to quantization noise ratio (SQNR) achieved over the un-
calibrated case, in which default values for the A/D coefficients and
∆Σ filters are assigned according to nominal values of the analog
circuit parameters. As evident from the modulation spectrum in
response to a harmonic input in Figure 5, the improvements result
from a combination of eliminating dominant first-order quantiza-
tion noise from the first stage, and linearizing the pipelined A/D
multi-bit quantizer. By forcing a flat spectrum for 0 2 in (13), any
harmonic distortion present in the % 1 output due to strong correla-
tions between ( and # is eliminated.

The dependence of SQNR on oversampling ratio is shown
in 6. The blind calibration is most successful at higher oversam-
pling ratios where the calibration band covers a larger portion of
the noise-shaped spectrum, although improvements at low over-
sampling ratios are still significant, within 10 dB of the ideal case.
The astronomical figures of SQNR are only to illustrate the cor-
rection power of the calibration procedure, which clearly goes
beyond practical limits that are physically attainable with noise
levels present in typical analog circuits. To validate robustness of
the above calibration techniques under more general conditions,
we have conducted simulations including additive noise (in (1),
(7) and the argument of (2)), showing no significant degradations
in SNR performance obtained from noisy calibration compared to
that of the ideal coefficients under identical noisy conditions.

5. CONCLUSIONS

We have shown that under the mild assumption of a bandlimited
input signal, on-line digital calibration of analog linear variability
in the implementation of Nyquist and oversampled converters is
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Figure 6: Signal to quantization noise ratio (SQNR) as a function of
oversampling ratio for the dual-quantization modulator, with ideal
coefficients, and with calibrated coefficients obtained at maximum
calibration bandwidth supported by the oversampling ratio.

achieved using no more information than direct observations of the
digital outputs being calibrated, with no need to apply a signal ref-
erence or interrupting the data conversion process. The procedure
is widely applicable to multi-stage designs, and was verified with
behavioral simulations on pipelined algorithmic and Leslie-Singh
dual-stage multi-bit oversampled A/D converters, with near-perfect
correction at virtually no expense in signal bandwidth, and SQNR
improvements beyond physical accuracy limits in analog circuit
implementations.
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