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Sub-Microwatt Analog VLSI
Trainable Pattern Classifier
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Abstract—The design and implementation of an analog
system-on-chip template-based pattern classifier for biometric
signature verification at sub-microwatt power is presented. A pro-
grammable array of floating-gate subthreshold MOS translinear
circuits matches input features with stored templates and com-
bines the scores into category outputs. Subtractive normalization
of the outputs by current-mode feedback produces confidence
scores which are integrated for category selection. The classifier
implements a support vector machine to select programming
values from training samples. A two-step calibration procedure
during programming alleviates offset and gain errors in the analog
array. A 24-class, 14-input, 720-template classifier trained for
speaker identification and fabricated on a 3 mm 3 mm chip
in 0.5 m CMOS delivers real-time recognition accuracy on par
with floating-point emulation in software. At 40 classifications per
second and 840 nW power, the processor attains a computational
efficiency of 1 3 10

12 multiply-accumulates per second per
Watt of power.

Index Terms—Micropower techniques, machine learning, bio-
metrics, MOS translinear principle, flash analog memory, smart
sensors, vector ADC.

I. INTRODUCTION

ENERGY efficiency of information processing is a key
design criterion in the development of ultra-low-power

autonomous sensors. By embedding information extraction
capability directly at the sensor interface, the communication
bandwidth requirement at the sensor can be relaxed, leading
to significant savings in power. Fully autonomous sensors
capable of scavenging energy from the environment to per-
form information processing and communication are being
pursued by several groups [1]–[3]. Current energy harvesting
techniques (other than solar energy) are limited to less than 10

W of continuous power [4], motivating the design of systems
operating within sub-microwatt power budgets. Amirthrajah et
al. [5] have recently shown the feasibility of a sub-microwatt
digital signal processor using “approximate processing” tech-
niques where precision in computation is traded off with
power consumption. An attractive alternative to digital signal
processing (DSP) is analog signal processing (ASP), which
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utilizes computational primitives inherent in device physics
to achieve high energy and integration efficiency [6], [7].
For instance, ASP techniques have been used to implement
recognition systems for biomedical sensors [8], [9] and for
sequence identification in communications [10], [11]. The use
of ASP relaxes the precision requirement on analog-to-dig-
ital conversion (ADC) which typically dominates the power
dissipation of a DSP-based sensor. However, imperfections in
analog VLSI implementation due to noise, mismatch, offset and
distortion [12] limit the precision that can be attained by ASP.
Any ASP-based technique therefore has to provide a principled
approach to compensate for such imperfections.

This paper describes an implementation of a sub-microwatt
analog pattern recognition system-on-chip for biometric signa-
ture verification. While the pattern classifier applies generally
to other types of signals, we chose a speaker verification task
as a proof of principle demonstration. Fig. 1 shows the system
architecture with acoustic features supplied to the pattern clas-
sifier by an acoustic front-end. The confidence scores generated
by the classifier are integrated over the duration of the acoustic
event to verify presence of a pattern of interest. The classifier is
trained as a support vector machine (SVM). SVMs have been
applied successfully to several demonstrating excellent gener-
alization ability even with sparse training data [13], [14]. SVM
classification is attractive for analog VLSI implementation be-
cause it lends itself to an array-based solution with a high degree
of regularity in computation [15]. The SVM classifier here has
been implemented as a current-mode array of floating gate MOS
translinear circuits with embedded analog storage. High energy
efficiency is achieved by biasing MOS transistors in the sub-
threshold region, where power–delay products are minimized
and are constant over several decades of operating range [6],
[7]. The chip is fully programmable, with parameter values from
SVM training downloadable onto the floating gate array. Using
calibration and chip-in-loop training, imperfections due to mis-
match and nonlinearity in analog implementation are alleviated.

Although the chip is designed to implement adaptive dynamic
sequence identification [16] according to a kernel-based forward
decoding algorithm [17], the architecture applies generally to
template-based pattern recognition, and we present the micro-
power operation of the chip with its application to biometric
verification.

This paper is organized as follows. Section II presents the
classification architecture in the context of the speaker verifi-
cation system. Section III describes the circuit implementation
of the classifier, and Section IV expresses fundamental limits of
the basic building blocks. Section V presents the fabricated pro-
totype and calibration procedures to compensate for analog im-
perfections. Experimental results with the system-on-chip con-
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Fig. 1. System diagram of acoustic classifier for speaker verification.

Fig. 2. Parallel architecture implementing multi-class SVM classification.

figured for speaker verification task are given in Section VI.
Section VII concludes with final observations.

II. CLASSIFICATION ARCHITECTURE

The acoustic front-end in Fig. 1 generates speech feature vec-
tors at discrete time instances . Each
sample in the sequence is presented to the classifier, which
implements a support vector machine (SVM)-based classifi-
cation algorithm. SVMs were originally formulated for binary
classification [13] but extend to multi-class or multi-category
classification [14]. The SVM classifier computes matching
scores (“kernels”) between the input vector and a set of
template vectors (“support vectors”) .
It then linearly combines these scores to produce outputs for
each category (“class”) according to

(1)

A quadratic kernel is implemented, sat-
isfying the Mercer condition for convergence of SVM training
[14]. The SVM training procedure automatically selects sup-
port vector templates from the training examples, and derives
values for the coefficients and offsets accordingly.

A parallel architecture implementing the multi-class SVM
(1) is shown in Fig. 2, containing two matrix vector multi-
pliers MVM1 and MVM2. The input vector is presented
column-parallel to MVM1, which computes inner-products
between the template vectors and the input vector .
With unsigned (non-negative) acoustic features produced by
the front-end, the input vectors as well as the support
vectors selected from its training samples have all unsigned
components, so that all MAC operations in MVM1 reduce to

single-quadrant, conveniently implemented with translinear
current-mode circuits (Section III). The inner-products re-
turned by MVM1 are squared to produce the kernel values

. The kernels are presented row-parallel
to which computes the SVM category outputs
according to (1).

The scores generated by the SVM are normalized to pro-
duce confidence scores, or measures of probability for each
category [17]. Normalized confidence scores allow integration
over the duration of the speech sequence for reli-
able classification, and reduce false alarms due to outliers gen-
erated by the front-end.

A reverse water-filling algorithm, popular in rate distortion
theory [21], implements a subtractive normalization procedure
[18]. The normalized confidence values are obtained from
the classifier outputs according to

(2)

where , and is a constant normalization
parameter. The threshold level is set by the reverse water-
filling criterion

(3)

It readily follows that represents a valid probability mea-
sure, and . Compared to a
more conventional method of divisive normalization

[19], [20], the following properties of
the subtractive normalization are noteworthy.

• Subtractive normalization applies directly to multi-class
SVM classification outputs [18] whereas divisive nor-
malization requires nonlinear transformation such as ex-
ponentiation to ensure positive arguments , more
complex to implement accurately in analog circuits.

• The distribution obtained by (2) is insensitive to uniform
offset in whereas the distribution obtained by divi-
sive normalization is insensitive to uniform scaling in .
Because is positive and identical for all classes ,
the offset insensitivity in allows to shift the parameters

and by any constants across . The important im-
plication is that these constants can be chosen sufficiently
positive so that MVM2 in Fig. 2 implements (1) using just
single-quadrant multipliers.

• For small values of the normalization parameter the dis-
tribution strongly favors the class with highest con-
fidence and in the limit favors only
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Fig. 3. Reverse water-filling procedure: the threshold Z is such that the net
balance of scores f ; f ; . . . ; f exceeding Z is fixed at �.

the class with highest confidence (winner-take-all) trun-
cating the rest. In analog VLSI systems truncation is nat-
ural, and de-noising is achieved by adjusting the truncation
threshold to the noise floor.

A pictorial description of the reverse water-filling procedure
solving (3) is shown in Fig. 3 for scores corresponding to
classes . The threshold is obtained such that
the combined score above the threshold (shown by the shaded
area) equals . Even though the reverse water-filling algorithm
involves sorting and search techniques that would involve nested
routines in digital implementation, in Section III we propose an
analog VLSI network that directly solves for , using (3) as
its equilibrium criterion.

For each of the classes the corresponding
normalized confidences are integrated over the duration
of the acoustic event. Event classification is performed by iden-
tifying the class corresponding to maximum integrated confi-
dence according to

(4)

In a binary classification setting (e.g., speaker veri-
fication), an acceptance threshold is introduced in (4) to min-
imize the false acceptance rate. The acceptance of an acoustic
event is determined by the sign of the binary decision function:

(5)

III. CIRCUIT IMPLEMENTATION

A. Classifier Circuits

The most computationally intensive operation of the SVM is
matrix-vector multiplication (MVM) for which several imple-
mentations have been reported in literature [22], [15], [23]. In
the present implementation each MVM is served by a floating
gate MOS translinear array, each cell performing one multiply
accumulate (MAC) operation.

Fig. 4. Multiply accumulate cell (MAC, right) and reference cell (left) imple-
menting MVM in Fig. 2.

Careful consideration at the architectural level, as presented
in Section II, reduces every MAC operation in MVM1 and
MVM2 to a single quadrant, with unsigned non-negative
operands both for the input and the stored parameter in the
multiplier. Unsigned multiplication and accumulation are con-
veniently implemented in the current domain by floating-gate
MOS translinear circuits as follows. Applied to the MOS tran-
sistor operating in the subthreshold region [24], the translinear
principle [25] makes use of the exponential relation between
drain current and either gate voltage or source voltage

(relative to bulk voltage) to implement products of currents
as sums of voltages. In particular, for a pMOS transistor in
subthreshold in saturation, the drain current

(6)

decomposes in a product of two terms, the first exponential in
and the second exponential in , on a voltage scale set by

thermal voltage mV and gate coupling factor
[7], [6], [29]. The circuit in Fig. 4 implements the first

term by floating-gate storage, and the second term by pre-dis-
tortion of an input current through current-mode feedback.
High gain amplification by M3 and M4 sets the common-source
voltage of M1 and M2 (node in Fig. 4) such that M1 carries
the input current . The matched pair of transistors M1 and
M2 then produces an output current

(7)

(8)

that is linear in the input current, scaled by floating-gate pro-
grammable weight , and independent of
process parameters and bulk voltage.

Two observations can be directly made regarding (8) and its
circuit implementation in Fig. 4.

1) The input stage significantly reduces the effect of the bulk
and any common-mode disturbance on the output current.
This is illustrated in Fig. 5 where the common-mode dis-
turbance is introduced by varying the control gate voltage

. The measured characteristic shows rejection of the
common-mode variations by 20 dB in the output current.

2) The weight is differential in the floating gate voltages
, allowing to increase or decrease the weight by
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Fig. 5. Rejection of common-mode disturbance of the input stage.

hot electron injection only, without the need for repeated
high-voltage tunneling. For instance, the leakage current
in unused rows can be reduced significantly by program-
ming the reference gate voltage to a high value, leading
to power savings. The reference voltage is also used
for compensating for the effects of mismatch between dif-
ferent rows of floating gate cells.

The feedback transistor in the input stage M3 reduces the
output impedance of node and is approximately given by

where , and are source and drain re-
ferred transconductances of and . The low impedance
at node makes the array scalable, as additional memory ele-
ments can be added to the node without significantly loading the
node. An added benefit of keeping the voltage at node fixed is
reduced variation in back gate parameter in the floating gate
elements [27], [28]. The current from each memory element is
summed on a low impedance node established by two diode con-
nected transistors M7–M10 as shown in Fig. 7. This partially
alleviates large drain conductance due to capacitive gate-drain
coupling implicit in floating gate transistors [27]. Fig. 6 shows
the output current through MAC cells whose floating gate cells
have been programmed in a geometric fashion, demonstrating
multiplication operation.

The subthreshold characteristics of electrode-coupled
floating-gate MOS transistors supports the implementation of
a linear matrix-vector multiplier [23]. Instead of setting the
source voltage of the floating gate cell as in Fig. 4, the imple-
mentation in [23] uses an input stage to drive the control gate
voltage, which modulates the output current. Therefore, due to
large gate capacitance and lower control gate referred transcon-
ductance, the implementation has a higher power–delay product
when compared to the proposed architecture.

A translinear squaring circuit M7-M10 implements the kernel
as shown in Fig. 7. Assuming that the transistors
and are perfectly matched, the output current through

is given by

(9)

Fig. 6. Output current through four MAC cells programmed with currents that
scale with ratios 1; 1=2; 1=4; 1=8.

Fig. 7. Schematic of the SVM system with combined input, kernel and MVM
modules.

Fig. 8. Measured kernel characteristic showing approximate square depen-
dence of output current on input current.

where is the bias current through transistor . Even
though under nonideal conditions the kernel computation
will deviate from its perfect response, the requirement on the
accuracy of nonlinearity is not stringent and is compensated
by adapting the SVM training algorithm [17]. Fig. 8 shows
measured response of the squaring circuit, which shows that the
output current proportional to the square of the input current.
The current then feeds to the second MVM comprising of MAC
cell shown in Fig. 4 to produce SVM confidence functions
corresponding to the general form (1). With
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Fig. 9. Subtractive normalization circuit.

the components of the feature vector presented as input
currents to MVM1, the current outputs of the
chip are given by

(10)

The current bias of the squaring circuit is individually tun-
able to compensate for mismatch during calibration as described
in Section V.

B. Normalization Circuit

The subtractive normalization according to (3) is imple-
mented by the circuit shown in Fig. 9. The core, repeated
for each category, is the basic building block comprising
M1-M4 which compute . The feedback
circuit consisting of transistors M5-M9 determines the equi-
librium condition in (3). If all the transistors are biased in
weak-inversion, the network in Fig. 9 implements

(11)

For mV, the circuit (11) implements the reverse
water-filling equation (3). Transistor M4 scales the currents
with the normalizing factor and is used for off-chip current
measurement during calibration and programming (Section V).
Figs. 10(a) and (b) show the measured response of a four-class
subtractive normalization circuit. The figures show the output
current through transistor M4 corresponding to three classes
(P2, P3, and P4) as a function of the output current of one of
the classes (P1). For large value of the normalization factor
the change in the output response is similar for all classes
as predicted by the reverse water-filling criterion. Similarly
for low value of , the network demonstrates a saturating
piece-wise linear response.

IV. ENERGY EFFICIENCY, NOISE, AND PRECISION

In this section we analyze the energy efficiency and noise
performance of the MAC cell in Fig. 4 and the normalization
circuit in Fig. 9.

A. MAC Circuit

To achieve low power dissipation the MAC cell has to op-
erate with small currents and yet achieve a desired computa-

tional bandwidth. Factors which limit the performance of the
MAC cell are:

• minimum current required to achieve a specified computa-
tional bandwidth;

• minimum current required to maintain a specified
signal-to-noise ratio (SNR).

The power dissipation of the MAC cell in Fig. 4 can be com-
puted using the drain current through the transistor M4 that
supplies current to all cells connected to node A. Let the supply
voltage be denoted by then power dissipation of a single
MAC cell is given by , where it is assumed
that the source to drain voltage . The factor 5 ac-
counts for the bias current through transistor M3 which implies
more current through transistor M4 than needed to supply the
cell currents. Let the intrinsic capacitance of the output node
of the cell be given by and the source referred transcon-
ductance of M4 be given by . The power delay product for
a single MAC operation determined by limitations on computa-
tional bandwidth is given by

or

(12)

where in weak inversion. is the thermal
voltage which is mV at room temperature. For a nom-
inal value of fF and V, the minimum
power–delay product due to the computational bandwidth limi-
tation is given by J/MAC.

The limit imposed by noise on power dissipation of the MAC
is computed by accounting for thermal and flicker noise from
the MOS transistors in the MAC cell. The noise power spectral
density of the output current in Fig. 4 is given by [29], [30]

(13)

where the factor 2 accounts for contribution from transistors
and . The high loop gain due to suppresses the

thermal noise contribution due to and . The thermal
noise parameter is approximately equal to in strong inver-
sion. However in the subthreshold region, equals [29]
and transconductance is proportional to drain current,

, reducing the thermal noise component to
per transistor, equivalent to two-sided (source/drain) shot noise
[30]. Typical values of the flicker noise parameters and

in a m CMOS process are ,
and . Because of the square dependence on drain cur-
rent, the relative contribution of flicker noise diminishes with
diminishing bias currents, and is negligible in subthreshold. At
1 pA bias current, the flicker noise corner reaches Hz.

To maintain a minimum level of signal to noise power ratio
SNR for a bandwidth of , the drain current through the
MAC cell has to satisfy

(14)
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Fig. 10. Output current values P for different elements of the normalization network f corresponding to (a) large and (b) nominal value of the normalization
constant �.

limiting the power–delay product to

(15)

Therefore, to maintain at least unity (0 dB) SNR, the
power–delay product of a single MAC cell is bounded from
below by the largest of the two limits,

(16)

With fF, and V, the second term dominates
the bound which remains . The bound is achieved
for a bias current at least 75 fA. At this level the signal to
noise power ratio SNR reaches 800, or 28 dB.

These values imply that for the MAC cell the power–delay
product is dominated by the computational efficiency, rather
than intrinsic noise of the analog computing array. The anal-
ysis ignored the effect of substrate coupling because the design
uses continuous-time circuits which avoid digital switching. It
also ignored diode leakage which at 75 fA drain current and
at room temperature contributes significantly. For the 28,814
MAC cell array, the minimum theoretical power dissipation for
a bandwidth of 80 Hz is 24 nW. Even lower limits are in prin-
ciple feasible in deeper submicron processes. Note that unlike
digital circuits in low-voltage deep submicron technology [31],
subthreshold currents are not considered leakage but carry the
signal and hence do not imply a lower limit on power dissipa-
tion.

B. Nonvolatile Storage

The precision of computation by the array is limited by the
resolution of the MAC operation which in turn is limited by the
precision of floating gate storage. Precision in floating gate pro-
gramming is determined by programming duration and the ac-
curacy of the read-out instrumentation [32]. In this paper a fixed
current method, proposed in [33] has been used for program-
ming the floating gate array. The method facilitates increased
programming speed while achieving a precision of at least 7 bits,
which in most cases is sufficient for recognition tasks. Fig. 11

Fig. 11. Currents programmed on 64 different floating gate cells using the fixed
current algorithm in [33] at an increment of 10 pA.

shows a plot of 64 different floating gate cells programmed at
an increment of 10 pA using the fixed current technique [33].

C. Normalization Circuit

Next we analyze the effect of thermal noise on the output of
the normalization circuit in Fig. 9. For active blocks satisfying
the condition the contribution due to noise
at the output transistor M3 is given by

(17)

where refers to transconductance of transistor and is
the transistor parameter defined in (13). According to (11), the
noise contribution due to transistors M8, M9 and M5 can be ig-
nored because of the high loop gain of the network and equals

. According to (17), the noise contribution due to the
reference current transistor M7 can be reduced by increasing the
size of the network (which increases the number of active blocks
P). It can be seen that since the contribution of the thermal noise
is additive, subtractive normalization is well suited as it reduces
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Fig. 12. Micrograph of the 14-input, 720-template, 24-class normalizing SVM
classifier.

TABLE I
SVM CHIP CHARACTERISTICS

the contribution of noise from neighboring circuits . There-
fore, according to the value of normalization factor , the min-
imum threshold level can be adaptively adjusted to match the
noise level of the system.

V. PROTOTYPE IMPLEMENTATION AND CALIBRATION

A 14-input, 24-class, and 720-template SVM including
a 24 class normalization network was implemented on a
3 mm 3 mm chip, fabricated in a 0.5 m CMOS process.
Fig. 12 shows the micrograph of the fabricated chip and Table I
summarizes its measured characteristics. An array of 6 4
SVMs, whose outputs are combined through an output bus, was
implemented. The chip includes programming shift registers
for selecting rows of floating gate cells. Any unused rows can
be shut off during run-time, thus saving power.

All MAC cells in MVM array are randomly accessible for
read and write operations. The programming registers are also
used for calibration of the SVM chip. The calibration procedure
compensates for mismatch between input and output paths by
adapting the floating gate elements in the MVM cells.

Fig. 13. Calibration procedure for the classifier chip. Compensation of mis-
match due to (a) the squaring stages and (b) the input stages.

MOS transistors operating in weak inversion exhibit a greater
mismatch than in strong inversion [34]. This can be attributed
to a high transconductance to bias current ratio in the
effect of threshold variations. Fortunately for transistors biased
in weak-inversion, the dominant source of mismatch appears as
a multiplicative factor because remains fairly constant
for a wide range of currents . Following analysis of the signal
path in Fig. 7, the cumulative effect of transistor mismatch on
the output current (10) takes the form of input-referred multi-
plicative gain errors in the input current , the square kernel
bias current and the output current . Fig. 14(a) shows mea-
sured currents at the output of the classifier when all the floating
gate cells are programmed to an equal value and the input cur-
rent is varied. The spread between the curves in Fig. 14(a) shows
the degree of mismatch and also its multiplicative nature. The
mismatch due to gate coupling parameter in (8), which affects
the slope of the curve in Fig. 14(a), was measured to be less than
1% and hence was not considered in calibration.

The calibration circuits on the fabricated prototype consist of
row and column scan shift registers which select individual rows
and column of the floating gate array. Fig. 12(a) illustrates the
selection procedure for automatic calibration. The intersection
between each vertical and horizontal row denotes the location of
a floating gate transistor whose value can be adapted during cal-
ibration. The key calibration steps are summarized as follows.

1) All the floating gate cells are programmed to a fixed current
(10 nA for our experiments) using the fixed-current method
described in [33].

2) The mismatch due to the in (10) is compensated by
selecting a reference input column and a reference output
column as shown in Fig. 13(a). Each row of the floating
gate array is selected and the floating gate cell at the input
stage of the coefficient MVM is adapted such that the out-
puts of the kernel are equal.

3) The mismatch due to the input stage is compensated for
by selecting a reference row as shown in Fig. 13(b). Each
input column is selected and the corresponding output is
measured. The floating gate cell at the input stage of the
support vector MVM is adapted such that the output cur-
rent is set to a reference value.
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Fig. 14. Measured kernel current for different SVM stages (a) before calibration and (b) after calibration.

Fig. 15. (a) Decision boundary of an example two dimensional, binary class classification problem trained using a square kernel. (b) Classification manifold
showing the variation of the decision function for different values of inputs.

4) The support vectors and the coefficient vectors are pro-
grammed onto the floating gate array with respect to the
reference current.

Fig. 14(a)–(b) demonstrates the effect of calibration, showing
the kernel output when different rows are selected and the input
current is varied. After calibrating the kernel stage using coef-
ficient stage parameters, the kernel response plot shows a re-
duced spread and hence the procedure alleviates the effect of
mismatch.

VI. EXPERIMENTS AND RESULTS

An experimental setup was designed to evaluate the perfor-
mance of the classifier chip. A custom circuit board consisting
of a bank of digital-to-analog converters was developed to gen-
erate acoustic features for the SVM chip. A lookup table, cal-
ibrated before and after each experiment, maps the input cur-
rent vector into voltage vectors generated by the DAC, avoiding
bandwidth limitations in sourcing very small currents into the
chip. An external I–V converter measures the output current
from the chip. For practical use, the presented design is in-
tended for a system-on-chip application where the classifier is
embedded with a front-end processor and quantizer. An on-chip

integrated decision circuit performs two-level conversion of the
output current to produce SVM outputs.

The first set of experiments used a simulated classification
task to benchmark the performance of the SVM and charac-
terize its power dissipation. Fig. 15 plots the feature vectors on
which the SVM was trained. The symbols “o” and “x” indicate
binary class membership of each feature vector. The decision
boundary separating the two classes is shown by a dashed line.
A GiniSVM toolkit [35] was used to train the SVM classifier
and the subtractive normalization in (3) was naturally embedded
in the training algorithm. The classifier generated two confi-
dence functions corresponding to each of the binary classes.
Fig. 15(b) plots the difference of the two SVM confidence func-
tions (denoted by margin) versus the two dimension feature
vector. The value of the margin relative to a threshold deter-
mines class membership of any two dimensional vector. The
parameters obtained through SVM training were programmed
onto a calibrated chip. The input feature vectors were then pre-
sented to the chip using the DAC array. A plot of margin values,
obtained by measuring the output current from the chip, are
shown in Fig. 16(a)–(b). The power dissipation of the chip was
adjusted by changing the internal bias conditions. The figure
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Fig. 16. Measured classification manifold for power dissipation levels at (a) 5 �W and (b) 500 nW.

Fig. 17. Speaker verification with the normalizing SVM classifier chip. (a) Verification of a correct speaker, whose confidence values is integrated over time.
(b) Rejection of an imposter speaker.

shows that the response of the classifier is similar to the sim-
ulated response when the bias currents are set to 5 W of total
power consumption. Even at 500 nW of total power consump-
tion, the decision boundary is consistent although noise and
limited accuracy of the external measurement instrumentation
contaminate the shape of the measured decision manifold. The
on-chip decision circuits producing SVM outputs avoid the in-
strumentation errors in measuring very small off-chip currents
[34].

For the second set of experiments the SVM chip was pro-
grammed to perform speaker verification using speech data
from YOHO corpus. 480 utterances corresponding to 10 sepa-
rate speakers (speaker IDs: 101–110) were chosen. For each of
these utterances, 12 dimensional mel-cepstra coefficients were
computed for every 25 ms speech frame. These coefficients
were combined using k-means clustering to obtain 50 clusters
per speaker, which were then used for training the classifier.
For testing 480 utterances for those speakers were chosen, and
confidence scores returned by the classifier were integrated
over all frames of an utterance according to (4). A sample
verification result, as measured using the SVM chip is shown

in Fig. 17(a)–(b) where the true speaker is identified and an
imposter is rejected. A receiver operating characteristic (ROC)
curve was computed over 480 out-of-sample test utterances
to evaluate the generalization performance of the classifica-
tion chip. The curve plots the number of imposter speakers
versus number of correct speakers verified by the system for
different threshold parameter in (5). Fig. 18 compares ROC
curves obtained through measurement with those obtained
through simulations. The verification system demonstrates
97% true acceptance at 3% false positive rate, similar to the
performance obtained through floating point software simula-
tions. The power consumption of the SVM chip for speaker
verification task is only 840 nW, demonstrating its suitability
for autonomous sensor applications. At 40 classifications per
second (80 Hz analog bandwidth), the chip attains an energy
efficiency of MACs per Joule.

VII. DISCUSSION AND CONCLUSION

Ultra-low power smart sensors require power efficient
recognition systems to identify patterns of interest in their envi-
ronment. We showed an example where analog VLSI provides
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Fig. 18. Measured and simulated ROC curve for the speaker verification ex-
periment.

an attractive alternative to digital signal processing systems for
implementing ultra-low-power sensors. This paper presented
a sub-microwatt analog VLSI classifier for acoustic signa-
ture identification, and other applications of signal detection
for RF-ID biometrics or implantable biomedical monitoring.
The architecture uses an array of floating gate elements for
nonvolatile storage and computation. Nonvolatile storage of
parameters makes the system suitable for sensors powered
by energy harvesting techniques where power disruption is
frequent. All analog processing on the chip is performed by
transistors operating in weak-inversion resulting in power
dissipation in levels ranging from nanowatts to microwatts.
Compensation of analog imperfections due to mismatch and
nonlinearity is performed through a systematic calibration and
PC-in-loop training procedure. A prototype implementing the
proposed architecture has been fabricated in a 0.5 m CMOS
process and has been demonstrated on a speaker verification
task at sub-microwatt power.

REFERENCES

[1] A. Wang and A. P. Chandrakasan, “Energy-efficient DSPs for wireless
sensor networks,” IEEE Signal Process. Mag., vol. 19, no. 4, pp. 68–78,
Jul. 2002.

[2] S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan,
and J. H. Lang, “Vibration-to-electric energy conversion,” IEEE Trans.
Very Large Scale Integration (VLSI), vol. 9, no. 2, pp. 64–76, Feb. 2001.

[3] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T.
Tuan, “PicoRadios for wireless sensor networks: the next challenge in
ultra-low power design,” in IEEE ISSCC 2002 Dig. Tech. Papers, San
Francisco, CA, Feb. 2002, pp. 200–201.

[4] J. F. Randall, “On ambient energy sources for powering indoor elec-
tronic devices,” Ph.D. dissertation, Ecole Polytechnique Federale de
Lausanne, Lausanne, Switzerland, May 2003.

[5] R. Amirtharajah and A. P. Chandrakasan, “A micropower pro-
grammable DSP using approximate signal processing based on
distributed arithmetic,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp.
337–347, Feb. 2004.

[6] E. A. Vittoz, “Low-power design: Ways to approach the limits,” in
IEEE ISSCC 1994 Dig. Tech. Papers, San Francisco, CA, 1994, pp.
14–18.

[7] A. G. Andreou, “On physical models of neural computation and their
analog VLSI implementation,” in Proc. Workshop on Physics and Com-
putation, Nov. 1994, pp. 255–264.

[8] P. Leong and M. Jabri, “ A low-power VLSI arrhythmia classifier,”
IEEE Trans. Neural Networks, vol. 6, no. 6, pp. 1435–1445, Nov. 1995.

[9] T. Yamasaki, K. Yamamoto, and T. Shibata, “Analog pattern classi-
fier with flexible matching circuitry based on principal-axis-projection
vector representation,” in Proc. 27th Eur. Solid-State Circuits Conf.
(ESSCIRC 2001), Sep. 2001, pp. 197–200.

[10] M. S. Shakiba, D. A. Johns, and K. W. Martin, “BiCMOS circuits for
analog Viterbi decoders,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 45, no. 12, pp. 1527–1537, Dec. 1998.

[11] J. Lazzaro, J. Wawrzynek, and R. P. Lippmann, “A micropower analog
circuit implementation of hidden Markov model state decoding,” IEEE
J. Solid-State Circuits, vol. 32, no. 8, pp. 1200–1209, Aug. 1997.

[12] P. Kinget and M. Steyaert, “Analog VLSI design constraints of pro-
grammable cellular neural networks,” Analog Integr. Circuits Signal
Process., vol. 15, no. 3, pp. 251–261, Mar. 1998.

[13] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal
margin classifier,” in Proc. 5th Annu. ACM Workshop on Computa-
tional Learning Theory, 1992, pp. 144–152.

[14] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[15] R. Genov and G. Cauwenberghs, “Charge-mode parallel architecture
for vector-matrix multiplication,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 48, no. 10, pp. 930–936, OCt. 2001.

[16] S. Chakrabartty and G. Cauwenberghs, “Sub-microwatt analog VLSI
support vector machine for pattern classification and sequence es-
timation,” in Proc. Neural Information Processing Systems Conf.
(NIPS’2004). Cambridge, MA: MIT Press, 2005.

[17] S. Chakrabartty and G. Cauwenberghs, “Forward decoding kernel ma-
chines: A hybrid HMM/SVM approach to sequence recognition,” in
Proc. SVM 2002, pp. 278–292, Lecture Notes in Computer Science,
2388.

[18] S. Chakrabartty and G. Cauwenberghs, “Margin normalization and
propagation in analog VLSI,” in Proc. IEEE ISCAS 2004, Vancouver,
Canada, 2004, pp. I-901–904.

[19] H.-A. Loeliger, “Probability propagation and decoding in analog
VLSI,” in Proc. IEEE Int. Symp. Information Theory, Cambridge,
MA, 1998, p. 146.

[20] F. Lustenberger, “An analog VLSI decoding technique for digital
codes,” in Proc. IEEE ISCAS’99, 1999, vol. 2, pp. 424–427.

[21] T. A. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[22] A. Kramer, “Array-based analog computation,” IEEE Micro, vol. 16,
no. 5, pp. 40–49, May 1996.

[23] A. Aslam-Siddiqi, W. Brockherde, and B. Hosticka, “A 16� 16 non-
volatile programmable analog vector-matrix multiplier,” IEEE J. Solid-
State Circuits, vol. 31, no. 10, pp. 1502–1509, 1998.

[24] T. Serrano-Gotarredona, B. Linares-Barranco, and A. G. Andreou, “A
general translinear principle for subthreshold MOS transistors,” IEEE
Trans. Circuits Syst., I: Fundam. Theory Applicat., vol. 46, no. 5, pp.
607–616, May 1999.

[25] B. Gilbert, “Translinear circuits: A proposed classification,” Electron.
Lett., vol. 11, no. 1, pp. 14–16, Jan. 1975.

[26] C. Diorio, P. Hasler, B. Minch, and C. A. Mead, “A single-transistor
silicon synapse,” IEEE Trans. Electron Devices, vol. 43, no. 11, pp.
1972–1980, Nov. 1996.

[27] A. Andreou and K. Boahen, “Translinear circuits in subthreshold
MOS,” J. Analog Integrated Circuits Signal Process., vol. 9, no. 2, pp.
141–166, Mar. 1996.

[28] T. Shibata and T. Ohmi, “A functional MOS transistor featuring gate-
level weighted sum and threshold operations,” IEEE Trans. Electron
Devices, vol. 39, no. 6, pp. 1444–1455, Jun. 1992.

[29] Y. P. Tsividis, Operation and Modeling of the MOS Transistor. New
York: McGraw-Hill, 1988.

[30] R. Sarpeshkar, T. Delbruck, and C. A. Mead, “White noise in MOS
transistors and resistors,” IEEE Circuits Devices Mag., vol. 9, no. 6,
pp. 23–29, Nov. 1993.

[31] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling and sizing
for minimum energy operation in subthreshold circuits,” IEEE J. Solid-
State Circuits, vol. 40, no. 9, pp. 1778–1786, Sep. 2005.

[32] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Programming analog
computational memory elements to 0.2% accuracy over 3.5 decades
using a predictive method,” in Proc. IEEE ISCAS 2005, pp. 2148–2151.

[33] S. Chakrabartty and G. Cauwenberghs, “Fixed current method for
programming large floating gate arrays,” in IEEE ISCAS 2005, pp.
3934–3937.



CHAKRABARTTY AND CAUWENBERGHS: SUB-MICROWATT ANALOG VLSI TRAINABLE PATTERN CLASSIFIER 1179

[34] B. Linares-Barranco and T. Serrano-Gotarredona, “On the design and
characterization of femtoampere current-mode circuits,” IEEE J. Solid
State Circuits, vol. 38, no. 8, pp. 1353–1363, Aug. 2003.

[35] Gini-SVM Toolkit. [Online]. Available: http://bach.ece.jhu.edu/svm/
ginisvm

Shantanu Chakrabartty (M’96) received the
B.Tech. degree from the Indian Institute of Tech-
nology, Delhi, India, in 1996, the M.S. and Ph.D.
degrees in electrical engineering from Johns Hop-
kins University, Baltimore, MD, in 2001 and 2004,
respectively.

He is currently an Assistant Professor in the De-
partment of Electrical And Computer Engineering,
Michigan State University. From 1996 to 1999, he
was with Qualcomm Inc,, San Diego, CA, and during
2002 he was a visiting researcher at the University of

Tokyo. His current research interests include low-power analog and digital VLSI
systems, hardware implementation of machine learning algorithms with appli-
cation to biosensors and biomedical instrumentation.

Dr. Chakrabartty was a recipient of The Catalyst foundation fellowship from
1999 to 2004 and won the best undergraduate thesis award in 1996. He is cur-
rently a member for IEEE BioCAS technical committee and IEEE Circuits and
Systems Sensors technical committee.

Gert Cauwenberghs (SM’89–M’94–S’04) received
the Ph.D. degree in electrical engineering from the
California Institute of Technology, Pasadena, in
1994.

He was previously Professor of electrical and com-
puter engineering at Johns Hopkins University, Bal-
timore, MD. He joined the University of California at
San Diego, La Jolla, as Professor of neurobiology in
2005. His research aims at advancing silicon adaptive
microsystems to understanding of biological neural
systems, and to development of sensory and neural

prostheses and brain-machine interfaces.
Dr. Cauwenberghs received the NSF Career Award in 1997, ONR Young

Investigator Award in 1999, and Presidential Early Career Award for Scien-
tists and Engineers in 2000. He is Associate Editor of IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS I, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND

REHABILITATION ENGINEERING, and IEEE Sensors Journal.


