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ABSTRACT

We apply stochastic parallel optimization techniques to on-line
blind separation of linear convolutive mixtures of independent
time-varying signals. The optimization performs stochastic gra-
dient descent on a scalar measure of statistical independence ob-
served directly on the outputs of the unmixing network, which con-
tains a matrix of finite impulse response (FIR) filters. We derive
on-line adaptation rules, and a scalable modular architecture with
minimum memory requirements amenable to parallel VLSI imple-
mentation. The architecture implements a slight modification of
the network adaptation rule, which omits symmetrical non-causal
terms in the computation of the stochastic gradient. Simulations in-
dicate near-perfect separation using both versions of the rule, with
a minimum phase response resulting from the simplified version.

1. INTRODUCTION

Blind source separation, also known as independent component
analysis (ICA), is a research topic of considerable interest because
of its wide range of applications. The task is to recover a set of
unknown independent signal sources which, propagating through
an uncharacterized medium, are mixed when they reach a set of
sensors. The mixing in the medium is most typically modeled
as linear and instantaneous, while nonlinear convolutive mixing
constitutes the most challenging case. In this paper we concentrate
on linear convolutive mixing. Our analysis is carried out in the
time domain in order to suggest scalable and parallel analog VLSI
architectures for performing low power real-time signal separation.

Herault and Jutten [1] first proposed a learning rule for ICA in
the case of linear instantaneous mixing. Vittoz and Arreguit [2],
Cohen and Andreou [3, 4] and more recently Gharbi and Salam [5]
designed analog VLSI chips which implement this algorithm. In
recent years, interest in ICA has grown considerably. Of particular
interest here, one class of ICA algorithms has been derived by
several authors from different information-theoretic and statistical
principles, Bell and Sejnowski [6], Cichocki and Unbehauen [7],
Amari, Cichocki and Yang [8] to name but a few. In this context,
solutions to the task of ICA for linear convolutive mixtures in the
frequency-domain have been formulated by Bell and Sejnowski [6],
Lambert and Bell [9] and Lee, Bell and Orglmeister [10].

The approach outlined here follows that of Cichocki and Un-
behauen [7] for instantaneous linear mixtures, extended to linear
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Figure 1: Problem Statement

convolutive mixtures by drawing upon results from Gorokhov and
Loubaton [11].

2. PROBLEM STATEMENT

An unknown signal source vector s(k) passes through an unknown
medium A before it is received by an array of sensors x(k). The
task is to recover s(k) from x(k), the only assumption being that
the components si(k) are mutually independent. To this purpose
the sensor inputs x(k) are transformed through W , yielding an
output y(k) which ideally would be s(k), but which at best is
a scaled, permuted, and possibly convolved version of s(k) in
practice (see Figure 1). Without further assumptions on the sources,
a solution exists only if the number of independent sensors M

matches or exceeds the number of independent sources N .
In the linear case, A is modeled as a linear matrix operator,

and a linear matrix operator W performs the unmixing

y = W x = Ŵ s (1)

where the transformed operator Ŵ = W A refers the outputs to
the sources. It is convenient to view ICA in the reference frame
Ŵ , independent of A. Ideally, Ŵ = P I where P is an arbitrary
scaling and permutation operator and I is the identity operator. We
start by reviewing the instantaneous case for which A and W are
ordinary matrices.



3. LINEAR INSTANTANEOUS MIXTURES

Cichocki and Unbehauen [7] formulated ICA in terms of a scalar
measure of output signal independence to be minimized,
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where k k
F

is the Frobenius norm of a matrix, E [ ] the expec-
tation operator, and Λ = � I where � is a normalization con-
stant. Combining (1) and (2) and noticing that E
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F =
1
4

Ŵ Ŵ
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Gradient descent of (3) in the reference frame produces an update
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which (assuming dA

dt
� 0) transforms into an adaptation rule for

the weights W
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where� is the adaptation rate constant. A stochastic on-line weight
adaptatation rule is obtained by removing the expectation opera-
tor in (5) [7]. Finally, antisymmetric nonlinear functions f( ) and
g( ) are applied component-wise to y to ensure output signal inde-
pendence beyond second-order statistics (removal of higher order
cummulants) [1, 7], yielding the general update rule

∆W = �
�

Λ� f(y(k)) g(yT (k))
�
W (6)

of which the ICA algorithms in [6, 8] and others are special cases.

4. LINEAR CONVOLUTIVE MIXTURES

We consider the case where the mixing operator A is linear and
convolutive, characterized by a matrix of FIR filters

x(k) =

K�1X
p=0

A(p) s(k � p) (7)

where the coefficients Aij(p) denote the response of sensor i at
time p to an impulse in source j at time 0.

Gorokhov and Loubaton [11] show that linear FIR convolutive
mixtures of the type in (7) can, in principle, be perfectly unmixed
and deconvolved by an FIR convolutive matrix operator W of
appropriate filter length, provided that strictly M > N . The
length required of each FIR filter in W to invert A perfectly is
L � N K � 1. Since A is essentially unknown, a lower bound on
L needs to be estimated.

We state the optimization criterion for the convolutive case in
terms of the Frobenius norm
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which not only attempts to separate, but also to deconvolve (whiten)
the outputs (i.e., produce impulse autocorrelation). In what follows,
we assume for simplicity of the derivation that the sources are white
to start with,

E
�
sn(k � r)sm(k � s)

�
= �nm�rs ; (9)

which transforms (8) into
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As before, gradient descent of F in (10) and elimination of the
common A operator on both sides yields an update rule

∆W (q) = �
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Removing the expectation operator and applying the antisymmetric
nonlinear functions f( ) and g( ) component-wise to y in (11)
results in the following on-line weight update rule for convolutive
ICA

∆W (q) = �
�
�W (q)� f(y(k))zT (k; q)

�
(12)

where the vector z(k; q) is constructed as

z(k; q) =

L�1X
r=0

W
T (r) g(y(k � (q � r))) (13)

The convolutive ICA algorithm derived in [9] and demonstrated
in [10] reduces to a special case of (12) transformed to the frequency
domain.

5. SIMULATIONS

To simplify analysis, simulation results reported here are referenced
to the sources, in terms of Ŵ . The results apply to arbitrary
operators A as long as M > N , A is full rank, and the length L

of the unmixing filters in W warrants invertibility according to the
above conditions.

We chose to simulate a system Ŵ with two source inputs and
two outputs, N = 2 and impulse lengthL = 6. s1(k) and s2(k) are
uniform white noise signals 2 [�1; 1]. The weights Ŵ (q); q =
0 : : : L�1, are initialized with uniform random weights2 [�1; 1].
For the functions f and g, we chose the identity map f(y(t)) �
y(t) and the signum function g(yT (t)) � sgn(yT (t)) mainly
because they are simple to implement. Other functions could be
investigated such as the phase preserving functions of Cardoso et
al [12].

Figure 2 show the trajectories of all 2 � 2 � 6 weights in Ŵ

over time, implementing (12) and (13). As expected for � = 1, all
but two weights converge to zero and the remaining two weights
converge to �2. Figure 3 shows the impulse responses of the
2 � 2 filters each of length 6. It is clear that y1(k) corresponds
to s2(k � 3) and y2(k) to s1(k � 1), which is one of many valid
solutions to this unmixing/deconvolution task.
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Figure 2: Trajectory of the coefficients Ŵij(q) over time k for the
full update rule
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Figure 3: Impulse response of each filter after convergence

6. ARCHITECTURE

6.1. Triangularization of the outer-product updates

The form of the update rule in (12) is attractive for on-line parallel
VLSI implementation, as it operates in real-time on the outer-
product of two instantaneous vectors, for which elegant analog and
mixed-mode VLSI adapation architectures exist [13]. The remain-
ing difficulty lies in the construction of vector z(k; q), outside of
the matrix of cells. One problem with the form of (13) for on-line
implementation is that it is non-causal, incurring future contribu-
tions from elementsW (r) toW (q) whenever r > q. This problem
could be alleviated by shifting the time axis and feeding signals
through delay lines, which adds to the implementation complexity.
Rather, we propose to simplify the construction of z(k; q) in (13)
by omitting all terms for which r > q,

z
0(k; q) =

qX
r=0

W
T (r)g(y(k � (q � r))) : (14)

The effect of this simplification is an asymmetry in the outer-
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Figure 4: Trajectory of the coefficients Ŵij(q) over time k for the
triangularized update rule

product component of the update rule, reducing it to a triangular
matrix in the time dimension (q; r). This asymmetry in time does
not affect the solution reached at convergence, since all off-diagonal
terms are zero when the gradient is zero. Simulations repeating the
above experiments from identical initial conditions, shown in Fig-
ure 4, indicate that the convergence properties of the triangularized
version of the update rule are qualitatively similar to that of the full
version. Yet, the triangularized version seems to favor solutions
with lower indices q for the non-zero weights in Ŵ (q), providing
a minimum delay in the phase response of the filters, which clearly
is a desirable property. The minimum phase response is a direct
consequence of the asymmetry in q and r, and can be understood
in terms of the correspondingly modified form of F in (8).

6.2. Scalable, modular parallel architecture

The resulting architecture for VLSI implementation is illustrated
in Figure 5, in the simplified case for a matrix of N = 2 inputs and
M = 3 outputs, and L = 3 taps per matrix element FIR filter.

Sensor inputs xj(k) are presented at the bottom of the system,
where they are fed into delay lines to generate the delayed versions
xj(k�q) projected across columns in the array. Outputs yi(k) are
extracted along rows from the right. The components z0j(k; q) are
generated on top and projected along columns. Each dashed box
represents a unit cell performing the weight multiplication Wij(q)
and the weight update ∆Wij(q).

An enlarged view of the unit cell is shown in Figure 5(b).
The delayed input (voltage) xj(k � q) is multiplied by the weight
Wij(q), and accumulated along the output (current or charge) sum-
ming line ysumi . The accumulated output

yi(k) =
X
j

X
q

Wij(q)xj(k � q) (15)

is fed back along each row to generate the outer-product updates. To
construct z0j(k; q), each cell also multiplies g(yi(k)) with Wij(q)
and accumulates the result onto the sumj (k; q) (current or charge)
summing line to construct

j(k; q) =
X
i

Wij(q) g(yi(k)) (16)
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Figure 5: Parallel architecture: (a) example system block diagram for N = 2;M = 3, and L = 3, (b) unit cell diagram.

which is incrementally shifted and accumulated (along a bucket-
brigade line [14]) on the top of the array to generate the z0(k; q)
vector

z
0

j(k; q) =

qX
r=0

j(k � (q � r); r) (17)

which is functionally equivalent to (14).
Finally, z0j(k; q) is projected down each column. Locally in

the unit cell, it is multiplied by f(yi(k)), and the result subtracted
from �Wij(q) and scaled by the learning rate-constant � to pro-
duce a weight update ∆Wij(q) consistent with the triangularized
version of (12).

Other arrangements exist to implement the adaptive rule in
a parallel architecture embedded with the matrix of coefficients,
possibly avoiding the triangularization of the updates. The advan-
tage of using this architecture is that all computations within the
array are instantaneous, which avoids excessive wiring or memory
storage. All memory-intensive operations are performed at the pe-
riphery of the array, and the computational complexity of the unit
cell is minimized.

7. CONCLUSIONS

We derived an on-line learning rule for ICA in the case of linear con-
volutive mixtures of independent signal sources. The performance
criterion in the gradient descent optimization is based directly on a
scalar measure of statistical independence defined directly on the
outputs of the unmixing network. This formulation is independent
of the specifics of the network, and can be extended to nonlinearly
convoluted mixtures. In the case studied, both mixing and unmix-
ing transformations are represented by a matrix of filters with finite
impulse response. With minor modifications, the derived adapa-
tion rule for the coefficient updates was cast in a scalable parallel
architecture embedded in the matrix of unmixing filters. All opera-
tions are forward time, and no memory is required internally in the
array of cells. Simulations confirmed the validity of the simplified
rule, yielding solutions with minimum phase delay response.
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